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A small buck from the massive 
bull transfers a large amount of 
momentum to the cowboy, resulting
in an involuntary dismount.

Momentum and Collisions
What happens when two automobiles collide? How does the impact affect the motion of
each vehicle, and what basic physical principles determine the likelihood of serious injury?
How do rockets work, and what mechanisms can be used to overcome the limitations im-
posed by exhaust speed? Why do we have to brace ourselves when firing small projectiles at
high velocity? Finally, how can we use physics to improve our golf game?

To begin answering such questions, we introduce momentum. Intuitively, anyone or any-
thing that has a lot of momentum is going to be hard to stop. In politics, the term is
metaphorical. Physically, the more momentum an object has, the more force has to be applied
to stop it in a given time. This concept leads to one of the most powerful principles in physics:
conservation of momentum. Using this law, complex collision problems can be solved without
knowing much about the forces involved during contact. We’ll also be able to derive informa-
tion about the average force delivered in an impact. With conservation of momentum, we’ll
have a better understanding of what choices to make when designing an automobile or a
moon rocket, or when addressing a golf ball on a tee.

6.1 MOMENTUM AND IMPULSE
In physics, momentum has a precise definition. A slowly moving brontosaurus has
a lot of momentum, but so does a little hot lead shot from the muzzle of a gun. We
therefore expect that momentum will depend on an object’s mass and velocity.

The linear momentum of an object of mass m moving with velocity is the
product of its mass and velocity :

[6.1]

SI unit: kilogram-meter per second (kg ! m/s)

p: ! v:

v:p:

Doubling either the mass or the velocity of an object doubles its momentum; dou-
bling both quantities quadruples its momentum. Momentum is a vector quantity

Linear momentum !
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(a) the impulse delivered to the car due to the collision and (b) the size and direction of the average force exerted
on the car.

Strategy This problem is similar to the previous example, except that the initial and final momenta are
both nonzero. Find the momenta and substitute into the impulse–momentum theorem, Equation 6.6, solving
for Fav.

Solution
(a) Find the impulse delivered to the car.

Calculate the initial and final momenta of the car: pi ! mvi ! (1.50 " 103 kg)(# 15.0 m/s)
! # 2.25 " 104 kg $ m/s

pf ! mvf ! (1.50 " 103 kg)(% 2.60 m/s)
! % 0.390 " 104 kg $ m/s

The impulse is just the difference between the final and
initial momenta:

I ! pf # pi

! % 0.390 " 104 kg $ m/s # (# 2.25 " 104 kg $ m/s)

I ! 2.64 " 104 kg$m/s

(b) Find the average force exerted on the car.

Apply Equation 6.6, the impulse–momentum theorem: % 1.76 " 105 NFav !
&p
&t

!
2.64 " 104 kg$m/s

0.150 s
!

Remarks When the car doesn’t rebound off the wall, the average force exerted on the car is smaller than the value
just calculated. With a final momentum of zero, the car undergoes a smaller change in momentum.

Exercise 6.2
Suppose the car doesn’t rebound off the wall, but the time interval of the collision remains at 0.150 s. In this case,
the final velocity of the car is zero. Find the average force exerted on the car.

Answer % 1.50 " 105 N

Before

After

+2.60 m/s

–15.0 m/s

(a)

Figure 6.4 (Example 6.2) (a) This car’s momentum changes as a result of its collision with the wall. (b) In a crash test (an inelastic collision),
much of the car’s initial kinetic energy is transformed into the energy it took to damage the vehicle.
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8.5 Relationship Between Torque and Angular Acceleration 239

The gear system on a bicycle provides an easily visible example of the relation-
ship between torque and angular acceleration. Consider first a five-speed gear sys-
tem in which the drive chain can be adjusted to wrap around any of five gears at-
tached to the back wheel (Fig. 8.17). The gears, with different radii, are concentric
with the wheel hub. When the cyclist begins pedaling from rest, the chain is at-
tached to the largest gear. Because it has the largest radius, this gear provides the
largest torque to the drive wheel. A large torque is required initially, because the
bicycle starts from rest. As the bicycle rolls faster, the tangential speed of the chain
increases, eventually becoming too fast for the cyclist to maintain by pushing the
pedals. The chain is then moved to a gear with a smaller radius, so the chain has a
smaller tangential speed that the cyclist can more easily maintain. This gear doesn’t
provide as much torque as the first, but the cyclist needs to accelerate only to a
somewhat higher speed. This process continues as the bicycle moves faster and
faster and the cyclist shifts through all five gears. The fifth gear supplies the lowest
torque, but now the main function of that torque is to counter the frictional
torque from the rolling tires, which tends to reduce the speed of the bicycle. The
small radius of the fifth gear allows the cyclist to keep up with the chain’s move-
ment by pushing the pedals.

A 15-speed bicycle has the same gear structure on the drive wheel, but has three
gears on the sprocket connected to the pedals. By combining different positions of
the chain on the rear gears and the sprocket gears, 15 different torques are avail-
able.

More on the Moment of Inertia
As we have seen, a small object (or a particle) has a moment of inertia equal to
mr 2 about some axis. The moment of inertia of a composite object about some axis
is just the sum of the moments of inertia of the object’s components. For example,
suppose a majorette twirls a baton as in Figure 8.18. Assume that the baton can be
modeled as a very light rod of length 2 with a heavy object at each end. (The rod
of a real baton has a significant mass relative to its ends.) Because we are neglect-
ing the mass of the rod, the moment of inertia of the baton about an axis through
its center and perpendicular to its length is given by Equation 8.7:

Because this system consists of two objects with equal masses equidistant from the
axis of rotation, r ! for each object, and the sum is

I ! "mr 2 ! m 2 # m 2 ! 2m 2

If the mass of the rod were not neglected, we would have to include its moment of
inertia to find the total moment of inertia of the baton.

We pointed out earlier that I is the rotational counterpart of m. However, there
are some important distinctions between the two. For example, mass is an intrinsic
property of an object that doesn’t change, whereas the moment of inertia of a sys-
tem depends on how the mass is distributed and on the location of the axis of rota-
tion. Example 8.9 illustrates this point.

!!!

!

I ! "mr 2

!

Figure 8.17 The drive wheel and
gears of a bicycle.
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Figure 8.18 A baton of length 2
and mass 2m. (The mass of the
connecting rod is neglected.) The
moment of inertia about the axis
through the baton’s center and
perpendicular to its length is 2m 2.!

!

EXAMPLE 8.9 The Baton Twirler
Goal Calculate a moment of inertia.

Problem In an effort to be the star of the half-time show, a majorette twirls an unusual baton made up of four
spheres fastened to the ends of very light rods (Fig. 8.19). Each rod is 1.0 m long. (a) Find the moment of inertia of
the baton about an axis perpendicular to the page and passing through the point where the rods cross. (b) The ma-
jorette tries spinning her strange baton about the axis OO $, as shown in Figure 8.20. Calculate the moment of inertia
of the baton about this axis.

A P P L I C AT I O N
Bicycle Gears
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impuls sile

U realnim situacijama, sila koja djeluje na tijelo nije konstantna, već je funkcija 
vremena (npr. sila kojom djelujemo reketom na tenisku lopticu)

force versus time for such incidents. The force starts out small as the bat comes
in contact with the ball, rises to a maximum value when they are firmly in con-
tact, and then drops off as the ball leaves the bat. In order to analyze this rather
complex interaction, it’s useful to define an average force , shown as the
dashed line in Figure 6.1b. This average force is the constant force delivering the
same impulse to the object in the time interval !t as the actual time-varying force.
We can then write the impulse–momentum theorem as

[6.6]

The magnitude of the impulse delivered by a force during the time interval !t is
equal to the area under the force vs. time graph as in Figure 6.1a or, equivalently,
to as shown in Figure 6.1b. The brief collision between a bullet and an ap-
ple is illustrated in Figure 6.2.

Fav !t

F
:

av!t " !p:

F
:

av

162 Chapter 6 Momentum and Collisions

Figure 6.1 (a) A force acting on
an object may vary in time. The im-
pulse is the area under the force vs.
time curve. (b) The average force
(horizontal dashed line) gives the
same impulse to the object in the
time interval !t as the real time-
varying force described in (a).

(a)

t i

F

(b)

t f
t

Fav

Fav∆tArea = F

t i

F

t f
t

In boxing matches of the 19th century, bare fists
were used. In modern boxing, fighters wear padded
gloves. How do gloves protect the brain of the boxer
from injury? Also, why do boxers often “roll with the
punch”?

Explanation The brain is immersed in a cushioning
fluid inside the skull. If the head is struck suddenly by
a bare fist, the skull accelerates rapidly. The brain
matches this acceleration only because of the large
impulsive force exerted by the skull on the brain.
This large and sudden force (large Fav and small !t)
can cause severe brain injury. Padded gloves extend

the time !t over which the force is applied to the
head. For a given impulse Fav!t, a glove results in a
longer time interval than a bare fist, decreasing the 
average force. Because the average force is decreased,
the acceleration of the skull is decreased, reducing
(but not eliminating) the chance of brain injury. The
same argument can be made for “rolling with the
punch”: If the head is held steady while being struck,
the time interval over which the force is applied is rel-
atively short and the average force is large. If the head
is allowed to move in the same direction as the punch,
the time interval is lengthened and the average force
reduced.

Applying Physics 6.1 Boxing and Brain Injury

Figure 6.2 An apple being pierced by a 
30-caliber bullet traveling at a supersonic
speed of 900 m/s. This collision was pho-
tographed with a microflash stroboscope
using an exposure time of 0.33 #s. Shortly 
after the photograph was taken, the apple dis-
integrated completely. Note that the points of
entry and exit of the bullet are visually
explosive.©
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Definiramo impuls sile kojim 
opisujemo kako sila koja se mijenja u 
vremenu utječe na gibanje tijela!

Impuls sile definiramo kao umnožak prosječne sile i 
vremenskog intervala za vrijeme kojeg sila djeluje:

Impuls sile je vektor u smjeru sile F. SI jedinica je [N·m]
 

J =

F ⋅ Δt
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količina gibanja
Masa i brzina igraju ulogu u tome kako tijelo reagira na dani impuls sile.
Efekt mase i brzine uključujemo u koncept količine gibanja.

Količina gibanja, p, je umnožak mase tijela i njegove brzine!

Količina gibanja je vektor u smjeru brzine tijela.
SI jedinica je [kg·m/s]

 
p = m ⋅ v

Masa i brzina igraju ulogu u tome kako tijelo reagira na dani impuls sile.

Efekt mase i brzine uklju!ujemo u koncept koli!ine gibanja.

Koli!ina gibanja p je umno!ak mase i brzine tijela

Koli!ina gibanja je vektor u smjeru brzine tijela. SI jedinica je  [kg m/s]

vmp
!!

=

!"#$%$&'()$*'&+'

,,-.-. Fizika  za matemati!are – 2009.

Koli!ina gibanja je vektor u smjeru brzine tijela. SI jedinica je  [kg m/s]

Kada palica lupi loptu, prosje!na sila se 

prenosi na loptu, te se zbog toga 

mijenja po!etna brzina v0 u kona!nu 

brzinu /0

Pri udarcu loptica dobije ubrzanje

t

vv
a

f

!

"
=

0

!!
!

Kada palica udari loptu, prosječna sila se 
prenosi na loptu, te se zbog toga početna 
brzina loptice v0 mijenja na konačnu vf.

Pri udarcu lopta dobije ubrzanje:

 

a =
vf −
v0

Δt

Masa i brzina igraju ulogu u tome kako tijelo reagira na dani impuls sile.

Efekt mase i brzine uklju!ujemo u koncept koli!ine gibanja.

Koli!ina gibanja p je umno!ak mase i brzine tijela

Koli!ina gibanja je vektor u smjeru brzine tijela. SI jedinica je  [kg m/s]

vmp
!!

=

!"#$%$&'()$*'&+'

,,-.-. Fizika  za matemati!are – 2009.

Koli!ina gibanja je vektor u smjeru brzine tijela. SI jedinica je  [kg m/s]

Kada palica lupi loptu, prosje!na sila se 

prenosi na loptu, te se zbog toga 

mijenja po!etna brzina v0 u kona!nu 

brzinu /0

Pri udarcu loptica dobije ubrzanje

t
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a

f

!

"
=

0

!!
!
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veza impulsa sile i 
količine gibanja

Prema 2. Newtonovom zakonu, prosječna
sila izaziva prosječno ubrzanje tijela  


F∑ = m ⋅ a

Uvrštavajući izraz za prosječno ubrzanje dobivamo vezu 
impulsa sile i količine gibanja:

IMPULS SILE = PROMJENA KOLIČINE GIBANJA

 


FΔt = mvf − m

v0∑
konačna količina gibanja početna količina gibanja

Ovo je oblik 2. Newtonovog zakona kako ga je upravo Newton oblikovao!

Tijekom interakcije teško je mjeriti prosječnu silu, dok brzinu prije i poslije 
interakcije možemo lako izmjeriti
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konceptualno pitanje
Skačemo sa stijene na obali. Ako doskočimo na pijesak, 
vrijeme zaustavljanja je znatno kraće nego ako doskočimo 
na vodu. Koristeći vezu impulsa sile i količine gibanja 
odredite koja je tvrdnja ispravna:

a) Zaustavljajući nas pijesak uzrokuje veći impuls sile 
nego voda.

b) Zaustavljajući nas, pijesak i voda uzrokuju isti impuls, 
ali pijesak djeluje većom prosječnom silom.

c) Zaustavljajući nas, pijesak i voda uzrokuju isti impuls, 
ali pijesak djeluje manjom prosječnom silom.
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primjer: tenisač
Vrhunski tenisači mogu servirati loptu tako da kreće brzinom od  55 m/
s. Ukoliko lopta ima masu 0.06 kg, i u kontaktu je s reketom otprilike 4 
ms, izračunajte kolika je prosječna sila koja djeluje na loptu? Da li je ta 
sila dovoljna da podigne osobu tesku 60 kg? 
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zakon očuvanja količine 
gibanja

Zakon očuvanja količine gibanja (za izolirani sustav)

 
m2
vf 2 + m1

vf 1 = m2
v02 + m1

v01
pf = p0

Ukupna količina gibanja izoliranog sustava ostaje očuvana 
(konstantna). Izolirani sustav je onaj u kojem je vektorski zbroj 
prosječnih vanjskih sila koje djeluju na sustav 0.

!"#$%&$'()"%*"&#$+,',%-&.,/"%*"

ZAKON O!UVANJA KOLI!INE GIBANJA (ZA IZOLIRANI SUSTAV)

0112021122
vmvmvmvm ff

!!!!
+=+

Pf = P0

001212 Fizika  za matemati"are – 2009.

Ukupna koli"ina gibanja izoliranog sustava ostaje o"uvana (konstantna).

Izolirani sustav je onaj u kojem je vektorski zbroj prosje"nih vanjskih

sila koje djeluju na sustav 0.
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zakon očuvanja količine 
gibanja

Promotrimo sudar kuglica različitih masa i brzina. Tijekom sudara 
djeluju unutrašnje sile F12 i F21. Ako na kuglice ne djeluju vanjske sile, 
ili je njihov zbroj 0:

Promotrimo sudar kuglica razli!itih masa i brzina. Tijekom sudara djeluju unu-

tra!nje sile F12 i F21. Ako na kuglice ne djeluju vanjske sile ili je njihov zbroj 0:

1011112
vmvmtF f

!!!
!="

2022221
vmvmtF f

!!!
!="

!"#$%&$'()"%*"&#$+,',%-&.,/"%*"

001212 Fizika  za matemati!are – 2009.

22

0)()(
0112021122

=+!+ vmvmvmvm ff

!!!!

Koriste"i 3. Newtonov zakon dobivamo zakon

o!uvanja koli!ine gibanja

Pf-P0 = 0                 Pf = P0

Koriste"i 3. Newtonov zakon dobivamo zakon

o!uvanja koli!ine gibanja

 


F12Δt = m1

vf 1 − m1
v01


F21Δt = m2

vf 2 − m2
v02

Koristeći 3. Newtonov zakon dobivamo
zakon očuvanja količine gibanja:

 

m2
vf 2 + m1

vf 1( )− m2
v02 + m1

v01( ) = 0
Pf − P0 = 0 → Pf = P0

Koristeći 3. Newtonov zakon dobivamo
zakon očuvanja količine gibanja!
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zakon očuvanja količine 
gibanja!"#$%&$'()"%*"&#$+,',%-&.,/"%*"

U odsustvu trenja, dvoje

kliza!a !ine izolirani sustav.

Kako se kliza!i odgurnu, ukupna

koli!ina gibanja sustava ostaje 0,

jer je tolika bila u po!etnom

trenutku.

001212 Fizika  za matemati!are – 2009.

Treba uo!iti da je ukupna koli!ina

gibanja o!uvana i kada se

kineti!ka energija pojedinih

dijelova sustava mijenja.

Po!etna kineti!ka energija

kliza!a je 0. Odgurivanjem oni

vr!e rad unutra!nje sile na

svakog od kliza!a.

U odsustvu trenja dvoje klizača čine 
zatvoreni sustav.
Kada se klizači odgurnu ukupna 
količina gibanja ostaje 0, jer je tolika bila 
u početnom trenutku.
Ukupna količina gibanja ostaje ista i 
kada se kinetička energija dijelova 
sustava mijenja.
Početna kinetička energija klizača je 0. 
Odgurivanjem oni obavljaju rad 
unutrašnje sile na svakog od klizača.

Tuesday, January 11, 2011



sudari
!"#$%&

Kada su tijela atomi ili subatomske

!estice, ukupna kineti!ka energija

sustava je obi!no o!uvana. Stoga je

ukupna kineti!ka energija !estica

prije sudara jednaka kineti!koj energiji

!estica nakon sudara. Kineti!ka energija

se prenosi s jedne !estice na drugu.

''('(' Fizika  za matemati!are – 2009.

Kod makroskopskih tijela, kineti!ka 

energija nakon sudara obi!no je manja

od kineti!ke energije prije sudara, zbog

trenja ili deformacije tijela.

ELASTI"NI SUDAR – kineti!ka energija sustava nakon sudara 

jednaka je kineti!koj energiji prije sudara.

NEELASTI"NI SUDAR – ukupna kineti!ka energija prije sudara

nije jednaka kineti!koj energiji nakon sudara. Ako se tijela spoje

nakon sudara, sudar zovemo potpuno neelasti!nim.

Kada su tijela atomi ili subatomske 
čestice tada je kinetička energija obično 
dobro očuvana. Stoga je ukupna 
kinetička energija čestica prije sudara 
jednaka ukupnoj kinetičkoj energiji 
čestica nakon sudara. Kinetička energija 
se prenosi s jedne čestice na drugu.
Kod makroskopskih tijela, kinetička 
energija nakon sudara obično je manja 
nego prije, zbog trenja ili deformacije 
tijela.

Elastični sudar - kinetička energija sustava nakon sudara jednaka je 
kinetičkoj energiji prije sudara!
Neelastični sudar - ukupna kinetička energija prije sudara nije 
jednaka kinetičkoj energiji nakon sudara! Ako se tijela spoje nakon 
sudara, takav sudar zovemo savršeno neelastičan.
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sudari

• Kod sudara uvijek vrijedi zakon 
očuvanja količine gibanja!

• Također uvijek vrijedi zakon očuvanja 
ukupne energije!

• Ukoliko je sudar elastičan, tada vrijedi 
zakon očuvanja kinetičke energije!
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primjer: balističko njihalo

Balističko njihalo je uređaj koji se koristi za određivanje brzine  veoma brzih projektila, 
poput metka. Metak se ispucava u komad drva koji visi, pričvršćen na dvije žice. Drvo 
zaustavlja metak i cijeli sustav se diže na visinu h. Poznavajući dvije mase i visinu h, 
moguće je odrediti brzinu metka. Ramotrite ovaj primjer savršeno neelastičnog sudara 
za slučaj kada su mase metka i drva m1 = 5 g, m2 = 1 kg i visina na koju se digne sustav h 
= 5 cm.
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Remarks During the collision, the system lost almost 90% of its kinetic energy. The change in velocity of the SUV
was only 10.0 m/s, compared to twice that for the compact car. This example underscores perhaps the most impor-
tant safety feature of any car: its mass. Injury is caused by a change in velocity, and the more massive vehicle under-
goes a smaller velocity change in a typical accident.

Exercise 6.4
Suppose the same two vehicles are both traveling eastward, the compact car leading the SUV. The driver of the com-
pact car slams on the brakes suddenly, slowing the vehicle to 6.00 m/s. If the SUV traveling at 18.0 m/s crashes into
the compact car, find (a) the speed of the system right after the collision, assuming the two vehicles become entan-
gled, (b) the change in velocity for both vehicles, and (c) the change in kinetic energy of the system, from the instant
before impact (when the compact car is traveling at 6.00 m/s) to the instant right after the collision.

Answers (a) 14.0 m/s (b) SUV: !v1 " # 4.0 m/s Compact car: !v2 " 8.0 m/s (c) # 4.32 $ 104 J

EXAMPLE 6.5 The Ballistic Pendulum
Goal Combine the concepts of conservation of energy and conservation of momentum in inelastic collisions.

Problem The ballistic pendulum (Fig. 6.12a) is a device used to measure the speed of a fast-moving projectile such
as a bullet. The bullet is fired into a large block of wood suspended from some light wires. The bullet is stopped by
the block, and the entire system swings up to a height h. It is possible to obtain the initial speed of the bullet by mea-
suring h and the two masses. As an example of the technique, assume that the mass of the bullet, m1, is 5.00 g, the
mass of the pendulum, m2, is 1.000 kg, and h is 5.00 cm. Find the initial speed of the bullet, v1i .

Strategy First, use conservation of momentum and the properties of perfectly inelastic collisions to find the initial
speed of the bullet, v1i , in terms of the final velocity of the block–bullet system, vf . Second, use conservation of en-
ergy and the height reached by the pendulum to find vf . Finally, substitute this value of vf into the previous result to
obtain the initial speed of the bullet.

m1
1i f

m1 + m2

m2 h

(a)

v v

Figure 6.12 (Example 6.5) (a) Diagram of a ballistic pendulum. Note that is the velocity of the system just after the
perfectly inelastic collision. (b) Multiflash photograph of a laboratory ballistic pendulum.

v:f

(b)
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Solution
Use conservation of momentum, and substitute the
known masses. Note that v2i " 0 and vf is the velocity of
the system (block % bullet) just after the collision.

pi " pf

m1v1i % m2v2i " (m1 % m2)vf

(5.00 $ 10# 3 kg)v1i % 0 " (1.005 kg)vf (1)

Apply conservation of energy to the block–bullet system
after the collision:

(KE % PE)after collision " (KE % PE)top
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Remarks During the collision, the system lost almost 90% of its kinetic energy. The change in velocity of the SUV
was only 10.0 m/s, compared to twice that for the compact car. This example underscores perhaps the most impor-
tant safety feature of any car: its mass. Injury is caused by a change in velocity, and the more massive vehicle under-
goes a smaller velocity change in a typical accident.

Exercise 6.4
Suppose the same two vehicles are both traveling eastward, the compact car leading the SUV. The driver of the com-
pact car slams on the brakes suddenly, slowing the vehicle to 6.00 m/s. If the SUV traveling at 18.0 m/s crashes into
the compact car, find (a) the speed of the system right after the collision, assuming the two vehicles become entan-
gled, (b) the change in velocity for both vehicles, and (c) the change in kinetic energy of the system, from the instant
before impact (when the compact car is traveling at 6.00 m/s) to the instant right after the collision.

Answers (a) 14.0 m/s (b) SUV: !v1 " # 4.0 m/s Compact car: !v2 " 8.0 m/s (c) # 4.32 $ 104 J

EXAMPLE 6.5 The Ballistic Pendulum
Goal Combine the concepts of conservation of energy and conservation of momentum in inelastic collisions.

Problem The ballistic pendulum (Fig. 6.12a) is a device used to measure the speed of a fast-moving projectile such
as a bullet. The bullet is fired into a large block of wood suspended from some light wires. The bullet is stopped by
the block, and the entire system swings up to a height h. It is possible to obtain the initial speed of the bullet by mea-
suring h and the two masses. As an example of the technique, assume that the mass of the bullet, m1, is 5.00 g, the
mass of the pendulum, m2, is 1.000 kg, and h is 5.00 cm. Find the initial speed of the bullet, v1i .

Strategy First, use conservation of momentum and the properties of perfectly inelastic collisions to find the initial
speed of the bullet, v1i , in terms of the final velocity of the block–bullet system, vf . Second, use conservation of en-
ergy and the height reached by the pendulum to find vf . Finally, substitute this value of vf into the previous result to
obtain the initial speed of the bullet.

m1
1i f

m1 + m2

m2 h

(a)

v v

Figure 6.12 (Example 6.5) (a) Diagram of a ballistic pendulum. Note that is the velocity of the system just after the
perfectly inelastic collision. (b) Multiflash photograph of a laboratory ballistic pendulum.
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Solution
Use conservation of momentum, and substitute the
known masses. Note that v2i " 0 and vf is the velocity of
the system (block % bullet) just after the collision.

pi " pf

m1v1i % m2v2i " (m1 % m2)vf

(5.00 $ 10# 3 kg)v1i % 0 " (1.005 kg)vf (1)

Apply conservation of energy to the block–bullet system
after the collision:

(KE % PE)after collision " (KE % PE)top
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Elastic Collisions
Now consider two objects that undergo an elastic head-on collision (Active
Fig. 6.13). In this situation, both the momentum and the kinetic energy of the sys-
tem of two objects are conserved. We can write these conditions as

[6.10]

and

[6.11]

where v is positive if an object moves to the right and negative if it moves to the left.

1
2m1v 2

1i ! 1
2m2v 2

2i " 1
2m1v 2

1f ! 1
2m2v 2

2f

m1v1i ! m2v2i " m1v1f ! m2v2f

Both the potential energy at the bottom and the kinetic
energy at the top are zero. Solve for the final velocity of
the block–bullet system, vf : vf

2 " 2gh

vf " 0.990 m/s

vf " √2gh " √2(9.80 m/s2)(5.00 # 10$2 m)

1
2(m1 ! m2)v 2

f ! 0 " 0 ! (m1 ! m2)gh

Finally, substitute vf into Equation 1 to find v1i, the
initial speed of the bullet:

199 m/sv1i "
(1.005 kg)(0.990 m/s)

5.00 # 10$3 kg
"

Remarks Because the impact is inelastic, it would be incorrect to equate the initial kinetic energy of the incoming bul-
let to the final gravitational potential energy associated with the bullet–block combination. The energy isn’t conserved!

Exercise 6.5
A bullet with mass 5.00 g is fired horizontally into a 2.000-kg block attached to a horizontal spring. The spring has a
constant 6.00 # 102 N/m and reaches a maximum compression of 6.00 cm. (a) Find the initial speed of the
bullet–block system. (b) Find the speed of the bullet.

Answer (a) 1.04 m/s (b) 417 m/s

An object of mass m moves to the right with a speed v. It collides head-on with an
object of mass 3m moving with speed v/3 in the opposite direction. If the two ob-
jects stick together, what is the speed of the combined object, of mass 4m, after the
collision?
(a) 0 (b) v/2 (c) v (d) 2v

Quick Quiz 6.4

A skater is using very low friction rollerblades. A friend throws a Frisbee® at her,
on the straight line along which she is coasting. Describe each of the following
events as an elastic, an inelastic, or a perfectly inelastic collision between the skater
and the Frisbee: (a) She catches the Frisbee and holds it. (b) She tries to catch the
Frisbee, but it bounces off her hands and falls to the ground in front of her.
(c) She catches the Frisbee and immediately throws it back with the same speed
(relative to the ground) to her friend.

Quick Quiz 6.5

In a perfectly inelastic one-dimensional collision between two objects, what condi-
tion alone is necessary so that all of the original kinetic energy of the system is
gone after the collision? (a) The objects must have momenta with the same magni-
tude but opposite directions. (b) The objects must have the same mass. (c) The
objects must have the same velocity. (d) The objects must have the same speed,
with velocity vectors in opposite directions.

Quick Quiz 6.6

44337_06_p160-188  10/21/04  8:58 AM  Page 172

Tuesday, January 11, 2011



primjer: dvije kocke i 
opruga

Kocka mase m1 = 1.6 kg, koja se kreće prema desno brzinom od 4 m/s na podlozi bez 
trenja, sudara se s oprugom (bez mase) koja je pričvršćena za drugu kocku mase m2 = 
2.1 kg koja se giba prema lijevo brzinom od -2.5 m/s. Konstanta opruge ja 6x102 N/m. 
a) Izračunajte brzinu druge kocke u trenutku kada se kocka 1 giba prema desno 
brzinom od 3 m/s (kao na slici b).
b) Izračunajte sabijanje opruge.
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EXAMPLE 6.6 Let’s Play Pool
Goal Solve an elastic collision in one dimension.

Problem Two billiard balls of identical mass move toward each other as in Active Figure 6.13. Assume that the colli-
sion between them is perfectly elastic. If the initial velocities of the balls are ! 30.0 cm/s and " 20.0 cm/s, what is the
velocity of each ball after the collision? Assume friction and rotation are unimportant.

Strategy Solution of this problem is a matter of solving two equations, the conservation of momentum and conser-
vation of energy equations, for two unknowns, the final velocities of the two balls. Instead of using Equation 6.11 for
conservation of energy, use Equation 6.14, which is linear, hence easier to handle.

Solution
Write the conservation of momentum equation. Because
m1 # m 2, we can cancel the masses, then substitute 
v1i # ! 30.0 m/s and v 2i # " 20.0 cm/s (Step 3).

m1v1i ! m2v2i # m1v1f ! m2v2f

30.0 cm/s ! (" 20.0 cm/s) # v1f ! v2f

10.0 cm/s # v1f ! v2f (1)

Next, apply conservation of energy in the form of Equa-
tion 6.14 (Step 4):

30.0 cm/s " (" 20.0 cm/s) # v2f " v1f

50.0 cm/s # v2f " v1f (2)

v1i " v2i # " (v1f " v2f)

Now solve (1) and (2) simultaneously (Step 5): v1f # v 2f # ! 30.0 cm/s" 20.0 cm/s

Remarks Notice the balls exchanged velocities—almost as if they’d passed through each other. This is always the
case when two objects of equal mass undergo an elastic head-on collision.

Exercise 6.6
Find the final velocity of the two balls if the ball with initial velocity v2i # "20.0 cm/s has a mass equal to half that of
the ball with initial velocity v1i # !30.0 cm/s.

Answer v 1f # " 3.33 cm/s; v 2f # ! 46.7 cm/s

INTERACTIVE EXAMPLE 6.7 Two Blocks and a Spring
Goal Solve an elastic collision involving spring potential energy.

Problem A block of mass m1 # 1.60 kg, initially moving to the right with a 
velocity of ! 4.00 m/s on a frictionless horizontal track, collides with a massless
spring attached to a second block of mass m2 # 2.10 kg moving to the left with 
a velocity of " 2.50 m/s, as in Figure 6.14a. The spring has a spring constant of
6.00 $ 102 N/m. (a) Determine the velocity of block 2 at the instant when block 1
is moving to the right with a velocity of ! 3.00 m/s, as in Figure 6.14b. (b) Find the
compression of the spring.

Strategy We identify the system as the two blocks and the spring. Write down the
conservation of momentum equations, and solve for the final velocity of block 2,
v2f . Then use conservation of energy to find the compression of the spring.

x

k

1f  2f

m1
m2

m1
m2

k

1i = +4.00 m/s = –2.50 m/s

= +3.00 m/s

2i 

(a)

(b)

v v

v v

Figure 6.14 (Example 6.7)Solution
(a) Find the velocity v 2f when block 1 
has velocity ! 3.00 m/s.

Write the conservation of momentum 
equation for the system and solve for v 2f :

m1v1i ! m2v2i # m1v1f ! m2v2f

v2f # " 1.74 m/s

# 
(1.60 kg)(4.00 m/s) ! (2.10 kg)(" 2.50 m/s) " (1.60 kg)(3.00 m/s)

2.10 kg

v2f #
m 1v1i ! m 2v2i " m 1v1f

m 2
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sion between them is perfectly elastic. If the initial velocities of the balls are ! 30.0 cm/s and " 20.0 cm/s, what is the
velocity of each ball after the collision? Assume friction and rotation are unimportant.

Strategy Solution of this problem is a matter of solving two equations, the conservation of momentum and conser-
vation of energy equations, for two unknowns, the final velocities of the two balls. Instead of using Equation 6.11 for
conservation of energy, use Equation 6.14, which is linear, hence easier to handle.

Solution
Write the conservation of momentum equation. Because
m1 # m 2, we can cancel the masses, then substitute 
v1i # ! 30.0 m/s and v 2i # " 20.0 cm/s (Step 3).

m1v1i ! m2v2i # m1v1f ! m2v2f

30.0 cm/s ! (" 20.0 cm/s) # v1f ! v2f

10.0 cm/s # v1f ! v2f (1)

Next, apply conservation of energy in the form of Equa-
tion 6.14 (Step 4):

30.0 cm/s " (" 20.0 cm/s) # v2f " v1f

50.0 cm/s # v2f " v1f (2)

v1i " v2i # " (v1f " v2f)

Now solve (1) and (2) simultaneously (Step 5): v1f # v 2f # ! 30.0 cm/s" 20.0 cm/s

Remarks Notice the balls exchanged velocities—almost as if they’d passed through each other. This is always the
case when two objects of equal mass undergo an elastic head-on collision.

Exercise 6.6
Find the final velocity of the two balls if the ball with initial velocity v2i # "20.0 cm/s has a mass equal to half that of
the ball with initial velocity v1i # !30.0 cm/s.

Answer v 1f # " 3.33 cm/s; v 2f # ! 46.7 cm/s

INTERACTIVE EXAMPLE 6.7 Two Blocks and a Spring
Goal Solve an elastic collision involving spring potential energy.

Problem A block of mass m1 # 1.60 kg, initially moving to the right with a 
velocity of ! 4.00 m/s on a frictionless horizontal track, collides with a massless
spring attached to a second block of mass m2 # 2.10 kg moving to the left with 
a velocity of " 2.50 m/s, as in Figure 6.14a. The spring has a spring constant of
6.00 $ 102 N/m. (a) Determine the velocity of block 2 at the instant when block 1
is moving to the right with a velocity of ! 3.00 m/s, as in Figure 6.14b. (b) Find the
compression of the spring.

Strategy We identify the system as the two blocks and the spring. Write down the
conservation of momentum equations, and solve for the final velocity of block 2,
v2f . Then use conservation of energy to find the compression of the spring.

x

k

1f  2f

m1
m2

m1
m2

k

1i = +4.00 m/s = –2.50 m/s

= +3.00 m/s

2i 

(a)

(b)

v v

v v

Figure 6.14 (Example 6.7)Solution
(a) Find the velocity v 2f when block 1 
has velocity ! 3.00 m/s.

Write the conservation of momentum 
equation for the system and solve for v 2f :

m1v1i ! m2v2i # m1v1f ! m2v2f

v2f # " 1.74 m/s

# 
(1.60 kg)(4.00 m/s) ! (2.10 kg)(" 2.50 m/s) " (1.60 kg)(3.00 m/s)

2.10 kg

v2f #
m 1v1i ! m 2v2i " m 1v1f

m 2

44337_06_p160-188  10/21/04  8:58 AM  Page 174

6.4 Glancing Collisions 175

6.4 GLANCING COLLISIONS
In Section 6.2 we showed that the total linear momentum of a system is conserved
when the system is isolated (that is, when no external forces act on the system).
For a general collision of two objects in three-dimensional space, the conservation
of momentum principle implies that the total momentum of the system in each di-
rection is conserved. However, an important subset of collisions takes place in a
plane. The game of billiards is a familiar example involving multiple collisions of
objects moving on a two-dimensional surface. We restrict our attention to a single
two-dimensional collision between two objects that takes place in a plane, and ig-
nore any possible rotation. For such collisions, we obtain two component equa-
tions for the conservation of momentum:

m1v1ix ! m2v2ix " m1v1f x ! m 2v 2f x

m1v1iy ! m2v2iy " m1v1f y ! m 2v 2f y

We must use three subscripts in this general equation, to represent, respectively, (1) the
object in question, and (2) the initial and final values of the components of velocity.

Now, consider a two-dimensional problem in which an object of mass m1 col-
lides with an object of mass m2 that is initially at rest, as in Active Figure 6.15. After
the collision, object 1 moves at an angle # with respect to the horizontal, and
object 2 moves at an angle $ with respect to the horizontal. This is called a glanc-
ing collision. Applying the law of conservation of momentum in component form,
and noting that the initial y-component of momentum is zero, we have

x-component: m1v1i ! 0 " m1v1f cos # ! m2v2f cos $ [6.15]

y -component: 0 ! 0 " m1v1f sin # % m2v2f sin $ [6.16]

(b) Find the compression of the spring.

Use energy conservation for the system, noticing that
potential energy is stored in the spring when it is
compressed a distance x :

Ei " Ef
1
2 m1v 2

1i ! 1
2m2v 2

2i ! 0 " 1
2m1v 2

1f ! 1
2m2v 2

2f ! 1
2kx2

Substitute the given values and the result of part (a) into
the preceding expression, solving for x.

x " 0.173 m

Remarks The initial velocity component of block 2 is %2.50 m/s because the block is moving to the left. The nega-
tive value for v2f means that block 2 is still moving to the left at the instant under consideration.

Exercise 6.7
Find (a) the velocity of block 1 and (b) the compression of the spring at the instant that block 2 is at rest.

Answer (a) 0.719 m/s to the right (b) 0.251 m

You can change the masses and speeds of the blocks and freeze the motion at the maximum com-
pression of the spring by logging into PhysicsNow at www.cp7e.com and going to Interactive Example 6.7.

(a) Before the collision

1i

(b) After the collision

v2f cos

v1f cos

v1f sin
1f

2f
–v2f sin

m1

m2

+y

+x

u

u
u

f
f

f

v

v

v

ACTIVE FIGURE 6.15
(a) Before and (b) after a glancing
collision between two balls.

Log into PhysicsNow at
www.cp7e.com, and go to Active
Figure 6.15 to adjust the speed and
position of the blue particle, adjust
the masses of both particles, and see
the effects.
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(b) Find the compression of the spring.

Use energy conservation for the system, noticing that
potential energy is stored in the spring when it is
compressed a distance x :

Ei " Ef
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2 m1v 2

1i ! 1
2m2v 2

2i ! 0 " 1
2m1v 2

1f ! 1
2m2v 2

2f ! 1
2kx2

Substitute the given values and the result of part (a) into
the preceding expression, solving for x.

x " 0.173 m

Remarks The initial velocity component of block 2 is %2.50 m/s because the block is moving to the left. The nega-
tive value for v2f means that block 2 is still moving to the left at the instant under consideration.

Exercise 6.7
Find (a) the velocity of block 1 and (b) the compression of the spring at the instant that block 2 is at rest.

Answer (a) 0.719 m/s to the right (b) 0.251 m

You can change the masses and speeds of the blocks and freeze the motion at the maximum com-
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If the collision is elastic, we can write a third equation, for conservation of energy,
in the form

[6.17]

If we know the initial velocity v1i and the masses, we are left with four unknowns
(v1f , v2f , !, and "). Because we have only three equations, one of the four remain-
ing quantities must be given in order to determine the motion after the collision
from conservation principles alone.

If the collision is inelastic, the kinetic energy of the system is not conserved, and
Equation 6.17 does not apply.

1
2m1v 2

1i # 1
2m1v 2

1f $ 1
2m2v 2

2f

Problem-Solving Strategy
Two-Dimensional Collisions
To solve two-dimensional collisions, follow this procedure:
1. Coordinate Axes. Use both x- and y-coordinates. It’s convenient to have either the

x-axis or the y -axis coincide with the direction of one of the initial velocities.
2. Diagram. Sketch the problem, labeling velocity vectors and masses.
3. Conservation of Momentum. Write a separate conservation of momentum equa-

tion for each of the x - and y -directions. In each case, the total initial momentum
in a given direction equals the total final momentum in that direction.

4. Conservation of Energy. If the collision is elastic, write a general expression for
the total energy before and after the collision, and equate the two expressions, as
in Equation 6.11. Fill in the known values. (Skip this step if the collision is not per-
fectly elastic.) The energy equation can’t be simplified as in the one-dimensional
case, so a quadratic expression such as Equation 6.11 or 6.17 must be used when
the collision is elastic.

5. Solve the equations simultaneously. There are two equations for inelastic collisions
and three for elastic collisions.

EXAMPLE 6.8 Collision at an Intersection
Goal Analyze a two-dimensional inelastic collision.

Problem A car with mass 1.50 % 103 kg traveling east at a speed of 25.0 m/s col-
lides at an intersection with a 2.50 % 103-kg van traveling north at a speed of
20.0 m/s, as shown in Figure 6.16. Find the magnitude and direction of the veloc-
ity of the wreckage after the collision, assuming that the vehicles undergo a
perfectly inelastic collision (that is, they stick together) and assuming that friction
between the vehicles and the road can be neglected.

Strategy Use conservation of momentum in two dimensions. (Kinetic energy is
not conserved.) Choose coordinates as in Figure 6.16. Before the collision, the only
object having momentum in the x-direction is the car, while the van carries all the
momentum in the y-direction. After the totally inelastic collision, both vehicles
move together at some common speed vf and angle !. Solve for these two un-
knowns, using the two components of the conservation of momentum equation.

y

x

f

+20.0 m/s

+25.0 m/s
u

v

Figure 6.16 (Example 6.8) A top
view of a perfectly inelastic collision
between a car and a van.

Solution
Find the x -components of the initial and final total 
momenta:

&pxi # mcarv car # (1.50 % 103 kg)(25.0 m/s)
# 3.75 % 104 kg ' m/s

&pxf # (mcar $ m van)vf cos ! # (4.00 % 103 kg)vf cos !

Set the initial x-momentum equal to the final 
x-momentum:

3.75 % 104 kg ' m/s # (4.00 % 103 kg) vf cos ! (1)
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primjer: bilijarske 
kugle u 2D

Bilijarska kugla A kreće se brzinom vA = 3 m/s u smeru osi +x i sudara se s 
kuglom B, iste mase, koja se nalazi u stanju mirovanja. Nakon sudara, kugle 
se gibaju pod kutom od 45º u odnosu na os x (slika). Kolike su brzine kugli 
nakon sudara?
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rotacija krutog tijela
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Fizika  za matemati!are – 2009.
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Rotacija krutog tijela: točke tijela gibaju se po 
kružnim putanjama. Centar tih kružnih putanja 
naziva se os rotacije. Kut za koji se kruto tijelo 
zarotira oko osi rotacije naziva se kutni pomak.

Kut definira položaj (pomak) točke krutog tijela 
u nekom trenutku. Kada tijelo rotira oko fiksne 
osi, definiramo kut koji je prešla spojnica osi 
rotacije i točke tijela.
Kut je pozitivan ako se giba u smjeru 
SUPROTNOM od kazaljke na satu.
SI jedinica je: radijan (rad)
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rotacija krutog tijela!"#$%&'$()*+#",(#&'-.$
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Θ rad( ) = duljina luka
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= s
r

Puni krug (360º): Θ = 2rπ
r

= 2π
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)*+%,-*$*
4-'%$5"

6-$"%)$*
4-'%$5"

7*/%.

7*8"+$%(')9-$%

.*$%8$%(')9-$%

:')9%$5"

;)-5"/"

rotaciono gibanje linearno gibanje

θ pomak x

ω0 početna brzina v0

ω konačna brzina v0

α ubrzanje a

t vrijeme t

ω = v
r

α = at
r

Tuesday, January 11, 2011



vektorsko porijeklo 
kutnih varijabli!"#$%&'#%()%&*+"#,%(#-$.*/(01&*+12,*

33456456
Fizika  za matemati!are – 2009.

78+"&(0"#$%&1(#-$."(2&9*."(%:&";-+"8%()&10*,%8(:"'."(&-#"<Smjer kutne brzine određujemo 
pravilom desne ruke

Tuesday, January 11, 2011



centripetalno i 
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Jednoliko kružno gibanje

ac =
vT
2

r
=

rω( )2
r

= rω 2
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Nejednoliko kružno gibanje

a = ac
2 + at

2
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;(-(<+3&=4(+&10(-/."
3&=4+/4/'#&>+/0%1(#.">+!Bacač diska izbacuje disk

ukupnim ubrzanjem a
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centripetalno i 
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6)&1(7&+6)&8/+&9$*:+6/$#*:
(+%(1)&7&$&:+$(#,"#-&.()#&:+0%1&#(:(

$(#,"#-&.()#*+/0%1(#."

Klizači kližu istom kutnom a
različitim tangencijalnim brzinama

s = rθ
s t = r θ t( )
vT = rω - tangencijalna brzina

aT = vT − vT 0
t

=
rω( )− rω0( )

t
= r ω −ω0

t
⎛
⎝⎜

⎞
⎠⎟

- tangencijalno ubrzanje

aT = rα
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v = rω

linearna brzina tangencijalna brzina

a = rα

linearno ubrzanje tangencijalno ubrzanje
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rotacija krutog tijela!"#$%&'$()*+#",(#&'-.$

Definicija prosje!ne kutne brzine

- omjer prosje!nog kuta i vremena

SI jedinica: rad/s

//012012 Fizika  za matemati!are – 2009.

Definicija prosje!nog kutnog ubrzanja

- omjer promjene kutne brzine i vremena

SI jedinica: rad/s2

Trenutna kutna brzina

i trenutno ubrzanje su

veli!ine koje su dane u

odre"enom vremenskom

trenutku. 
Kada je trenutne vrijednosti kutne brzine ili

ubrzanja jednake prosje!nim?

Trenutna kutna brzina i 
trenutno ubrzanje su veličine 
koje su dane u određenom 
vremenskom trenutku 

!"#$%&'$()*+#",(#&'-.$

Definicija prosje!ne kutne brzine

- omjer prosje!nog kuta i vremena

SI jedinica: rad/s
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Definicija prosje!nog kutnog ubrzanja

- omjer promjene kutne brzine i vremena

SI jedinica: rad/s2

Trenutna kutna brzina

i trenutno ubrzanje su

veli!ine koje su dane u

odre"enom vremenskom

trenutku. 
Kada je trenutne vrijednosti kutne brzine ili

ubrzanja jednake prosje!nim?

Definicija prosječne kutne brzine
- omjer prosječnog kuta i vremena

ω = θ −θ0
t − t0

= Δθ
Δt

Definicija prosječnog kutnog ubrzanja
- omjer promjene kutne brzine i vremena

α = ω −ω0

t − t0
= Δω

Δt

SI jedinica: rad/s2

Kada su trenutne vrijednosti kutne brzine
ili ubrzanja jednake prosječnim?
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moment sile
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Moment sile = iznos 

sile x krak sile

!F=!

Krak sile je udaljenost 

od osi rotacije okomito

na pravac djelovanja 

+,+,-.+-.+ Fizika  za matemati!are – 2009.

ULOGA MOMENTA SILE U 

ODR!AVANJU RAVNOTE!E 

HUMANOIDNOG ROBOTA

na pravac djelovanja 

sile.

Moment sile je veli!ina 

koja mijenja kutnu

brzinu rotacije.

Moment sile = Iznos sile
                              x krak sile

τ = F x l
Krak sile je udaljenost od osi 
rotacije okomito na pravac 
djelovanja sile.
Moment sile je veličina koja 
mijenja kutnu brzinu rotacije.

8.1 Torque 227

We will find that an object remains in a state of uniform rotational motion unless acted on
by a net torque. This principle is the equivalent of Newton’s first law. Further, the angular ac-
celeration of an object is proportional to the net torque acting on it, which is the analog of
Newton’s second law. A net torque acting on an object causes a change in its rotational 
energy.

Finally, torques applied to an object through a given time interval can change the object’s
angular momentum. In the absence of external torques, angular momentum is conserved, a
property that explains some of the mysterious and formidable properties of pulsars—
remnants of supernova explosions that rotate at equatorial speeds approaching that of light.

8.1 TORQUE
Forces cause accelerations; torques cause angular accelerations. There is a definite
relationship, however, between the two concepts.

Figure 8.1 depicts an overhead view of a door hinged at point O. From this view-
point, the door is free to rotate around an axis perpendicular to the page and
passing through O. If a force is applied to the door, there are three factors that
determine the effectiveness of the force in opening the door: the magnitude of the
force, the position of application of the force, and the angle at which it is applied.

For simplicity, we restrict our discussion to position and force vectors lying in a
plane. When the applied force is perpendicular to the outer edge of the door, as
in Figure 8.1, the door rotates counterclockwise with constant angular accelera-
tion. The same perpendicular force applied at a point nearer the hinge results in a
smaller angular acceleration. In general, a larger radial distance r between the ap-
plied force and the axis of rotation results in a larger angular acceleration. Simi-
larly, a larger applied force will also result in a larger angular acceleration. These
considerations motivate the basic definition of torque for the special case of forces
perpendicular to the position vector:

Let be a force acting on an object, and let be a position vector from a
chosen point O to the point of application of the force, with perpendicular
to . The magnitude of the torque exerted by the force is given by

[8.1]

where r is the length of the position vector and F is the magnitude of the
force.

SI unit: Newton-meter (N!m)

The vectors and lie in a plane. As discussed in detail shortly in conjunction
with Figure 8.4, the torque is then perpendicular to this plane. The point O is
usually chosen to coincide with the axis the object is rotating around, such as the
hinge of a door or hub of a merry-go-round. (Other choices are possible as well.)
In addition, we consider only forces acting in the plane perpendicular to the axis
of rotation. This criterion excludes, for example, a force with upward component
on a merry-go-round railing, which cannot affect the merry-go-round’s rotation.

Under these conditions, an object can rotate around the chosen axis in one of
two directions. By convention, counterclockwise is taken to be the positive direc-
tion, clockwise the negative direction. When an applied force causes an object to
rotate counterclockwise, the torque on the object is positive. When the force
causes the object to rotate clockwise, the torque on the object is negative. When
two or more torques act on an object at rest, the torques are added. If the net
torque isn’t zero, the object starts rotating at an ever-increasing rate. If the net
torque is zero, the object’s rate of rotation doesn’t change. These considerations
lead to the rotational analog of the first law: the rate of rotation of an object
doesn’t change, unless the object is acted on by a net torque.

!:
F
:

r:

" # rF

F
:

!:r:
F
:

r:F
:

F
:

F
:

Figure 8.1 A bird’s-eye view of a
door hinged at O, with a force
applied perpendicular to the door.

O

Hinge
F

r

! Basic definition of torque
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Sila izaziva akceleraciju, moment sile
izaziva kutnu akceleraciju!
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τ = FTr = maTr = mr2( )α
aT = rα

I = moment tromosti

Zbrojimo momente sila
pojedinih čestica krutog tijela

τ1 = m1r1
2( )α

τ 2 = m2r2
2( )α

...

τ = mr2∑( )α = Iα∑
2. Newtonov zakon za rotaciju
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moment sile

Drugi Newtonov zakon za rotaciju krutog tijela oko fiksne osi

τ = mr2∑( )α = Iα∑
ukupni vanjski
moment sile

moment
tromosti

kutno
ubrzanje

translacija rotacija

F∑ = ma τ∑ = Iα
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ravnoteža krutog tijela

Kruto tijelo je u ravnoteži ako je njegovo linearno 
ubrzanje i kutno ubrzanje 0.
U ravnoteži je zbroj vanjskih sila i zbroj momenata sile 0.

Fx = 0∑
Fy = 0∑
τ∑ = 0
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primjer: skakačica u 
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!

!

Fy = −F1 + F2 −W = 0∑
τ∑ = +F2l2 −WlW = 0

F2 =
WlW
l2
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Definicija centra mase
Centar mase krutog tijela je točka u kojoj djeluje
njena težina uzrokujući moment sile.

τ = w1x1 + w2x2∑

Kutija miruje kraj  kraja
horizontalne daske.
Ukupna težina w1 i w2 djeluje
u centru mase.
w1x1 + w2x2 = w1 + w2( )xCM

xCM = w1x1 + w2x2 + ...
w1 + w2 + ...

položaj centra mase
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centar mase
Centar mase je točka koja predstavlja prosječnu lokaciju ukupne mase 
sustava. Ako imamo sustav od dvije mase, centar mase dan je s:

!"#$%&'(%)"

Centar mase je to!ka koja predstavlja prosje!nu lokaciju ukupne mase

sustava. Ako imamo sustav od dvije mase, centar mase dan je s

*+*+,-*,-* Fizika  za matemati!are – 2009.

Do"e li do pomaka masa, do#i #e do promjene polo!aja centra mase:

Podijelimo li relaciju s vremenskim intervalom !t, dobivamo brzinu 

centra mase

xCM = m1x1 + m2x2
m1 + m2

Dođe li do pomaka mase, doći će i do promjene položaja centra mase:

ΔxCM = m1Δx1 + m2Δx2
m1 + m2

Podijelimo li relaciju s vremenskim intervalom Δt, dobivamo brzinu 
centra mase: 

vCM = m1v1 + m2v2
m1 + m2
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moment tromosti

8.5 Relationship Between Torque and Angular Acceleration 241

segments having masses m1, m2, m3, . . . , mn, as in Figure 8.21, with M ! m1 "
m2 " m3 " . . . " mn. This approach is just an extension of the baton problem
described in the preceding examples, except that now we have a large number of
small masses in rotation instead of only four.

We can express the sum for I as

I ! #mr 2 ! m1r1
2 " m2r2

2 " m3r3
2 " ! ! ! " mnrn

2

All of the segments around the hoop are at the same distance R from the axis of rota-
tion, so we can drop the subscripts on the distances and factor out R2 to obtain

I ! (m1 " m2 " m3 " ! ! ! " mn)R2 ! MR2 [8.9]

This expression can be used for the moment of inertia of any ring-shaped object
rotating about an axis through its center and perpendicular to its plane. Note that
the result is strictly valid only if the thickness of the ring is small relative to its in-
ner radius.

The hoop we selected as an example is unique in that we were able to find an
expression for its moment of inertia by using only simple algebra. Unfortunately,
for most extended objects the calculation is much more difficult because the
mass elements are not all located at the same distance from the axis, so the meth-
ods of integral calculus are required. The moments of inertia for some other
common shapes are given without proof in Table 8.1. You can use this table as
needed to determine the moment of inertia of a body having any one of the listed
shapes.

If mass elements in an object are redistributed parallel to the axis of rotation,
the moment of inertia of the object doesn’t change. Consequently, the expression
I ! MR2 can be used equally well to find the axial moment of inertia of an embroi-
dery hoop or of a long sewer pipe. Likewise, a door turning on its hinges is
described by the same moment-of-inertia expression as that tabulated for a long
thin rod rotating about an axis through its end.

m1

m2

m3

R

Figure 8.21 A uniform hoop can
be divided into a large number of
small segments that are equidistant
from the center of the hoop.

TABLE 8.1
Moments of Inertia for Various Rigid Objects 
of Uniform Composition

Thin spherical
shell
I = 2

3 MR2

R

R

Solid sphere

I = 2
5 MR 2

L

Long thin rod
with rotation axis
through center

I = 1
12 ML2 L

Solid cylinder
or disk

R
I = 1

2 MR2

Hoop or thin
cylindrical shell
I = MR2 R

I = 1
3 ML2

Long thin
rod with
rotation axis
through end

TIP 8.3 No Single Moment 
of Inertia
Moment of inertia is analogous to
mass, but there are major differences.
Mass is an inherent property of an 
object. The moment of inertia of 
an object depends on the shape of
the object, its mass, and the choice 
of rotation axis.
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Moment tromosti ovisi o obliku tijela, te o izboru osi rotacije.
Teorem o paralelenim osima: I = I CM + Md2
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I = mr2 = m1r1
2 + m2r2

2 = m 0( )2 + m L( )2 = mL2∑

I = mr2 = m1r1
2 + m2r2

2 = m L 2( )2 + m L 2( )2 = 1
2
mL2∑
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Strategy In Figure 8.19, all four balls contribute
to the moment of inertia, whereas in Figure 8.20,
with the new axis, only the two balls on the left and
right contribute. Technically, the balls on the top
and bottom still make a small contribution because
they’re not really point particles. However, their
moment of inertia can be neglected, because the
radius of the sphere is much smaller than the ra-
dius formed by the rods.

240 Chapter 8 Rotational Equilibrium and Rotational Dynamics

Calculation of Moments of Inertia for Extended Objects
The method used for calculating moments of inertia in Example 8.9 is simple
when only a few small objects rotate about an axis. When the object is an extended
one, such as a sphere, a cylinder, or a cone, techniques of calculus are often re-
quired, unless some simplifying symmetry is present. One such extended object
amenable to a simple solution is a hoop rotating about an axis perpendicular to its
plane and passing through its center, as shown in Figure 8.21. (A bicycle tire, for
example, would approximately fit into this category.)

To evaluate the moment of inertia of the hoop, we can still use the equation 
I ! "mr 2 and imagine that the mass of the hoop M is divided into n small

0.20 kg 0.30 kg

0.30 kg 0.20 kg

1 2

4

0.50 m

3

Figure 8.19 (Example 8.9a) Four
objects connected to light rods rotating
in the plane of the page.

Solution
(a) Calculate the moment of inertia of the baton when
oriented as in Figure 8.19.

Apply Equation 8.7, neglecting the mass of the connect-
ing rods:

I ! "mr 2 ! m1r1
2 # m2r2

2 # m3r3
2 # m4r4

2

! (0.20 kg)(0.50 m)2 # (0.30 kg)(0.50 m)2

#(0.20 kg)(0.50 m)2 # (0.30 kg)(0.50 m)2

I ! 0.25 kg$m2

(b) Calculate the moment of inertia of the baton when
oriented as in Figure 8.20.

Apply Equation 8.7 again, neglecting the radii of the
0.20-kg spheres.

I ! "mr 2 ! m1r1
2 # m2r2

2 # m3r3
2 # m4r4

2

! (0.20 kg)(0)2 # (0.30 kg)(0.50 m)2

#(0.20 kg)(0)2 # (0.30 kg)(0.50 m)2

I ! 0.15 kg$m2

O

0.30 kg0.30 kg

0.20 kg

0.20 kg

O %

Figure 8.20 (Example 8.9b) A double
baton rotating about the axis OO %.

Remarks The moment of inertia is smaller in part (b) because in this configu-
ration the 0.20-kg spheres are essentially located on the axis of rotation.

Exercise 8.9
Yet another bizarre baton is created by taking four identical balls, each with mass
0.300 kg, and fixing them as before, except that one of the rods has a length of
1.00 m and the other has a length of 1.50 m. Calculate the moment of inertia
of this baton (a) when oriented as in Figure 8.19; (b) when oriented as in
Figure 8.20, with the shorter rod vertical; and (c) when oriented as in Figure
8.20, but with longer rod vertical.

Answers (a) 0.488 kg $ m2 (b) 0.338 kg $ m2 (c) 0.150 kg $ m2
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Strategy In Figure 8.19, all four balls contribute
to the moment of inertia, whereas in Figure 8.20,
with the new axis, only the two balls on the left and
right contribute. Technically, the balls on the top
and bottom still make a small contribution because
they’re not really point particles. However, their
moment of inertia can be neglected, because the
radius of the sphere is much smaller than the ra-
dius formed by the rods.

240 Chapter 8 Rotational Equilibrium and Rotational Dynamics

Calculation of Moments of Inertia for Extended Objects
The method used for calculating moments of inertia in Example 8.9 is simple
when only a few small objects rotate about an axis. When the object is an extended
one, such as a sphere, a cylinder, or a cone, techniques of calculus are often re-
quired, unless some simplifying symmetry is present. One such extended object
amenable to a simple solution is a hoop rotating about an axis perpendicular to its
plane and passing through its center, as shown in Figure 8.21. (A bicycle tire, for
example, would approximately fit into this category.)

To evaluate the moment of inertia of the hoop, we can still use the equation 
I ! "mr 2 and imagine that the mass of the hoop M is divided into n small

0.20 kg 0.30 kg

0.30 kg 0.20 kg

1 2

4

0.50 m

3

Figure 8.19 (Example 8.9a) Four
objects connected to light rods rotating
in the plane of the page.

Solution
(a) Calculate the moment of inertia of the baton when
oriented as in Figure 8.19.

Apply Equation 8.7, neglecting the mass of the connect-
ing rods:

I ! "mr 2 ! m1r1
2 # m2r2

2 # m3r3
2 # m4r4

2

! (0.20 kg)(0.50 m)2 # (0.30 kg)(0.50 m)2

#(0.20 kg)(0.50 m)2 # (0.30 kg)(0.50 m)2

I ! 0.25 kg$m2

(b) Calculate the moment of inertia of the baton when
oriented as in Figure 8.20.

Apply Equation 8.7 again, neglecting the radii of the
0.20-kg spheres.

I ! "mr 2 ! m1r1
2 # m2r2

2 # m3r3
2 # m4r4

2

! (0.20 kg)(0)2 # (0.30 kg)(0.50 m)2

#(0.20 kg)(0)2 # (0.30 kg)(0.50 m)2

I ! 0.15 kg$m2

O

0.30 kg0.30 kg

0.20 kg

0.20 kg

O %

Figure 8.20 (Example 8.9b) A double
baton rotating about the axis OO%.

Remarks The moment of inertia is smaller in part (b) because in this configu-
ration the 0.20-kg spheres are essentially located on the axis of rotation.

Exercise 8.9
Yet another bizarre baton is created by taking four identical balls, each with mass
0.300 kg, and fixing them as before, except that one of the rods has a length of
1.00 m and the other has a length of 1.50 m. Calculate the moment of inertia
of this baton (a) when oriented as in Figure 8.19; (b) when oriented as in
Figure 8.20, with the shorter rod vertical; and (c) when oriented as in Figure
8.20, but with longer rod vertical.

Answers (a) 0.488 kg $ m2 (b) 0.338 kg $ m2 (c) 0.150 kg $ m2
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Strategy In Figure 8.19, all four balls contribute
to the moment of inertia, whereas in Figure 8.20,
with the new axis, only the two balls on the left and
right contribute. Technically, the balls on the top
and bottom still make a small contribution because
they’re not really point particles. However, their
moment of inertia can be neglected, because the
radius of the sphere is much smaller than the ra-
dius formed by the rods.
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Calculation of Moments of Inertia for Extended Objects
The method used for calculating moments of inertia in Example 8.9 is simple
when only a few small objects rotate about an axis. When the object is an extended
one, such as a sphere, a cylinder, or a cone, techniques of calculus are often re-
quired, unless some simplifying symmetry is present. One such extended object
amenable to a simple solution is a hoop rotating about an axis perpendicular to its
plane and passing through its center, as shown in Figure 8.21. (A bicycle tire, for
example, would approximately fit into this category.)

To evaluate the moment of inertia of the hoop, we can still use the equation 
I ! "mr 2 and imagine that the mass of the hoop M is divided into n small

0.20 kg 0.30 kg

0.30 kg 0.20 kg

1 2

4

0.50 m

3

Figure 8.19 (Example 8.9a) Four
objects connected to light rods rotating
in the plane of the page.
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0.20-kg spheres.
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2 # m4r4
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O

0.30 kg0.30 kg

0.20 kg

0.20 kg

O %

Figure 8.20 (Example 8.9b) A double
baton rotating about the axis OO%.

Remarks The moment of inertia is smaller in part (b) because in this configu-
ration the 0.20-kg spheres are essentially located on the axis of rotation.
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1.00 m and the other has a length of 1.50 m. Calculate the moment of inertia
of this baton (a) when oriented as in Figure 8.19; (b) when oriented as in
Figure 8.20, with the shorter rod vertical; and (c) when oriented as in Figure
8.20, but with longer rod vertical.

Answers (a) 0.488 kg $ m2 (b) 0.338 kg $ m2 (c) 0.150 kg $ m2
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rotacija - translacija

Fizikalni koncept ROTACIJA TRANSLACIJA
pomak θ s
brzina ω v

ubrzanje α a
uzrok ubrzanja τ F

inercija I m
2. Newtonov zakon

rad θτ Fs
kinetička energija
količina gibanja L = Iω p = mv

τ = Iα∑ F = ma∑

1 2( ) Iω 2 1 2( )mv2
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kutna količina gibanja
Definiramo kutnu količinu gibanja:

 

L = I


ω

SI jedinica [kg·m2  / s]

Zakon očuvanja kutne količine gibanja:
Ukupna kutna količina gibanja sustava ostaje konstantna (očuvana) 
ako je ukupni moment sile koji djeluje na sustav 0!

ΔL
Δt

= I Δω
Δt

= Iα = τ

Moment sile dan je promjenom kutne količine gibanja u vremenu.
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primjer: očuvanje kutne 
količine gibanja 

8.7 Angular Momentum 249

during the collapse, the star’s rotational speed increases. More than 700 rap-
idly rotating neutron stars have been identified since their first discovery in
1967, with periods of rotation ranging from a millisecond to several seconds.
The neutron star is an amazing system — an object with a mass greater than the
Sun, fitting comfortably within the space of a small county and rotating so fast
that the tangential speed of the surface approaches a sizeable fraction of the
speed of light!

A horizontal disk with moment of inertia I1 rotates with angular speed !1 about a
vertical frictionless axle. A second horizontal disk, with moment of inertia I2 and
initially not rotating, drops onto the first. Because their surfaces are rough,
the two eventually reach the same angular speed !. The ratio !/!1 is equal to
(a) I1/I2 (b) I2/I1 (c) I1/(I1 " I2) (d) I2/(I1 + I2)

Quick Quiz 8.6

If global warming continues, it’s likely that some ice from the polar ice caps of the
Earth will melt and the water will be distributed closer to the Equator. If this oc-
curs, would the length of the day (one revolution) (a) increase, (b) decrease, or
(c) remain the same?

Quick Quiz 8.7

EXAMPLE 8.14 The Spinning Stool
Goal Apply conservation of angular momentum to a
simple system.

Problem A student sits on a pivoted stool while holding a
pair of weights. (See Fig. 8.30.) The stool is free to rotate
about a vertical axis with negligible friction. The moment of
inertia of student, weights, and stool is 2.25 kg # m2. The stu-
dent is set in rotation with arms outstretched, making one
complete turn every 1.26 s, arms outstretched. (a) What is
the initial angular speed of the system? (b) As he rotates,
he pulls the weights inward so that the new moment of
inertia of the system (student, objects, and stool) becomes
1.80 kg # m2. What is the new angular speed of the system?
(c) Find the work done by the student on the system while
pulling in the weights. (Ignore energy lost through dissipa-
tion in his muscles.)

Strategy (a) The angular frequency can be obtained
from the frequency, which is the inverse of the period. 
(b) There are no external torques acting on the system, so the new angular speed can be found with the principle of
conservation of angular momentum. (c) The work done on the system during this process is the same as the system’s
change in rotational kinetic energy.

(a)

i f

(b)

v v

Figure 8.30 (Example 8.14) (a) The student is given an initial
angular speed while holding two weights out. (b) The angular
speed increases as the student draws the weights inwards.

Solution
(a) Find the initial angular speed of the system.

Invert the period to get the frequency, and multiply by 2$ : !i % 2$f % 2$/T % 4.99 rad/s

(b) After he pulls the weights in, what’s the system’s new
angular speed?

Equate the initial and final angular momenta of the
system:

Li % Lf : Ii!i % If !f (1)

A P P L I C AT I O N
Rotating Neutron Stars
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I1ω1 = I2ω2

I2 < I1→ω2 >ω1
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rad
WR = τα
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kinetička energija
E = 1

2 mr
2ω 2( )∑ = 1

2 mr2∑( )ω 2 = 1
2 Iω

2
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ukupna energija:
Euk = 1

2 mv
2 + 1

2 Iω
2 + mgh

zakon očuvanja energije
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