next up previous
Next: Bohrov model atoma Up: Začeci kvantne fizike Previous: Foto-efekt

Comptonov efekt (TEK U IZRADI! NE UPOTREBLJAVATI!)

Compton je 1922. primijenio fotonski koncept (pojam fotona, fotonsku sliku) elektromagnetskog zračenja da bi objasnio raspršenje X-zraka na elektronima. U njemu dolazi do promjene valne duljine odnosno frekvencija elektromagnetskog zračenja, što se ne moze objasniti klasičnom fizikom. Compton je pronašao da je razlika tih valnih duljina fotona dana s


 \begin{displaymath}\Delta \lambda = \lambda' - \lambda = \lambda_{c} (1 - \cos \theta)
\end{displaymath} (1.19)


 \begin{displaymath}\lambda_{c} = \frac {h}{mc} = 2,43 \cdot 10^{-10} cm
\end{displaymath} (1.20)


 \begin{displaymath}E_{\gamma} = h \nu = h \frac {c}{\lambda}
\end{displaymath} (1.21)


 \begin{displaymath}p_{x} = h \nu/c = h/\lambda
\end{displaymath} (1.22)


 
py = 0 (1.23)


 \begin{displaymath}{\cal E}_{e} = m c^{2}
\end{displaymath} (1.24)


 
Px = 0 (1.25)


 
Py = 0 (1.26)


 \begin{displaymath}\gamma = \frac {1}{\sqrt {1 - \beta^{2}}}
\end{displaymath} (1.27)


 \begin{displaymath}\beta = v/c
\end{displaymath} (1.28)


 \begin{displaymath}E^{'}_{\gamma} = h \nu'
\end{displaymath} (1.29)


 \begin{displaymath}p'_{x} = (h/\lambda') \cos \theta
\end{displaymath} (1.30)


 \begin{displaymath}p_{y} = (h/\lambda) \sin \theta
\end{displaymath} (1.31)


 \begin{displaymath}{\cal E}^{'}_{e}= \gamma_{m} c^{2}
\end{displaymath} (1.32)


 \begin{displaymath}P'_{x} = m \gamma \beta c \cos \phi
\end{displaymath} (1.33)


 \begin{displaymath}P'_{y} = m \gamma \beta c \sin \phi
\end{displaymath} (1.34)


 \begin{displaymath}\gamma = \frac {1}{\sqrt {1 - \beta^{2}}}
\end{displaymath} (1.35)


 \begin{displaymath}\beta = v/c
\end{displaymath} (1.36)

Evo objašnjenja preko sudara elektrona s česticom svjetlosti, fotonom:
Sačuvanje energije:


 \begin{displaymath}E_{\gamma} + {\cal E}_{e} = E'_{\gamma} + {\cal E}^{'}_{e}
\end{displaymath} (1.37)


 \begin{displaymath}h \nu + m c^{2} = h \nu' + m \gamma e^{2}/ : me^{2}
\end{displaymath} (1.38)


 \begin{displaymath}\frac {h}{mc} (\frac {1}{\lambda} - \frac {1}{\lambda'}) = \gamma - 1
\end{displaymath} (1.39)

Sačuvanje impulsa


px + 0 = p'x + P'x (1.40)


 
0+0 = p'y + P'y (1.41)


 \begin{displaymath}\frac {h}{\lambda} = m \gamma \beta c \cos \phi + \frac {h}{\chi} \cos
\theta
\end{displaymath} (1.42)


 \begin{displaymath}0= - m \gamma_{\beta} c \sin \phi + \frac {h}{\lambda'} \sin \theta
\end{displaymath} (1.43)


 \begin{displaymath}(\frac {h}{\lambda} - \frac {h}{\lambda'} \cos \theta)^{2} = (m \gamma
\beta c)^{2} \cos^{2} \phi
\end{displaymath} (1.44)


 \begin{displaymath}+ (\frac {h}{\lambda'})^{2} \sin^{2} \theta = (m \gamma \beta c)^{2}
\sin^{2} \phi
\end{displaymath} (1.45)


 \begin{displaymath}h^{2} (\frac {1}{\lambda^{2}} - \frac {2}{\lambda \lambda'} \...
...^{'2}} \cos^{2} \theta) = (m c \gamma
\beta)^{2} \cos^{2} \phi
\end{displaymath} (1.46)


 \begin{displaymath}h^{2} \frac {1}{\lambda^{'2}} sin^{2} \theta = (m c \gamma \beta)^{2}
sin^{2} \phi
\end{displaymath} (1.47)


 \begin{displaymath}\longrightarrow h^{2} (\frac {1}{\lambda^{2}} - \frac {2}{\la...
...\frac {1}{\lambda^{'2}}) = (m c \gamma
\beta)^{2}/ : (m c)^{2}
\end{displaymath} (1.48)


 \begin{displaymath}(\frac {h}{mc})^{2} [\frac {1}{\lambda^{2}} - \frac {2}{\lamb...
...2}{\lambda \lambda'} (1
- \cos \theta)] = \gamma^{2} \beta^{2}
\end{displaymath} (1.49)

Sačuvanje energije $\rightarrow$


 \begin{displaymath}\Longrightarrow \frac {1}{\lambda} - \frac {1}{\lambda'} = \f...
...ac {1}{\lambda \lambda'} (1 - \cos \theta) / \cdot
\lambda^{'}
\end{displaymath} (1.50)


 \begin{displaymath}\Longrightarrow \Delta \lambda = \lambda' - \lambda = (\frac {h}{mc})
(1 - \cos \theta)
\end{displaymath} (1.51)

Ponovi isto na vektorskoj rotaciji! ( $\vec {p}_{\gamma} = \hbar \vec
{k} , \vec {k} \cdot \vec {k'} = k k' \cos \theta$)

Sačuvanje impulsa u 3-vektorskom obliku:


 \begin{displaymath}\vec {p} + 0 = \vec {p'} + \vec {P'}
\end{displaymath} (1.52)


 \begin{displaymath}\vec {p} - \vec {p'} = \vec {P'} /^{2}
\end{displaymath} (1.53)


 \begin{displaymath}\vec {p}^{2} - 2 \vec {p} \cdot \vec {p'}^{2} = \vec {P'}^{2}...
...
\gamma c \vec {\beta})^{2} = m^{2} c^{2} \gamma^{2} \beta^{2}
\end{displaymath} (1.54)


 \begin{displaymath}\vert\vec {p}\vert \vert\vec {p'}\vert \cos \theta = \vert\vec {p}\vert \vert \vec {p'}\vert [1-(1-
\cos \theta)]
\end{displaymath} (1.55)


 \begin{displaymath}\vert\vec {p}\vert^{2} - 2 \vert\vec {p}\vert \vert\vec {p'}\...
...1 - \cos \theta) = (m c)^{2} \gamma^{2} \beta^{2}/ :
(m c)^{2}
\end{displaymath} (1.56)


 \begin{displaymath}(\vert\vec {p}\vert - \vert\vec {p'}\vert)^{2} = h^{2} (\frac {1}{\lambda} - \frac
{1}{\lambda'})^{2}
\end{displaymath} (1.57)


 \begin{displaymath}\frac {h}{\lambda} - \frac {h}{\lambda'}
\end{displaymath} (1.58)


 \begin{displaymath}\gamma^{2} - 1
\end{displaymath} (1.59)


 \begin{displaymath}(\gamma - 1)^{2} + 2 (\gamma-1)
\end{displaymath} (1.60)


 \begin{displaymath}\gamma - 1 = \frac {h}{m e} (\frac {1}{\lambda} - \frac
{1}{\...
...ac {1}{\lambda} = \frac
{1}{\lambda'})/ \cdot \lambda \lambda'
\end{displaymath} (1.61)


 \begin{displaymath}\Longrightarrow \lambda' - \lambda = (\frac {h}{mc} (1 - \cos \theta)
\end{displaymath} (1.62)

U 4-vektorskom obliku: p + P = p' + P'


 \begin{displaymath}\Longrightarrow p - p' = p' - p/^{2} \Longrightarrow p^{2} - 2 p
\cdot p' + p'^{2} = P'^{2} - 2 P \cdot P' + P^{2}
\end{displaymath} (1.63)


 \begin{displaymath}\Longrightarrow - 2 p \cdot p' = 2 (m c^{2})^{2} - 2 P \cdot P'
\Longrightarrow - p \cdot p' = (m c^{2})^{2} - P \cdot P'
\end{displaymath} (1.64)


 \begin{displaymath}\Longrightarrow - \frac {1}{c^{2}} E_{\gamma} E'_{\gamma} + \...
...{h^{2}}{\lambda \lambda'} \cos \theta = (m c)^{2} (\gamma - 1)
\end{displaymath} (1.65)


 \begin{displaymath}- \frac {1}{c^{2}} \frac {h c}{\lambda} \cdot \frac {hc}{\lambda'}
\vert\vec {p}\vert \vert\vec {p'}\vert \cos \theta
\end{displaymath} (1.66)


 \begin{displaymath}\lambda \lambda' \cdot / h (1 - \cos \theta) = m c (\lambda' ...
...ghtarrow \lambda' - \lambda = \frac {h}{mc}
(1- \cos \theta)
\end{displaymath} (1.67)

U 4-vektorskom obliku najlakše, ali smo i tu morali koristiti izraz $(\gamma - 1) = \frac {h}{mc} (\frac {1}{\lambda} - \frac
{1}{\lambda'})$ koji smo dobili iz sačuvanja energije.


next up previous
Next: Bohrov model atoma Up: Začeci kvantne fizike Previous: Foto-efekt
Dubravko Klabucar
2000-11-10