ELEKTRONSKA MIKROSKOPIJA I DIFRAKCIJA POSLIJEDIPLOMSKI STUDIJ FIZIČKI ODSJEK,PMF Zagreb 2004/2005

Prof. dr. sc. Anđelka Tonejc

- Zworykin, Hiller i Snyder su 1942. konstruirali i opisali prvi SEM.
- Osnovni dijelovi detektora sekundarnih elektrona bili su fosforni ekran (scintilator) i fotomultiplikator.
- Everhart i Thornley su dodali svjetlovod između fotomultiplikatora i scintilatora, čime se znatno povećana efikasnost.

KONSTRUKCIJA I NAČIN RADA RASTERSKOG ELEKTRONSKOG MIKROSKOPA... Služi za proučavanje površine uzorka

Elektromagnetska leća- na elektron koji ulazi u magnetsko polje djeluje $F = e v \times B$, gdje je F sila, e elementarni naboj elektrona, v brzina elektrona i B magnetska indukcija Magnetska leća — mijenja se samo smjer brzine elektrona

Z- kontrast $C = \Delta I / I$ Ljudsko oko razlučuje razliku intenziteta ΔI veće od 5 -10 % (sivi klin intenziteta : oko 16 razlučuje) INTENZITET SLIKE ...broj el. po površini detektora (svjetao i taman) (KONTRAST SLIKE ... slab kontrast i jak kontrast; A) Najjači kontrast se dobija kad se snizi osvjetljenje, dok ako povećamo broj elektrona koji pada na ekran , dakle kondenziramo snop na malo područje- povećavamo intenzitet osvjetljenja- snizujemo kontrast (22.1 B- Carter)

Usporedba konfiguracija apertura objektiva u TEM-u koje odabiru (A) direktno i (B) raspršene elektrone koje formiraju slike svij. BF i tamnog polja DF. U STEM-u koristimo (C) detektor na osi ili (D) prstenasti detektor (ADF) stvara sliku tamnog polja.

UVOD

- 1970. -tih u ranim uređajima STEM sa FEG om ustanovljeno je da teški atomi (Pt i U) na supstratu niskog atomskog broja Z (Isaacson et al . 1979.) daju zamjetan kontrast Vidi sl 22.12). Ove slike su dobivene s prstenastim DF detektorom koji je sakupljao elastično raspršene elektrone pod malim kutom.
- Na prikazanoj slici veliki svijetli dijelovi su od Al2O3 supstrata koji difraktiraju u detektor i smetaju raspršenju od Pt atoma
- Kontrast je povezan direktno s elastičnim raspršenjem matrice (σ_A) i dopiranog legiranog elementa (σ_B)

C= ($\sigma_A / \sigma_B - F_B$) , F_B je legirani element supstituiran

na mjesta atoma matrice.

ADF slika u Z-kontrastu individualnih Pt atoma ili grupe atoma na kristalnom Al₂O₃ filmu dobivena FEG STEM mikroskopom.

Shema postava HAADF detektora zaoslikavanje u Z-kontrastu u STEMu. ADF i BF detektori su prikazani kao i kutevi raspršenja koje svaki detektor zauzima.

(A) TEM BF slika niskog razlučivanja koja prikazuje red defekata u Si implantiranog sa Bi. U (B), u uvjetima Z- kontrasta, implantirani defekti su nevidljivi ali uzorak je svjetao u području implantiranim s Bi.

(A) HRTEM slika u faznom kontrastu epitaksijalnog Ge na Si sa SiO2 površine. Područje bijelih točkica kristaliničnog područjapredstavlja atomske stupce a Ge i Si područja se ne razlikuju. (Sl.22.15.A,B, C,-Carter 360 str

FEG proba manja od 0.3 nm

(B) Slika visokog razlučivanja u Zkontrastu. STEM slika pokazuje stupove atoma sa jakim kontrastom na Si-Ge granici

> (interfeisu) i niski intenzitet na oksidu niskog Z.

(C) Model strukture granice u SrTiO3 superponiranim na procesiranu sliku u Z-kontrastu. *Određivanje strukture Z kontrast mikroskopijom* (S.J. Pennycook)

Matematički opis je konvolucija objektne funkcije O(R) sa funkcijom rezolucije... P²(R), koja je intenzitet profila STEM probe.
 I(R) =O(R)* P²(R)

Z KONTRAST (JEOL News 2001. Vol 36)

Slika 1.Prikazuje shematski principe oslikavanja pri atomskoj rezoluciji pri faznom kontrastu u HRTEM-u i Z- kontrasta u HAADF- STEM-u (high -angle annular dark field scanning transmmission electron microscope).

Fig. 1. Imaging principles of atomic-resolution phase-contrast and Z-contrast transmission electron microscopy.

U faznom kontrastu paralelni snop osvjetljava uzorak i slika se formira interferencijom mnogo snopova.

U slici 1 to je pojednostavljeno uzimajući potencijal uzorka i difraktirani snopovi u uvjetima Scherzer-ova defokusa koji su postigli fazni pomak - π/2 na leći objektiva u širokom području frekvencija, s time da je u ravnini slike fazni pomak π.

Ovdje su projicirani atomski položaji oslikani kao tamna mjesta. (ako je uzorak dosta tanak- 5 nm za metalne slitine i pretpostavlja se da vrijedi. WPO- aproksimacija objekta slabe faze.

Prostorno razlučivanje je ograničeno izvedbom leće objektiva, koja je opisana kontrast transfer funkcijom (CTF).

Fokusirani snop , kuta konvergencije ~ 10 mrad se koristi pri oslikavanju u Z- kontrastu.

Atomski stupci su oslikani jedan po jedan, kako konvergentni snop- proba skenira preko uzorka tvoreći dvodimenzionalnu mapu intenziteta, elektrona raspršenih u kružni detektor, a atomske pozicije su uvijek svijetle.

FIG. 1 Schematic diagram of the STEM detectors showing the highangle scattering used for Z-contrast imaging. Collecting at high angles reduces coherence only to correlations between nearest neighbours of atoms in the same column⁵, and the large angular range of the detector averages any coherent scattering of the outgoing electrons. For thin crystalline materials in major zone-axis orientations, where the probe is smaller than the atomic column separation, a map of the location of the atomic columns can be generated where the intensity is directly dependent on columnar composition. Dijagram STEM detektora koji pokazuje raspršenje pod velikim kutom korištenim u Z-kontrastu.

Za tanak kristalni materijal u osnovnoj osi zone, gdje je proba manja od razmaka atomskih stupaca, mapa položaja atomskih stupaca se može stvoriti, a intenzitet je direktno ovisan o sastavu stupca.

aa

O Z-KONTRASTU

- Dok se HRTEM slika formira mikroskopijom faznog kontrasta, koristeći koherentne elastično raspršene elektrone. Druga tehnika oslikavanja pri visokom razlučivanju postaje jako popularna je «Z- kontrast oslikavanje» u STEM-u- pretraženom transmisijskom mikroskopu.
- Z- kontrast slike (također nazvane prstenasti DF velikih kutova), HAADF (high angle angular dark field), formira se nekoherentno elastično raspršenim elektronima.
- Raspršeni intenzitet se razmatra kao suma nezavisnih raspršenja od individualnih atoma, tako da se nekoherentne slike Z- kontrast metode, interpretiraju direktno u odnosu na vrstu i položaj atoma.
- Fazni odnosi tako važni za HRTEM oslikavanje su irelevantni. Z kontrast slike se formiraju tako da se sakupljaju elastično raspršeni elektroni pod velikim kutom (75 do 150 m rad) s jednim kružnim DF detektorom- SI.- 10.33.
- Takav detektor hvata veliki dio intenziteta pod velikim kutom, stvarajući jedan efikasan DF mod.

Kut raspršenja je za red veličine veći od tipičnih Braggovih difrakcija, tako da je odgovarajući dio potencijala raspršenja je red veličine manji od tipičnih

dimenzija atoma.

- U modernim EM srednjih napona u « field- emission» STEM-u
- veličina probe : d=0.15 do 0.20 nm. Okomiti stup atoma može se smatrati kao vrlo oštar objekt u ravnini uzorka.
- Razlučivanje slike ja konvolucija takve δ funkcije sa prostornim profilom probe (struje elektrona), zajedno s bilo kojim proširenjem snopa koje se zbiva kada se elektroni šire kroz uzorak.
- P²(R), je intenzitet profila STEM probe je:
 I(R) =O(R)* P²(R)
- Zbog velikog udarnog presjeka za elastično raspršenje snopa, koristeći tanak uzorak, širenje snopa svodi se na minimum.
- Granično razlučivanje tada je puna poluširina na pola maksimuma same probe. Za elektronsko optički sistem ograničen izvorom . Scherzer granica razlučivanja d_{sc} je : $d_{SC} = 0.43 \lambda^{3/4} Cs^{1/4}$
- Cs sferna aberacija, što je 30% manje od SCH razlučivanja za koherentno oslikavanje.
- Ne koherencija ovog oslikavanja (HAADF) je posljedica velikog Δ k .
- Kod velikih Δ k je koherentno raspršenje smanjeno Debyu Waller-ovim faktorom.

 Promjenom fokusa objektivne leće mijenja se distribucija probe na površini uzorka. Efekt defokusa se ilustrira serijom simuliranih nekoherentnih slika za 110 Si na Sl. 10.35. Blizina SCHERZER ovog defokusa je f = -70 nm, oblik probe podsjeća na DIF limitirani Airy disk (kod DIF na rupici). Kod manjih defokusa centralni maksimum se širi. Kod većeg defokusa centrali max. se širi i pojavljuje se intenzitet u slijedećim maksimumima.

Teoretski računi prema dinamičkoj teoriji za širenje elektrona kroz uzorak u jednoj točno određenoj zoni, STEM proba stvara jak maksimum na mjestu atomskog stupa sa širinom od 0.1 nm.

Fig. 10.34. The specimen in (a) consists of an array of atomic columns ($\langle 110 \rangle$ Si for example), for which the potential for high-angle scattering can be represented by an object function consisting of weighted spikes, as in (b). The experimental image can be interpreted as a convolution of the experimental probe and the object function, as in (c). As the probe scans, it maps out the spikes, producing a direct image of the high-angle scattering power. After [10.16].

Kontrast izvan SCH defokusa je u oba slučaja bitno reduciran. Dakle u praksi treba naći SCH defokus . Iz ove slike znajući da su atomi oštri objekti, a ovdje imamo ovalni oblik - zaključujemo da 2 atomska stupca Si – « dumbella» nisu razlučeni.

Rezultat slike 10.35 vrijedi i za deblje uzorke

Fig. 10.35. Simulated defocus series for Si $\langle 110 \rangle$ with corresponding probe intensity profiles (100 kV, $C_{\rm s} = 1.3$ mm, optimum objective aperture semiangle 10.3 mrad), giving a probe size of 0.22 nm at the optimum Scherzer defocus of -69.3 nm. After [10.16].)

Funkcija prijenosa kontrasta (CTF) za JEOL 2010F u HRTEM modu (sa 0.7 mrad konv. snopa)i ADF-STEM mode sa 0.1 nm dijametar snopa te 10 mrad aperturom, C_S= 1 mm. Optimalni uvjeti. Reverzija kontrasta u HRTEM-u . Crtkana krivulja d_{SCH} =0.23 nm; ADF-STEM mod granica informacije 0.15 nm odnosno k=0.666 A⁻¹ može se interpretirati; ADF-STEM je na 5% početne vrijednosti kontrasta što je usporedivo s razinom šuma u slici.

Karakterizacija oksida gata-tranzistora prstenastim DF oslikavanjem (MULLER DA , BAUMANN FH, JEOL NEWS vol 35 E 6(2000) p. 6-)

Moderni integrirani krugovi mogu sadržavati tranzistore manje on 100 nm kao i oksid "gata" tanak 2 nm. Smanjivanjem debljine oksida za 0.1 nm dovodi do porasta struje – leakage currentza red veličine.

Plate 3 A single transistor. Atomic-resolution (ADF-STEM) image of a single transistor, showing enlargement of the gate oxide, about five atoms thick. Computers contain millions of these nanostructures, which can now only be seen using an atomic-resolution electron microscope (D. Muller, Bell/Lucent, 2002).

- a) SAED Al₇₂ Ni₂₀ Co₈ dekagonal kvazikristal;
- b) CBED uzduž 10. struke osi simetrije- pokazuje 0-tu Laueovu zonu i potvrđuje simetriju 10 mm.
 c) i d) su atomsko razlučivanje u faznom i Z- kontrastu.
 - Slika c) tanko mjesto 5 nm i u SCH fokusu (- 45 nm za JEM -4000EX sa $C_s = 1.0$ mm) gdje je za oslikavanje korišten veliki broj refleksa(difrakcija iz Sl.a).
 - Filtriranje frekvencija većih od 0.05 nm⁻¹;
 - d) Slika u Z- kontrastu iz područja debljine ~10 nm,
 - e) atomski model Al₇₂ Ni₂₀ Co₈ dekagonalnog kvazikristala. Svi položaji atoma su izvedeni iz 3 varijacije klastera (Abe E. et al. Phys. Rev. Lett., 84,4609(2000))

- a) SAED uzorak
- b) CBED u smjeru 5struke osi simetrije ikozaedralnog kvazikristala Zn₆ Mg₃Ho
- b) pokazuje viši red prstenastog Laueovog diska; 5- struka simetrija je naznačena strelicama,c) HRTEM,d) Z-kontrast slike debljina 5 nm, defokus -45 nm (isti uvjeti kao prosla slika
- e) reprezentativna Ho konfiguracija nađena u pretpostavljenom strukturnom modelu ovog kvazikristala(Takakura H., Shiono.M., Sato T.J. Yamamoto A. and Tsai aA.P., Phys. Rev. Lett. 86, 236(2000).

GP zone su precipitati koherentni s matricom. uloga im je očvrščivanje matrice materijala(AlZn,AlCu..); naziv prema znastvenicima pionirima na ovom polju: A. Guinier i R. Preston

 Wilm 1906. (objavio 1911.g.): Al+3.5t.%Cu+0.5t.%Mg+0.5t.%Mn+0.5t.%Si.

1919. Merica, Waltenburg i Scott: precipitacija Al2Cu iz čvrste otopine

 1938.g. neovisno A. Guinier (Nature 142 (1938) 569) i G.P Preston (Nature 142 (1938) 700)

 1942; Guinier: GP-I zone → θ" (GP-II zone) → θ' -faza → θ-faza (stabilna Al2Cu) GP-I zone: pre-percipitati u obliku tankih sfernih pločica bogatih bakrom, u ravninama {100}
 GPII-zone: tetragonalne strukture (Guinierova pretpostavka) koherentne s matricom;
 θ' -faza: kubična CaF2 tipa, također koherentna θ-faza: ravnotežna Al2Cu tetragonalna structura nekoherentna s matricom

Guinier-Preston – ove zone

GPII; Gerold 1954. predložio model prema kojem su GPII zone monoslojevi Cu razdvojeni s tri sloja Al ravnina, i taj model se od onda citira u svim knjigama; a)SAD uzorak Al-3.3 tež% Cu slitine starene 100 dana ; "strekovi" pokazuju {200} dif točke; ,b) GP-I zone dužine 10 nm paralelne {100} ravninama Al matrica je orijentirana u [001] smjer , HRTEM slika.

Plate 4 Absorption spectroscopy with sub-nanometer spatial resolution. Scanning transmission electron microscope image of the Silicon/Silicon oxide interface, used in transistors. Both amorphous and crystalline silica are seen. The 0.1 nm probe has been focussed onto the circles shown, from which the energy-loss spectra of the Oxygen K edge shown at right were obtained. The electronic structure is decomposed at left (from D. Muller, T. Sorsch, S. Moccio, F. H. Baumann and G. Timp, *Nature*, **399**, 758 (1999)).

Plate 2 Fullerenes. (a) Shows the discovery of the single-walled nanotube; (b) is a multiwalled tube: while (c) shows the first image taken of a buckyball, in 1980 (from S. Iijima, *Nature* **354**, 56 (1991) and S. Iijima, *J. Cryst. Growth*, **50**, 675 (1980)).

Plate 5 A single unstained DNA molecule imaged by TEM. The molecule is stretched across a hole, dehydrated. Background noise is due to fluctuations in the arrivals of individual beam electrons. The image has been averaged five times along its length. The image on the right has been processed to reduce noise. Whereas cryomicroscopy allows imaging of molecules in their more useful quasi-hydrated state, this image shows the limits to what is possible for unstained single-molecule imaging with high energy electrons, given the limitations of noise and radiation damage (from Y. Fujiyoshi and N. Uyeda, *Ultramicroscopy* **7**, 189 (1981)).

...\...\Documents and Settings\tonejc\My Documents\My Pictures\Cu20.jpg

Zuo, Kim, O'Keeffe and Spence Arizona State University/NSF CTF for a JEOL 4000EX microscope at Scherzer defocus (-49 nm), 400 kV, and Cs = 1.0 mm, showing the effects of beam convergence (column 1) and spread of defocus (column 2) on the optical properties. The undamped CTF is shown the upper right, and a typical fully damped CTF appears at the lower right.

HRTEM image of γ/α^2 interface in a TiAl alloy. This is a coherent interface between a DO19 α^2 Ti3Al precipitate plate (bottom) in a L10 γ -Ti Al matrix (top). There is matching of the close-packed planes in both crystals, {111} γ]] (0001) α^2 , and the interface plane is parallel to these close-packed planes. Burgers circuits are drawn around the partial dislocations at opposite ends of a ledge. The symbols Se, Ss and F indicate the start and finish points of 90° (edge) and 30° (screw) circuits, respectively.

HRTEM image showing atomic facets along the coherent {474} γ habit plane of a B2-ordered Ti AI precipitate in an ordered γ -Ti AI matrix in a Ti-AI-Mo alloy. The interface is viewed along (110)fcc (L1 0) || (111)bcc(B2)

HRTEM image of a semicoherent {111} interface between Cu and Ag viewed along a (110) direction. Arrows indicate the cores of misfit dislocations.

HRTEM image of a structurally incoherent interface between AI and Ge in an AI-Ge alloy, viewed along (110).

Simulated HRTEM images of a $\gamma/\alpha 2$ interface versus crystal thickness for (a) No beam tilt, (b) 10.0 mrad beam tilt parallel, (c) 7.2 mrad beam tilt normal, and (d) Combined tilts parallel and normal to the interface, which is indicated by the line in a.

Simulated HRTEM images of a Ti/TiH interface over a range of crystal thickness (vertical, in nm) and objective lens defocus (horizontal) values. The viewing direction is [0001]Ti || [100]TiH and ξ oooTiH = 30.0 nm.

LITERATURA:

- 1. D.B. Williams and C.B. Carter (1996), **Transmission Electron Microscopy**, A Textbook for Materials Science, Plenum Press, New York.
- Buseck, P.R. (ur.)(1992): Minerals and reactions at the atomic scale: Transmission electron microscopy. Reviews in Mineralogy, Vol. 27. Mineralogical Society of America.
- 3. Goldstein, J.J., Newbury, D.E., Echlin, P., Joy, D.C., Fiori, C., Lihshin, E. (1984): Electron Microscopy and X-ray Microanalysis, Plenum Press, New York/London.
- Reimer, L. (1997), 4th ed.: Transmission Electron Microscopy. Physics of image formation and Microanalysis, Springer-Verlag, Berlin.
- 5. Rühle, M. i Wilkens, M. (1986): Electron Microscopy, in Cahn, R.W. and Haasen, P. eds. Physical Metallurgy; fourth, revised edition, revised edition, Elsevier Science BV.
- 6. Spence, Y.C.H. (2003) 3rd ed.: Experimental High-Resolution Electron Microscopy, Claredon Press, Oxford.
- 7. Thomas, G.T. (2000): Electron Microscopy and Structure of Materials, University of California Press, Berkley.