Next: About this document ...
Up: Collectivity of the low-lying
Previous: Conclusions
- 1
- F. E. Bertrand, Nucl. Phys. A 354 (1981) 129c.
- 2
- F. Dawson and R. J. Furnstahl, Phys. Rev. C 42 (1990)
2009.
- 3
- D. Vretenar, A. Wandelt, and P. Ring,
to be published in Phys. Lett. B (2000).
- 4
- Y. K. Gambhir, P. Ring, and A. Thimet,
Ann. Phys. NY. 198 (1990) 132.
- 5
- M. L`Huillier and N. Van Giai,
Phys. Rev. C 39 (1989) 2022.
- 6
- P. Ring, Progr. Part. Nucl. Phys. 37 (1996) 193.
- 7
- D. Vretenar, H. Berghammer, and P. Ring,
Nucl. Phys. A581 (1995) 679.
- 8
- D. Vretenar, N. Paar, P. Ring and G. A. Lalazissis,
Phys. Rev. E 60 (1999) 308.
- 9
- G. A. Lalazissis, D. Vretenar, and P. Ring,
Nucl. Phys. A4516 (1999) 1.
- 10
- G. A. Lalazissis, D. Vretenar, and P. Ring,
Phys. Rev. C 57 (1998) 2294.
- 11
- F. Catara, C. H. Dasso, and A. Vitturi,
Nucl. Phys. A602 (1996) 181.
- 12
- Y. Suzuki, K. Ikeda, and H. Sato,
Prog. Theor. Phys. 83 (1990) 180.
- 13
- R. Mohan, M. Danos and L. C. Biedenharn,
Phys. Rev. C 5 (1971) 1740.
- 14
- D. Vretenar, N. Paar, P. Ring, and G. A. Lalazissis,
submitted to Phys. Lett. B (2000).
- 15
- T. Aumann et al.,
Nucl. Phys. A 649 (1999) 297c.
- 16
- M. Zinser et al.,
Nucl. Phys. A 619 (1997) 151.
- 17
- T. Nakamura et al.,
Phys. Lett. B 331 (1994) 296.
- 18
- T. Hartmann, J. Enders, P. Mohr, K. Vogt, S. Volz, and
A. Zilges, Phys. Rev. Lett. 85 (2000) 274.
- 19
- J. P. Adams, B. Castel and H. Sagawa,
Phys. Rev. C 53 (1996) 1016.
- 20
- J. Chambers, E. Zaremba, J. P. Adams and B. Castel,
Phys. Rev. C 50 (1994) R2671.
- 21
- H. Sagawa and T. Suzuki,
Phys. Rev. C 59 (1999) 59.
- 22
- Z. W. Bell, L. S. Cardman and P. Axel,
Phys. Rev. C 25 (1982) 791.
- 23
- G. Kühner, D. Meuer, S. Müller, A. Richter, E. Spamer,
O. Titze and W. Knüpfer,
Phys. Lett. B 104 (1981) 189.
- 24
- F. Catara, E. G. Lanza, M. A. Nagarajan and A. Vitturi,
Nuc. Phys. A 624 (1997) 449.
- 25
- H. Sagawa, N. Van Giai, N. Takigawa, M. Ishihara and
K. Yazaki, Z. Phys. A 351 (1995) 385.
- 26
- H. Sagawa and C. A. Bertulani,
Prog. Theor. Phys.(sup.) 124 (1996) 143.
- 27
- S. Ottini-Hustache, et. al.,
Phys. Rev. C 59 (1999) 3429.
- 28
- Z. Y. Ma, N. Van Giai, A. Wandelt, D. Vretenar and
P. Ring, nucl-th/9910054.
- 29
- F. E. Serr, T. S. Dumitrescu, T. Suzuki and C. H. Dasso,
Nucl. Phys. A 404 (1983) 359.
Figure Captions
- Fig.1 Isovector dipole strength in
Pb
for the full RRPA(solid line) and RRPA without
contributions from Dirac states (dashed). The dotted, dot-dashed and
short-dashed lines correspond to the RRPA with only
,
and
mesons included in the antiparticle-hole couplings, respectively.
- Fig.2 Isovector dipole strength calculated with RRPA for a sequence of
oxygen isotopes (Z=8, N=8,14,16,20). Low energy region is noted with dotted
line.
- Fig.3 Ratio of the energy weighted moment m
in the low (E
10 MeV)
and high (E
10 MeV) energy region for various nuclei.
- Fig.4 Isovector (dotted line) and isoscalar (thick line)
dipole transition densities of
low-lying and GDR selected states in
O and
O.
Separated proton and neutron transition densities are displayed by
the dashed and dot-dashed lines, respectively. All transition densities are
multiplied by r
.
- Fig.5 Dipole strength for isovector mode of oscillations in the
Ca,
Ca,
Ca and
Ca nuclei.
- Fig.6 Isovector (dotted line) and isoscalar (thick line)
dipole transition densities multiplied by r
for the
low-lying (7.3 MeV) and GDR (15.2 MeV) state in
Ca.
Proton and neutron transition densities are displayed by
the dashed and dot-dashed lines, respectively.
- Fig.7 Isovector dipole strength distributions for
Ni,
Ni,
Ni and
Ni nuclei.
- Fig.8 Isovector (IV) and isoscalar (IS) dipole transition densities
multiplied by r
for the low-lying (8.9 MeV) and GDR (16.4 MeV) state in
Ni. Proton and neutron transition densities are noted
by p and n, respectively.
- Fig.9 Centroid energies(
) of the isovector dipole low-lying
(
MeV) and GDR (
MeV) modes, displayed as a function of
number of neutrons in Ni isotopes.
Energies of the low-lying modes are compared with the hydrodynamical
prediction [12] for energy of the pygmy resonances (SIS).
GDR modes are compared with the mass dependence law
.
- Fig.10 Isovector dipole strength distributions for
Sn,
Sn,
Sn and
Sn nuclei.
- Fig.11 Isovector (IV) and isoscalar (IS) dipole transition densities
multiplied by r
for low-lying 8.9 MeV (a) and GDR 14.8 MeV state (b)
in
Sn. Proton and neutron transition densities are noted
by p and n, respectively. The contributions of the proton-neutron core
(Z=50,
)(dashed) and the excess neutrons (
)(solid)
are displayed for the pygmy (c) and GDR (d) state.
- Fig.12 Velocity distributions in
Sn for the RRPA state at
8.6 MeV. The velocity field of the proton-neutron core (Z=50,
)(a)
is separated from the contribution of the excess neutrons (
)(b).
- Fig.13 The same as in Fig.12, but for the GDR peak at 14.8 MeV
in
Sn.
- Fig.14: Isovector low-lying (
MeV) and GDR (
MeV)
energies as a function of neutron number in Sn isotopes.
Energies of the low-lying mode are compared with the hydrodynamical
prediction [12] of pygmy resonances (SIS). GDR modes are
compared with the mass dependence law
.
- Fig.15 Isovector dipole strength distribution in
Zr (a).
The neutron(n), proton(p), isovector(IV) and isoscalar(IS)
transition densities are displayed for the low-lying state 7.7 MeV (b).
Separated transition densities of
the excess neutrons
vibrating against the core (Z=40, N=50)
are shown in the (c) panel.
- Fig.16 Velocity distributions in
Zr for the low-lying RRPA
state at
7.7 MeV. The velocity field of the proton-neutron core (Z=40,
)(a)
is separated from the contribution of the excess neutrons (
)(b).
Table:
Dominant neutron particle-hole excitations for
the main peaks in low energy region of isovector
dipole strength for
O.
E[MeV] |
EWSR[%] |
p-h excitation |
4.2 |
0.9 |
 |
4.9 |
1.4 |
 |
|
|
 |
7.3 |
1.9 |
 |
8.9 |
6.3 |
 |
|
|
 |
|
|
 |
Table:
Neutron particle-hole excitations in the
low energy isovector dipole mode in
Ca.
E[MeV] |
EWSR[%] |
p-h excitation |
5.7 |
1.2 |
 |
|
|
 |
6.8 |
2.6 |
 |
|
|
 |
|
|
 |
|
|
 |
|
|
 |
7.3 |
1.6 |
 |
|
|
 |
|
|
 |
|
|
 |
7.9 |
2.0 |
 |
|
|
 |
|
|
 |
|
|
 |
9.9 |
2.1 |
 |
|
|
 |
|
|
 |
Table:
Main neutron particle-hole configurations
participating in the low-lying isovector dipole
state 9.0 MeV (4.3% EWSR) in
Ni (left) and 8.6 MeV state (1.4% EWSR)
in
Sn(right)
Ni, 9.0 MeV |
Sn, 8.6 MeV |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
Next: About this document ...
Up: Collectivity of the low-lying
Previous: Conclusions
Nils Paar, 2001.
