The VLA-COSMOS 3 GHz Large Project: Multiwavelength counterparts and the composition of the faint radio population


1 University of Zagreb, Physics Department, Bijenička cesta 32, 10002 Zagreb, Croatia
2 INAF- Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127, Bologna, Italy
3 Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg, Germany
4 Istituto di Radioastronomia di Bologna - INAF, via P. Gobetti, 101, 40129, Bologna, Italy
5 Spitzer Science Center, California Institute of Technology, 220-6, Pasadena, CA, USA 91125
6 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA
7 Argelander-Institut für Astronomie, University of Bonn, Auf dem Hügel 71, 53121, Bonn, Germany
8 Aix Marseille Université, Laboratoire d’Astrophysique de Marseille, 38 rue Frederic Joliot-Curie, 13388 Marseille, France
9 Institut d’Astrophysique de Paris, Sorbonne Universités, UPMC, Univ Paris 06 et CNRS, UMR 7095, 98 bis bd Arago, 75014 Paris, France
10 Department of Physics & Astronomy, Clemson University, Clemson, SC 29634, USA
11 Max Planck Institute for Extraterrestrial Physics, Giessenbachstr. 1, D-85748 Garching, Germany

February 11, 2017

ABSTRACT

We study the composition of the faint radio population selected from the VLA-COSMOS 3 GHz Large Project, a radio continuum survey performed at 10 cm wavelength. The survey covers a 2.6 square degree area with a mean rms of ~ 2.3 μJy/beam, cataloging 10,830 sources above 5σ, and enclosing the full 2 square degree COSMOS field. By combining these radio data with optical, near-infrared (UltraVISTA), and mid-infrared (Spitzer/IRAC) data, as well as X-ray data (Chandra), we find counterparts to radio sources for ~93% of the total radio sample (in the unmasked areas of the COSMOS field, i.e., those not affected by saturated or bright sources in the optical to NIR bands), reaching out to z ≤ 6. We further classify the sources as star forming galaxies or AGN based on various criteria, such as X-ray luminosity, observed MIR color, UV-FIR spectral-energy distribution, rest-frame NUV-optical color corrected for dust extinction, and radio-excess relative to that expected from the hosts’ star-formation rate.

We separate the AGN into sub-samples dominated by low-to-moderate and moderate-to-high radiative luminosity AGN, candidates for high-redshift analogues to local low- and high-excitation emission line AGN, respectively. We study the fractional contributions of these sub-populations down to radio flux levels of ~11 μJy at 3 GHz (or ~20 μJy at 1.4 GHz assuming a spectral index of -0.7). We find that the dominant fraction at 1.4 GHz flux densities above ~200 μJy is constituted of low-to-moderate radiative luminosity AGN. Below densities of ~100 μJy the fraction of star-forming galaxies increases to ~ 60%, followed by the moderate-to-high radiative luminosity AGN (~ 20%), and low-to-moderate radiative luminosity (~ 20%). Based on this observational evidence, we extrapolate the fractions down to sensitivities of the Square Kilometer Array (SKA). Our estimates suggest that at the faint flux limits to be reached by the (Wide, Deep, and UltraDeep) SKA1 surveys, a selection based only on radio flux limits can provide a simple tool to efficiently identify samples highly (≥ 75%) dominated by star-forming galaxies.

Key words. Surveys; galaxies: general, active; separation: general; radio continuum: galaxies; X-rays: galaxies: AGN

1 Introduction

Understanding how galaxies form in the early universe and their subsequent evolution through cosmic time is a major goal of modern astrophysics. Panchromatic look-back sky surveys significantly advanced the field in the past decade, demonstrating that a multi-wavelength X-ray to radio approach is key for such studies. With the major upgrade of existing and the onset of new radio facilities, such as the Karl G. Jansky Very Large Array (VLA), Australia Telescope Compact Array (ATCA) and Atacama Large Millimeter/submillimeter Array (ALMA), delivering now an order of magnitude increase in sensitivity, radio-astronomy has entered its ‘golden age’, and has moved towards the forefront of multi-wavelength research (see Padovani 2016 for a recent review). In this context, the Cosmic Evolution Survey (COSMOS; Scoville et al. 2007)1 contains one of the richest multi-wavelength (X-ray to radio) data-sets, optimum for the exploration of galaxy evolution.

The COSMOS field has been observed with the VLA at 1.4 GHz (rms ~ 10 − 15 μJy/beam; Schinnerer et al. 2004, 2007, 2010), and at 3 GHz with the upgraded system to substantially better sensitivity (rms ~ 2.3 μJy/beam), yielding about four times more radio sources compared to the 1.4 GHz data (Smolčić et al., accepted). This makes the

1 http://cosmos.astro.caltech.edu/
VLA-COSMOS 3 GHz Large Project to-date the deepest radio continuum survey over a relatively large field. Combined with the rich COSMOS multi-wavelength data it, thus, yields a unique data-set to test the composition (i.e., fractions of various galaxy types) of the faintest radio source populations that can currently be probed, and it allows us to use these findings to make predictions for the populations to be detected by future surveys, such as those planned with the Square Kilometre Array (SKA), and its precursors (Prandoni & Seymour 2015).

Past research has shown that radio-detected galaxy populations are dominated by two populations: star-forming and AGN galaxies (e.g., Miley 1980, Condon 1992). The observed radio emission is dominated in both galaxy types by synchrotron radiation (at GHz wavelengths), arising either from supernovae remnants (thus tracing star-formation in galaxies) or near supermassive black holes, by ejection of relativistic jets of plasma (Burbridge 1956; Sadler et al. 1989; Condon 1992). Furthermore, AGN detected in the radio band have been found to separate into two, physically distinct populations. These can be classified via the host galaxies’ optical spectroscopic emission line properties as high- and low-excitation radio AGN (e.g., Hine & Longair 1979; Hardcastle et al. 2006, 2007; Allen et al. 2006; Smolčić 2009; Heckman & Best 2014; Smolčić et al. 2015). The hosts of local high-excitation radio AGN are shown to have green optical colours (e.g., Smolčić 2009). These types of objects can also be identified as AGN in X-ray and/or mid-infrared (MIR) wavelengths (e.g., Hardcastle et al. 2013), and they fit into the classical unified model of AGN, where the central supermassive black hole is thought to be accreting radiatively efficiently from a geometrically thin, but optically thick accretion disk, encompassed by a dusty torus (Shakura & Sunyaev 1973). Low-excitation radio AGN are found to be hosted by massive, red, quiescent galaxies, and identifiable only in the radio band (see Hine & Longair 1979; Laing et al. 1994; Smolčić 2009). They do not display properties of a classical, unified-model AGN as they are thought to be accreting radiatively inefficiently, possibly through advection dominated accretion flows, associated with auffed-up, geometrically thick, but optically thin accretion structure (e.g., Heckman & Best 2014). Since their radio emission far exceeds the level expected from the star forming activity in the host galaxy, they are also often referred to as radio-loud or radio-excess objects (e.g., Condon 1992; Bonzini et al. 2013; Padovani et al. 2015; Delvecchio et al., accepted.).

Identifying the above mentioned galaxy types poses a challenge for radio continuum surveys as i) multi-wavelength (X-ray to FIR) photometric and/or optical spectroscopic data is required for the identification, and ii) the multi-wavelength signatures of star-formation and AGN activity may not be in one-to-one correlation with those in the radio band, reflecting a composite nature of galaxies. Largely for these reasons, the cause of the upturn in the observed (Euclidean-normalized) radio counts at ∼ 1 mJy was long debated in the literature (e.g., Georgakakis et al. 1999; Gruppioni et al. 1999; Jarvis & Rawlings 2004; Cowie et al. 2004; Huynh et al. 2005; Afonso et al. 2005; Simpson et al. 2006). Although the popular interpretation for years was that star forming galaxies dominated the submilliJansky radio population, Gruppioni et al. (1999), studying a sample of 68 faint radio sources (S > 0.2 mJy) in the Marano Field concluded that star forming galaxies do not constitute the main population, as even at sub-mJy level the majority of their radio sources were identified with early-type galaxies. Using a robust classification of ~65% of the 1.4 GHz VLA-COSMOS radio sources Smolčić et al. (2009) found a fairly constant fraction (~30-40%) of star forming galaxies in the flux density range between ~50 µJy and 0.7 mJy. In a more recent study, Padovani et al. (2015) used a sample of 680 radio sources detected at 1.4 GHz in the Extended Chandra Deep Field South (ECDFS). They show that AGN and star forming galaxies are approximately equally numerous between 32 µJy and 1 mJy, with star forming galaxies becoming the dominant population only below ~100 µJy at 1.4 GHz. This is qualitatively consistent with the Square Kilometre Array Design Study (SKADS) semi-empirical simulation of the radio source counts predicting that star forming galaxies will only start to dominate the counts at 1.4 GHz fluxes below 100 µJy (Wilman et al. 2008).

Given the onset of the upcoming, revolutionary radio facilities such as the Square Kilometre Array (SKA)2 (Norris et al. 2013; Prandoni & Seymour 2015) and the Next Generation Very Large Array (ngVLA)3 (Hughes et al. 2015), to be operational at the same time as the The Large Synoptic Survey Telescope (LSST)4 and Euclid5, it becomes even more important i) to study the composition of the radio source population as a function of radio flux density, probing the to-date faintest achievable flux limits over significant areas, and accounting for the possibility of a composite nature of galaxies (containing both AGN and star-formation activity), and ii) to make predictions applicable to the future radio surveys, facilitating the identification of the various galaxy populations within these surveys. The COSMOS project (Scoville et al. 2007) is optimal for such research as it is currently one of the most advanced panchromatic surveys covering a 2 square degree area and sampling galaxies and AGN out to high (z ≤ 6) redshift. It incorporates one of the deepest radio datasets ever obtained with the VLA at 3 GHz detecting 10,830 sources down to ∼ 11.5 µJy (∼ 5σ at an angular resolution of 0.75′′; Smolčić et al., accepted). Here we combine these radio data with the COSMOS X-ray to FIR multi-wavelength datasets to search for counterparts of the radio sources, and analyze the composition of the faint, microJansky radio population, extrapolating this down to the flux limits that will be achieved with the SKA in Phase 1 (SKA1; Prandoni & Seymour 2015).

In Section 2 we describe the datasets used in the analysis. Section 3 summarizes the method of association of multiwavelength, optical-MIR counterparts to our radio sources (the details of which are given in Appendix A). In Section 4 we introduce the X-ray counterparts to our radio sources. In Section 5 we analyze the redshifts of the counterparts. In Section 6 we present a multi-wavelength assessment of the galaxy populations present within our radio source sample. In Sec. 7 we present the counterpart, and source population catalog released. The composition of the microJansky radio source counts in the context of different galaxy populations, and emitting-mechanisms in the radio are discussed in Section 8. We summarize in Sec. 9. Throughout this paper, magnitudes are given in the AB system, coordinates in the J2000 epoch, and we use the following cosmological parameters, ΩM = 0.3, ΩΛ = 0.7 and H0 = 70 km s−1 Mpc−1.

We define the radio spectral index, α, via Sν ∝ να, where Sν is the flux density at frequency ν. A Chabrier (2003) initial mass function (IMF) is used.

---

1 http://www.skatelescope.org
2 https://science.nrao.edu/futures/ngvla
3 https://www.lsst.org/
4 5 www.euclid-ec.org
2. Data

In this section we describe the multi-wavelength data used in the analysis.

2.1. Radio data

The VLA-COSMOS 3 GHz Large Project entails 384 hours of observations with the VLA in S-band (centered at 3 GHz with 2,048 MHz bandwidth) over a total area of 2.6 square degrees (see Smolčić et al., accepted, for details). The observing layout was such that a uniform \( \sigma \) rms, with a median \(\sigma \) rms \(\sim 2.3 \, \mu \text{Jy/beam} \) (at a resolution of 0.75\( '' \)), was reached over the inner 2 square degrees coincident with the (Subaru Suprime Cam) COSMOS field (see Fig. 1). Over the full 2.6 square degrees the survey yielded a total of 10,830 cataloged sources. Of these, 67 were found to be multi-component sources, i.e., objects that are composed of two or more detected radio components, completely separated from each other, but belonging to the same source (see Smolčić et al., accepted; Vardoulaki et al., in prep.). The combination of the multiple components into one reported source was performed by visual inspection using the auxiliary multi-wavelength data available in the COSMOS field (see Smolčić et al., accepted). These sources are mainly radio galaxies with resolved core/jet/lobe structures (see Fig. 7 in Smolčić et al., accepted), but can also be star-forming galaxies where the radio emission follows the disk morphology. The remaining 10,763 detected sources are referred to as single-component sources.

Prior to the VLA-COSMOS 3 GHz Large Project, the field was observed with the VLA at 1.4 GHz frequency within the VLA-COSMOS 1.4 GHz Pilot, Large and Deep Projects (Schinnerer et al. 2004, 2007, 2010). Within the 1.4 GHz Large Project a uniform \( \sigma \) rms of 10-15 \( \mu \text{Jy/beam} \) was reached over a resolution element of 1.5\( '' \), across the 2 square degree field. The Deep Project added further observations towards the inner square degree, yielding an \( \sigma \) rms of 12 \( \mu \text{Jy/beam} \) over a resolution elements of 2.5\( '' \). A Joint catalog was generated combining the sources detected at \( \geq 5\sigma \) at 1.5\( '' \) and/or 2.5\( '' \) resolution in the Large and/or Deep Projects, and lists a total of 2,864 sources (Schinnerer et al. 2010). Matching the 3 GHz catalog with the Joint 1.4 GHz catalog using a radius of 1.3\( '' \) (corresponding to approximately half the synthesized beam size at 1.4 GHz) yields 2,530 matches (see Smolčić et al., accepted). Hence, for 2,530 out of 10,830 sources in the 3 GHz catalog a spectral index can be calculated based on the two frequencies. For the remainder of the sources a spectral index of -0.7 is assumed, consistent with the average value derived for the full 3 GHz population taking into account also limits of the spectral indices for sources detected at 3 GHz, but not detected at 1.4 GHz (for more details see Sec. 4.2., and Fig. 14 in Smolčić et al., accepted).

2.2. Near-ultraviolet – mid-infrared data and photometric redshifts

To complement our dataset with optical, near-infrared (NIR) and mid-infrared (MIR) wavelengths we use i) the latest photometry and photometric redshift catalogs (COSMOS2015 hereafter) (Laigle et al. 2016), ii) the \( i \)-band selected catalog (version 1.8, Capak et al. 2007), iii) the Spitzer - COSMOS (S-COSMOS) InfraRed Array Camera\(^6\) 3.6 \( \mu \text{m} \) selected catalog (IRAC hereafter) (Sanders et al. 2007).

The COSMOS2015 catalog lists optical and NIR photometry in over 30 bands for 1,182,108 sources identified either in the \( z^{++} YJHK_{S} \) stacked detection image (within the area encompassed by the Ultra Deep Survey with the VISTA telescope, UltraVISTA, where \( YJHK_{S} \) are taken from UltraVISTA DR2\(^7\)), or the \( z^{++} \) band, outside the UltraVISTA footprint (see Fig. 1). The total area covered by the catalog used is \( \sim 2.3 \) square degrees, which reduces to an effective area of 1.77 square degrees if masked regions are excluded. The cataloged fluxes were extracted as described in detail by Laigle et al. (2016), using \textit{SExtractor} on the positions of the sources detected in the stacked images separately for 2\( '' \), and 3\( '' \) diameter apertures, and corrections to total magnitudes are given for each source, as well as corrections for galactic dust extinction from Schlegel et al. (1998). The point spread functions (PSFs) were homogenized in the optical/NIR maps to a resolution of \( \theta \sim 0.8'' \) prior to extraction of the COSMOS2015 catalog. The 3\( '' \) limits for 2\( '' \) (3\( '' \)) diameter apertures are 25.9 (26.4) for \( z^{++} \), and 24.8 (25.3), 24.7 (25.2), 24.3 (24.9), 24.0 (24.5) for the \( Y, J, H, K_{S} \) Deep bands, respectively (see Tab. 1 and Figs. 6, 7).

\(^6\) https://www.cfa.harvard.edu/irac/
\(^7\) The observations of the COSMOS field in \( z \) -band were performed with Subaru Suprime-Cam (Taniguchi et al. 2007, 2015). The initial COSMOS z-band (\( z \)) data are superseded by deeper \( z \)-band observations obtained with upgraded CCDs and a different filter (\( z^{++} \)). Data in \( YJHK_{S} \) bands refers to that obtained by the Ultra Deep Survey with the VISTA telescope (see also Laigle et al. 2016).

\(^8\) http://www.eso.org/sci/observing/phase3/data_releases/uvista_dr2.pdf
1-3 in Laigle et al. 2016 for more details). The above mentioned procedure was also used to extract the four IRAC band photometry, where particular care was taken to properly deblend the IRAC photometry using IRACLEAN (see Laigle et al. 2016 for details). We note that the IRAC channel 1 and 2 data were drawn from the SPLASH survey (PI: P. Capak), while channel 3 and 4 were taken from the S-COSMOS survey (see also below). The 3σ depth for 3′′ apertures in IRAC channel 1, 2, 3 and 4 is 25.5, 25.5, 23.0 and 22.9 (mAB, respectively. In addition, this dataset also contains 24 μm photometry from (Le Floc’h et al. 2009) from the Multi-Band Imaging Photometer for Spitzer (MIPS) down to a magnitude limit of 19.45. Laigle et al. (2016) have computed photometric redshifts for the sources listed in the COSMOS2015 catalog using LEPHARE (see also Ilbert et al. 2009 and Ilbert et al. 2013). They report a photometric redshift accuracy\(^9\) within the UltraVISTA-COSMOS area of \(\sigma_{z_{\text{spec}}/(z_{\text{phot}})} = 0.01\) for 22 \(< i^* < 23\), and \(\sigma_{z_{\text{spec}}/(z_{\text{phot}})} < 0.034\) for 24 \(< i^* < 25\) based on comparison with a spectroscopic redshift sample in the COSMOS field (cf. Table 4 in Laigle et al. 2016).

We also use the i-band selected COSMOS photometric catalog version 1.8 (initially described in Capak et al. 2007). This catalog contains 2,017,800 i-band selected sources, and 15 photometric bands ranging from 0.3 μm to 2.4 μm, measured in 3′′ diameter apertures. The total area covered is ~ 3.1 square degrees. The 5σ depth in a 3′′ aperture is \(i^*_{5\sigma} < 26.2\). The catalog has been cross-matched with MIPS 24 μm data from (Le Floc’h et al. 2009), and also contains photometric redshifts derived by Ilbert et al. (2009) using LEPHARE with an accuracy similar to that reached for the COSMOS2015 sources. The PSF-homogenized images have a resolution of \(\theta = 0.8\), as in the COSMOS2015 catalog. In comparison to the i-band selected COSMOS catalog (Capak et al. 2007) within the 1.5 square degree area of the COSMOS field covered by UltraVISTA, Laigle et al. (2016) show that 96.5% (83.9%) of sources brighter than Subaru \(i^* = 25.5\) (26.1) are detected also in the COSMOS2015 catalog. Thus, given that some of the i-band selected sources are not recovered in the COSMOS2015 catalog, we here also make use of the i-band selected COSMOS catalog.

Additionally, we use the Spitzer IRAC catalog (Sanders et al. 2007) of 345,512 sources detected (\(\geq 1\) μJy) at 3.6 μm, over an area of ~ 2.8 square degrees. The catalog includes photometry in the 4 IRAC channels at 3.6, 4.5, 5.6, and 8.0 μm, for sources detected in the 3.6 μm image. Their respective 3σ depths are 24.6, 23.8, 21.8, 21.6. For each channel, fluxes extracted within four apertures are given. We use the 1″9 aperture photometry given in the catalog. The 3.6 μm image resolution is \(\theta = 1′166\)°.

The combined use of the three catalogs increases the likelihood of finding counterparts to radio sources, especially those (either very blue or very red) counterparts whose spectral energy distribution makes them undetectable in the stacked \(z^*\)YJKs map of COSMOS2015 but that are detected in the i-band or IRAC. Furthermore, highly obscured and/or high redshift sources might be detectable only in the 3.6 μm IRAC band.

2.3. Far-infrared and (sub-)millimetre photometry

To derive accurate estimates of the star-formation rate (SFR) of each radio source, we use far-infrared photometry from the Herschel Space Observatory, that encompasses the full 2 square degrees of the COSMOS field. Herschel imaging is taken from the Photoconductor Array Camera and Spectrometer (PACS, 100 and 160 μm, Poglitsch et al. 2010) and Spectral and Photometric Imaging Receiver (SPIRE, 250, 350, and 500 μm, Griffin et al. 2010), which are part of the PACS Evolutionary Probe (PEP, Lutz et al. 2011) and the Herschel Multi-tiered Extragalactic Survey (HERMES, Oliver et al. 2012) projects. The COSMOS2015 catalog (Laigle et al. 2016) reports the de-blended Herschel fluxes extracted by using 24 μm positions as priors (from Le Floc’h et al. 2009), and unambiguously associated to the corresponding optical/NIR counterpart via 24 μm IDs reported in both catalogs. A similar association technique is applied to assign Herschel counterparts to i-band selected sources (Capak et al. 2007).

In addition to far-infrared data, we retrieve also the available (sub-)millimetre photometry from at least one of the observational campaigns conducted over the COSMOS field: JCMT/SCUBA-2 at 450 and 850 μm (Casey et al. 2013), LABOCA at 870 μm (F. Navarrete et al. priv. Comm.), Bolocam (PI: J. Aguirre), JCMT/AzTEC (Scott et al. 2008) and ASTR/AzTEC (Aretxaga et al. 2011) at 1.1 mm, MMBO at 1.2 mm (Bertoldi et al. 2007), and interferometric observations at 1.3 mm with PdBI (Moliné et al. 2012; Miettinen et al. 2015) and ALMA (PI: M. Aravena, M. Aravena et al. in prep.).

2.4. X-ray data

We use the most recent COSMOS X-ray catalog of point sources (Marchesi et al. 2016), drawn from the Chandra COSMOS-Legacy survey (Civano et al. 2016). The Chandra COSMOS-Legacy survey combines the Chandra COSMOS (Elvis et al. 2009) data with the new Chandra ACIS-I data (2.8 Ms observing time) resulting in a total exposure time of 4.6 Ms over 2.15 deg\(^2\) area, reaching (at best) a limiting depth of \(2.2\times10^{-16}\) erg s\(^{-1}\) cm\(^{-2}\) at [0.5 - 2] keV, \(1.5\times10^{-15}\) erg s\(^{-1}\) cm\(^{-2}\) at [2 - 10] keV, and \(8.9\times10^{-16}\) erg s\(^{-1}\) cm\(^{-2}\) at [0.5 - 10] keV (Civano et al. 2016). The X-ray observations cover the central 1.5 square degrees of the COSMOS field, with an average effective exposure time of 160 ks, while in the outer regions it reduces down to 80 ks. The catalog contains 4,016 X-ray point sources in the Chandra COSMOS-Legacy survey, out of which 3,877 have optical–MIR counterparts, matched using the likelihood ratio technique (Marchesi et al. 2016). The counterparts were searched for in three different bands. The i-band (760 nm) was taken from Subaru where the data was unsaturated (\(i_{AB} > 20\), Capak et al. 2007), and CFHT and SDSS otherwise. Matching was also done with the Spitzer IRAC catalog (Sanders et al. 2007), and the SPLASH IRAC magnitudes from Laigle et al. (2016), in which the photometry was extracted at positions with a detection in the \(z^*\)YJKs stacked image, as described in more detail in the previous Section. The catalog lists X-ray fluxes, and intrinsic (i.e. unobscured) X-ray luminosities in the full [0.5 - 10] keV, soft [0.5 - 2] keV, and hard [2 - 10] keV X-ray bands. Later on, X-ray fluxes and luminosities will be given up to 8 keV, by assuming a simple power-law spectrum with photon index \(\Gamma = 1.4\) (Marchesi et al. 2016). Also, spectroscopic or photometric redshifts of the X-ray sources are available in the catalog (see Civano et al. 2016).

\(9\) Normalized median absolute deviation (Hoaglin et al. 1983) defined as 1.48 times the median value of |\(z_{\text{spec}} - z_{\text{phot}}|/(1 + z_{\text{spec}})\).
2.5. Spectroscopic redshifts

We use the most up-to-date spectroscopic redshift catalog available to the COSMOS team (see Salvato et al. in prep.). It contains 97,102 sources with spectroscopic redshifts. The catalog has been compiled from a number of spectroscopic surveys of the COSMOS field, including SDSS (DR12), zCOSMOS (Lilly et al. 2007, 2009), VIMOS Ultra Deep Survey (VUDS) (Le Fèvre et al. 2015), MOSDEF (Kriek et al. 2015), and DEIMOS (see Salvato et al. in prep.).

3. Optical-MIR counterparts

In this section we describe the cross-correlation of our radio sources with optical (i-band-selected), NIR (z′′+−, or z′+Y JHKs)-stack-selected, COSMOS2015, and MIR (3.6 μm-selected, IRAC) sources. We here report the numbers of optical-MIR counterparts associated to our radio sources within the same unmasked area of 1.77 deg² (see Fig. 1), while in Appendix B we present the full counterpart catalog that includes also sources outside the 1.77 deg² area. We separately associate the multi-component and single-component radio sources with their optical-MIR counterparts, as detailed in Secs. 3.1, and 3.2, respectively. We present an assessment of the optical-MIR counterparts of our radio sources in Sec. 3.3.

3.1. Counterparts of multi-component radio sources

Out of the 67 multi-component radio sources identified in our 3 GHz radio catalog, 48 lie within the optical-MIR unmasked area of 1.77 deg². By visual inspection we find a match for all 48 sources in the COSMOS2015 catalog, accounting for the full sample of multi-component radio sources (see Table 1).

3.2. Counterparts of single-component radio sources

The optical-MIR counterpart assignment to our single-component 3 GHz radio sources is described in detail in Appendix A, and here we only present a brief overview. We base the counterpart association on nearest neighbor matching, accounting for a false match probability ($p_{\text{false}}$) for each match. The counterpart association proceeded as follows.

First, prior to the positional matching of our 3 GHz sources separately to the sources from the COSMOS2015 (Laigle et al. 2016), i-band (Capak et al. 2007), and IRAC (Sanders et al. 2007) catalogs the astrometry in each multi-wavelength catalog was corrected for observed small systematic offsets, relative to the radio positions (see Appendix A.1). Second, a positional matching of the 3 GHz radio sources was performed with the sources in the unmasked areas of each of the COSMOS2015, i-band and IRAC catalogs out to a search radius of 0′′8 (COSMOS2015/i-band), or 1′′7 (IRAC). Third, a false match probability was assigned to every counterpart match based on Monte Carlo simulations. For the simulations we matched sources from mock catalogs that realistically reflect the magnitude, and separation distributions expected for the counterparts of our radio sources (see Appendix A.2 for details). These steps led to three counterpart candidate catalogs, each, respectively, containing the 3 GHz sources matched to sources from the 1) COSMOS2015 (see Appendix A.3), 2) i-band (see Appendix A.4), 3) IRAC catalogs (see Appendix A.5), and with a false match probability computed for each match. In the fourth, final step, only one, final counterpart of a given 3 GHz source is selected from the three catalogs following a hierarchical line of reasoning, setting first, second, and third priority to the COSMOS2015, i-band and IRAC matches, respectively. The hierarchical choice was based on a combination of criteria, such as best resolution (and therefore more precise positions), and the availability of accurate photometric redshifts, computed using the to-date best available, i.e., deepest photometry.

In this last step, we associate to the 3 GHz single-component sources counterparts from the COSMOS2015 catalog if they are present within 0′′8 and have $p_{\text{false}} \leq 20\%$, or if they have $p_{\text{false}} > 20\%$, but coincide with a reliable ($p_{\text{false}} \leq 20\%$) counterpart candidate from either of the other two catalogs (in total, 7,681 COSMOS2015 counterparts, 57 of which belong to the second category). We associate i-band counterparts if they are within 0′′8 and have $p_{\text{false}} \leq 20\%$ and do not coincide with a COSMOS2015 counterpart candidate, or if they have $p_{\text{false}} > 20\%$, but coincide with a reliable ($p_{\text{false}} \leq 20\%$) counterpart candidate from the IRAC catalog (in total, 97 i-band counterparts, 39 of which belong to the second category). Otherwise, we associate IRAC counterparts (209 IRAC counterparts, in total). Additionally, we note that we do not allow the same multi-wavelength counterpart being associated to different 3 GHz sources following the same reasoning approach.

<table>
<thead>
<tr>
<th>Counterpart catalog</th>
<th>Total</th>
<th>Multi-component</th>
<th>X-ray</th>
</tr>
</thead>
<tbody>
<tr>
<td>COSMOS2015</td>
<td>7,729</td>
<td>48</td>
<td>906</td>
</tr>
<tr>
<td>i-band</td>
<td>97</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>IRAC</td>
<td>209</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>Combined</td>
<td>8,035</td>
<td>48</td>
<td>927</td>
</tr>
</tbody>
</table>

Table 1. Summary of the cross-correlation of the VLA-COSMOS 3 GHz Large Project sources with sources in the multi-wavelength catalogs. The last line reports the combined number of COSMOS2015, i-band, and IRAC counterparts selected in the common unmasked area of 1.77 square degrees.
3.3. Assessment of optical-MIR counterparts

The final counterparts assigned to both our multi- and single-component 3 GHz radio sources are summarized in Tab. 1. Overall, 7,729\textsuperscript{10}, 97\textsuperscript{11}, and 209\textsuperscript{12} 3 GHz sources are associated with COSMOS2015, i-band, and IRAC counterparts, respectively. In total, we find 8,035 counterparts for our radio sources. Summing the computed false match probabilities we estimate a total fraction of spurious matches of \( \sim 2\% \). Since our identification procedure is based on ground-based catalogs, it is likely that this "formal" fraction should be considered as a lower limit because of the limited spatial resolution of these data used in these catalogs. The number of radio sources within the unmasked 1.77 deg\(^2\) area is 8,696, which yields an overall counterpart fraction of 92.4\% (i.e. 8,035 / 8,696).

In Fig. 2 we show the 3 GHz S/N-ratio distribution for all the 8,696 and the matched 8,035 radio sources. The fraction of identifications is greater than \( \sim 90\% \) for radio sources with signal-to-noise ratio \( \geq 6 \), below which it decreases to \( \sim 80\% \) at signal-to-noise ratio of 5. Such a trend is not surprising as the estimated fraction of spurious radio detections increases at the lowest signal-to-noise ratios (the fraction of false detections is 24\% for signal-to-noise ratios between 5.0 and 5.1, which decreases to less than 3\% beyond signal-to-noise ratios of 5.5.; see Fig. 17 in Smolčić et al., accepted).

4. X-ray counterparts

We used the X-ray point-source catalog from Marchesi et al. (2016) (described in detail in Section 2) to match the X-ray and radio sources. Marchesi et al. (2016) list the IDs of the COSMOS2015 and i-band counterparts of X-ray sources. Thus, after associating our radio sources with counterparts from the COSMOS2015 and the i-band selected catalog, we match their respective IDs to those given in the X-ray catalog. The radio sources with IRAC counterparts were cross-matched to the X-ray catalog via a nearest neighbour matching between IRAC positions listed in both catalogs, but using a search radius of 0′′1 to account for machine rounding error. In total, we find 927 X-ray counterparts to our radio sources with COSMOS2015 (906), i-band (5) or IRAC (16) counterparts.

For X-ray sources with redshift values given in the catalog from Marchesi et al. (2016), we use the intrinsic (i.e. unobscured) X-ray luminosities already provided in the catalog. In case an X-ray source does not have a spectroscopic or photometric redshift available in the Marchesi et al. (2016) catalog (about 10 in total entering our sample), we assign it a redshift by taking the most reliable spectroscopic or photometric measurement available in the literature, as described in Section 5. The corresponding X-ray luminosity \( L_x \) is calculated by following the same approach detailed in Marchesi et al. (2016), which uses the hardness ratio as a proxy for nuclear obscuration (see also Xue et al. 2010). The unobscured \( L_x \) estimates were then scaled from [0.5-10]keV to [0.5-8] keV by assuming a power-law spectrum with intrinsic slope \( \Gamma=1.8 \) (e.g. Tozzi et al. 2006).

5. Redshifts of VLA 3 GHz source counterparts

We gathered redshift measurements of the radio source counterparts by taking the most reliable redshift available in the literature, either spectroscopic or photometric, as described in Delvecchio et al. (accepted) for the COSMOS2015 counterparts (see their Section 2.3), but here extended to the full list of radio source counterparts.

For the COSMOS2015 and i-band counterparts not detected in X-ray, the photometric redshifts were taken from their respective catalogs. They were derived using the LEPHARE SED-fitting code (Arnouts et al. 1999; Ilbert et al. 2006), as described in Ilbert et al. (2009, 2013). Photometric redshift estimates for IRAC counterparts have been found by cross-matching to COSMOS2015 or i-band sources within the respective masked regions. For X-ray detected sources, we used a different set of photometric redshifts from Salvato et al. (in prep.), which were obtained via SED-fitting including AGN variability and AGN templates (Salvato et al. 2009, 2011), thus these estimates are more suitable for AGN-dominated sources.

For each counterpart reported in the spectroscopic sample compiled by Salvato et al. (in prep.), we replace the photometric redshift with the spectroscopic one, only if the spectroscopic measurement is considered “secure” or “very secure”\textsuperscript{13}. Additional 28 spectroscopic redshifts were taken from the VIMOS Ultra Deep Survey (VUDS, Le Fèvre et al. 2015; Tasca et al. 2016). For X-ray detections, in addition to the above criteria, we adopted the best available redshift reported in Marchesi et al. (2016).

In total, we retrieved a redshift value for 7,778 out of 8,035 sources (\( \sim 98\% \) of our sample), being 2,740 (\( \sim 34\% \)) spectroscopic and 5,123 (\( \sim 64\% \)) photometric. All of the 124 out of 8,035 (\( \sim 2\% \)) sources with no redshift measurement were associated to an IRAC-only counterpart. The mean redshift for the remaining IRAC sources is similar to the mean values of the counterparts in the COSMOS2015 and i-band catalogs (\( z \sim 1.3 \)). The counterpart redshift distribution is shown in Fig. 3. We also verified the accuracy of the photometric redshifts in our sample, based on the comparison with the available spectroscopic measurements. We found a dispersion of the \( |\Delta z/(1+z)| \) distribution of \( \sigma_{|\Delta z/(1+z)|} = 0.01 \), peaking at 0.002 (see also Laigle et al. 2016).

Having assigned redshifts to the counterparts of our 3 GHz sources, we now assess the potential incompleteness of the COSMOS2015 catalog, cross-correlated with the 3 GHz radio source catalog (c.f., Fig. 8 in Laigle et al. 2016). In Fig. 4 we show the fractional contribution of the i-band counterparts to the total (COSMOS2015 and i-band) counterpart sample. We find that the incompleteness (i.e. the largest fraction of i-band-only counterparts) rises with increasing redshift from \( z \geq 1\% \) at \( z < 2 \) to \( \sim 8\% \) close to \( z = 5 \).

6. Galaxy populations

In this Section we characterize the galaxy populations present in our 3 GHz survey. Our aim is to assess the multi-wavelength properties of our 3 GHz sources, such that various characteristics can be combined to select AGN/star-forming galaxy samples depending on the scientific application, for example, to select either i) conservative/cleaned AGN or star-forming galaxy samples, or

\textsuperscript{13} The reliability of each spectroscopic redshift relies on the corresponding quality flag. In case of spectroscopic redshift from the zCOSMOS survey (Lilly et al. 2007, 2009), we followed the prescription recommended in the zCOSMOS IRSA webpage: https://irsasa.ipac.caltech.edu/data/COSMOS/spectra/z-cosmos/ZCOSMOS_INFO.html. For the other surveys we selected spectroscopic redshifts with quality flag \( Q_f \geq 3 \) and discarded less reliable measurements from our analysis.
6.1. X-ray to FIR signatures of AGN and star formation activity

6.1.1. X-ray-, MIR-, and SED-selected AGN

Physical processes present in AGN imprint their signature onto the emitted radiation. Powerful X-ray emission from radio sources has been found to originate in a radiatively efficient mode of accretion onto the central black hole (e.g., Evans et al. 2006). These AGN may also be identified via emission from a warm dusty torus around the central black hole, detectable in the MIR (Donley et al. 2012). Thus, we identify X-ray AGN as those with a [0.5-8] keV X-ray luminosity higher than $10^{42}$ erg s$^{-1}$. MIR AGN using IRAC color-color criteria, as well as those that show AGN signatures in the multi-wavelength SED fitting decomposition to disentangle the AGN emission from the host-galaxy light. Below we summarize the selection, and refer to Delvecchio et al. (accepted) for a detailed analysis of the physical properties of such selected AGN across cosmic time.

To select X-ray AGN, we have chosen a limit in intrinsic [0.5-8] keV (i.e. unobscured) X-ray luminosity of $L_X = 10^{42}$ erg s$^{-1}$ (e.g. Szokoly et al. 2004). We verified that the X-ray emission expected from the IR-based SFR (obtained from SED-fitting; see below) is generally negligible (i.e. a few %) compared to the observed X-ray emission, by assuming a canonical $L_X$–SFR conversion by Symeonidis et al. (2014). This is always true for X-ray sources with $L_X \geq 10^{42}$ erg s$^{-1}$. For this reason, we consider all sources in our sample with $L_X$ above that limit to be AGN. From our sample of 7,826 radio sources with COSMOS2015 or i-band counterparts, 859 (~11%) are selected as X-ray AGN. While all the sources with an X-ray luminosity higher than the adopted threshold are likely to be AGN, we can not exclude that AGN are present also in the sample of X-ray sources with an X-ray luminosity lower than the threshold. Indeed, out of the X-ray sources with $L_X < 10^{42}$ erg s$^{-1}$, 33% have been already classified as AGN using other criteria (described below). We note that given the typical X-ray flux in the COSMOS field, this X-ray selection of AGN is progressively missing faint AGN at high redshift, where the X-ray limiting luminosity is higher than $10^{42}$ erg s$^{-1}$ (see, for example, Fig. 8 in Marchesi et al. 2016).

To complement the X-ray selection criterion, we have adopted the MIR selection method of Donley et al. (2012). It allows for a reliable selection of sources that contain a warm dusty torus consistent with those in standard, thin-disk AGN (Shakura & Sunyaev 1973), and although reliable, it is not complete. This classification relies on the four IRAC bands at 3.6, 4.5, 5.8 and 8 µm. Dusty tori of AGN are found within a wedge in that diagram, but also imprint a monotonic rise of flux through the four mid-infrared bands. Sources found displaying these characteristics were recognized as MIR AGN. Although 229 (~27%) of the sources classified as X-ray AGN also satisfy the MIR AGN criteria, 237 sources in our total sample of COSMOS2015 and i-band counterparts fit the MIR AGN criterion, while not satisfying the X-ray criterion. Thus, the MIR AGN selection can be considered complementary to the X-ray AGN selection method (see also Delvecchio et al., accepted). In total, we find 466 MIR AGN in our sample of 7,826 3 GHz sources matched with COSMOS2015 or i-band counterparts.
Lastly, we fit the optical to millimetre SED\(^{14}\) of each radio source to identify possible evidence of AGN activity on the basis of a panchromatic SED-fitting analysis (originally developed by da Cunha et al. 2008, and expanded by Berta et al. 2013). We adopt the fitting results already performed for the COSMOS2015 counterparts by Delvecchio et al. (accepted), and use the same approach to fit the SEDs of the i-band counterparts. The 3-component SED fitting code SED3FIT by Berta et al. (2013)\(^{15}\) is used to disentangle the possible AGN contribution from the host-galaxy light. This approach combines the emission from stars, dust heated by star formation and a possible AGN/torus component (Feltre et al. 2012, see also Fritz et al. 2006). The dust-absorbed UV-optical stellar light is linked to the reprocessed far-IR dust emission by energy balance. To quantify the relative incidence of a possible AGN component, we followed the approach described in Delvecchio et al. (2014), by fitting each source SED with both the MAGPHYS code and the 3-component SED-fitting code. The fit obtained with the AGN is preferred if the reduced \(\chi^2\) value of the best-fit is significantly (at \(\geq 99\%\) confidence level, on the basis of a Fisher test) smaller than that obtained from the fit without the AGN. We find 1,178 COSMOS2015 or i-band counterparts fulfilling this criterion (out of these 669 are also identified as X-ray or MIR-AGN; see Fig. 2 in Delvecchio et al., accepted), which hereafter will be referred to as SED-AGN. In summary, combining X-ray-, MIR-, and SED-selected AGN we identify a total of 1,623 AGN.

6.1.2. Optically-selected AGN and star forming galaxies

Having exploited the X-ray, MIR-, and SED-based AGN selection criteria (see Sect. 6.1.1), we next use a UV/optical color-based separation method developed by Ilbert et al. (2010) to derive the composition of the remaining galaxy population. This method separates sources based on the rest-frame near ultraviolet (NUV) minus r-band colors corrected for internal dust extinction (\(M_{\text{NUV}} - M_r\)). In the work of Ilbert et al. (2010), sources are considered quiescent if \(M_{\text{NUV}} - M_r > 3.5\), of intermediate (star formation) activity if \(1.2 < M_{\text{NUV}} - M_r < 3.5\), and of high (star formation) activity if \(M_{\text{NUV}} - M_r < 1.2\). Ilbert et al. (2010) have verified these color selection criteria via a comparison with other color-selections, morphology, and specific star formation rates of their galaxies (see Figs. 4, 5, 6, and 9 in Ilbert et al. 2010). Following this selection here we define the ‘intermediate activity’ and ‘high activity’ galaxies as star forming galaxies (SFGs hereafter), and we also include in this class galaxies with red (\(M_{\text{NUV}} - M_r > 3.5\)) colors, when detected in the Herschel bands. The latter have properties consistent with star forming, rather than quiescent AGN galaxies (e.g., Deharveng et al., accepted). The remaining, red galaxies (not detected in the Herschel bands) are then quiescent galaxies, consistent with typical properties of radio AGN host galaxies, as verified in a number of previous studies (e.g., Best et al. 2006; Donoso et al. 2006; Sadler et al. 2014; Smolčić 2009). Thus, they can be taken as radio-detected AGN hosted by quiescent red galaxies (see also below). In total, we identify 5,410 SFGs, and 793 red, quiescent AGN hosts.

\(^{14}\) A total of 4,879 radio sources are detected within 1.77 deg\(^2\) at \(\geq 3\sigma\) in at least one Herschel band, which are associated to optical/NIR counterparts from either the COSMOS2015 catalog (4,836) or the i-band selected catalog (43). For about 100 radio sources (sub-millimetre data was also available within \(\pm 0\) of optical/NIR positions (see Sec. 2.3)).

\(^{15}\) http://cosmos.astro.caltech.edu/page/other-tools

Fig. 5. Top panel: Ratio of rest-frame 1.4 GHz radio luminosity and infrared star formation rate, \(\log (L_{1.4\text{GHz}}/\text{SFR}_{\text{IR}})\), as a function of redshift. The curve indicates the redshift-dependent threshold used to identify radio-excess sources (see text for details). Bottom: Distribution of \(\log (L_{1.4\text{GHz}}/\text{SFR}_{\text{IR}})\) for various (non-overlapping) galaxy populations as indicated in the panel. The vertical lines indicate the (bi-weighted) means of the distributions.

Fig. 6. Fraction of radio-excess sources within the various galaxy samples (indicated in the panel) as a function of total 3 GHz radio flux. Poisson errors are also shown.

6.2. Radio-excess as AGN signature in the radio band

In the previous sections we have identified AGN and star forming galaxies in our 3 GHz radio source sample, based on their multi-wavelength (X-ray to FIR) properties. We here investigate the excess of radio emission relative to the star formation rates in their host galaxies. This yields an insight into the AGN origin of the radio emission in these galaxies, which may not necessarily be in one-to-one correspondence with, e.g., AGN signatures in the X-ray or MIR bands, hence shedding light on the composite nature of the sources.

In Fig. 5 we show the distribution of \(\log (L_{1.4\text{GHz}}/\text{SFR}_{\text{IR}})\), i.e. the logarithm of the ratio of the 1.4 GHz rest-frame radio luminosity and SFR derived from the total IR emission in the host galaxies as computed via the 3-component SED fitting procedure as described above and by Delvecchio et al. (ac-
 affirming their AGN nature at radio wavelengths. The star forming galaxy sample (selected based on green, and blue optical rest-frame colors) occupies the region of the log \((L_{\text{1.4GHz}}/\text{SFR}_{\text{IR}})\) distribution expected for star forming galaxies (and consistent with no radio-excess), with a tail extending towards higher radio-excess About 16% (> 1 - 4.555/5.410) of such identified star forming galaxies exhibit a > 3σ radio-excess, which is taken as the contamination of this sample by radio-AGN identified via the > 3σ radio-excess in the log \((L_{\text{1.4GHz}}/\text{SFR}_{\text{IR}})\) plane. This contamination of the star forming galaxy sample increases towards higher flux density levels, as shown in Fig. 6, where we also show the radio-excess fractions as a function of radio flux for the red, quiescent hosts, and the combined, X-ray-, MIR-, and SED-AGN sample.

The log \((L_{\text{1.4GHz}}/\text{SFR}_{\text{IR}})\) distribution for the combined sample of X-ray-, MIR-, and SED-AGN peaks close to that of star forming galaxies, and exhibits an extended tail towards higher values. As discussed in detail in Delvecchio et al. (accepted) this suggests that a substantial amount of the radio emission in a large fraction of these AGNs arises from star-formation-, rather than AGN-related processes. However, there is also a large number of such sources with significant radio-excess (~ 30% have a > 3σ radio-excess).

\[\text{6.3. Radiative AGN luminosities}\]

We here investigate the distribution of the radiative (bolometric) luminosities for the AGN identified here. We first combine the identified AGN into two categories, those that show AGN signatures i) at other than radio wavelengths (i.e., X-ray-, MIR-, and SED-selected AGN), ii) at radio wavelengths (i.e. those hosted by red, quiescent galaxies, or showing a > 3σ radio-excess in log \((L_{\text{1.4GHz}}/\text{SFR}_{\text{IR}})\), but not selected as X-ray-, MIR-, or SED-AGN).

For each identified AGN the bolometric, radiative luminosity or its upper limit was obtained from the best fit SED template as described in detail by Delvecchio et al. (accepted). Briefly, the AGN radiative luminosity is obtained from the best-fit AGN template. However, if the AGN template does not improve (at >99% significance, based on a Fisher test) the fit to the full SED, the corresponding AGN radiative luminosity is unconstrained from SED-fitting. In this case, we report the 95th percentile of the corresponding probability distribution function, which is equivalent to an upper limit at 90% confidence level. AGN radiative luminosities derived from SED-fitting have been compared with those independently calculated from X-rays, displaying no significant systematics and a 1σ dispersion of about 0.4 dex (see e.g. Lanzuisi et al. 2015). In Fig. 7 we show the distribution of the AGN radiative luminosities for seven redshift bins, out to \(z \approx 6\). It is clear from this plot that the non-radio based selection of (X-ray-, MIR-, and SED-) AGN is, at every redshift, more efficient in selecting AGN with statistically higher radiative luminosities than AGN selection criteria mainly linked to radio-wavelengths. Given that for the latter we only have upper limits to the radiative luminosity (left-pointing arrows in Fig. 7), and that, thus, no unique separation threshold in radiative luminosity out to \(z \approx 6\) can be inferred, we hereafter abbreviate the two identified categories 16 as i) moderate-to-high radiative luminosity AGN (HLAGN hereafter, referring to X-ray-, MIR-, and SED-selected AGN, regardless of their radio-excess in \((L_{\text{1.4GHz}}/\text{SFR}_{\text{IR}})\)), and ii) low-to-moderate radiative luminosity AGN (MLAGN hereafter, refer-

---

16 consistent with the nomenclature used in Delvecchio et al. (accepted)
Fig. 8. Flowchart illustrating the separation of the 3 GHz sources matched to COSMOS2015 or i-band counterparts (within unmasked areas of the field) into various AGN and galaxy populations (see Sec. 6 for details).

Fig. 9. Redshift distribution of different (not overlapping) populations, as indicated in the panels.

6.4. Sample summary

Using the multi-wavelength criteria described above the identified AGN/star-forming galaxy samples can be categorized into three main classes of objects within our 3 GHz radio sample associated with COSMOS2015 or i-band counterparts located inside the 1.77 square degree area unmasked in the COSMOS2015 catalog. The selection process and relative fractions of the three classes are illustrated in Fig. 8, and summarized below.

1. **Moderate-to-high radiative luminosity AGN (HLAGN)** were selected by using a combination of X-ray ($L_X > 10^{42}$ erg/s), MIR color-color (Donley et al. 2012), and SED-fitting (Delvecchio et al. accepted) criteria. We identify a total of 1,623 HLAGN in our 3 GHz sample consisting of 7,826 radio sources with associated COSMOS2015 or i-band counterparts, and find that 486 ($\sim 30\%$) show a $> 3\sigma$ radio-excess in $\log (L_{1.4GHz}/SFR_{IR})$, while the radio luminosity in the remaining $\sim 70\%$ is consistent (within $\pm 3\sigma$) with the IR-based star-formation rates in their host galaxies.

2. **Star forming galaxies (SFGs)** were drawn from the sample remaining after exclusion of the HLAGN by selecting galaxies with the dust-extinction corrected rest frame color i) $M_{NUV} - M_r < 3.5$, or ii) $M_{NUV} - M_r > 3.5$, but requiring a detection in the Herschel bands. We identify a total of 5,410 star forming galaxies in our 3 GHz sample, corresponding to 69% of all the radio sources with associated COSMOS2015 or i-band counterparts. In such a selected sample we identify 855 sources ($\sim 16\%$) with a $> 3\sigma$ radio-excess in $\log (L_{1.4GHz}/SFR_{IR})$, which can be taken as the contamination of such a selected star forming
galaxy sample by (> 3σ radio-excess) AGN. The sample obtained by excluding these radio-excess sources from the star forming galaxy sample is defined as the ‘clean star forming galaxy sample’ (i.e., clean SFG sample, hereafter).

3. Low-to-moderate radiative luminosity AGN (MLAGN) were drawn from the sample remaining after exclusion of the HLAGN. We identify a total of 1,648 of MLAGN, and they are a combination of the following two sub-classes:

   3.1. Quiescent-MLAGN were selected requiring M_{NUV} - M_V > 3.5, and no detection (at ≥ 5σ) in any of the Herschel bands. This criterion identifies 793 such sources in the COSMOS2015/i-band counterpart sample. 505 of these are consistent with a > 3σ radio-excess in log(L_{4GHz}/SFR_{IR}), and their median/mean log(L_{4GHz}/SFR_{IR}) is significantly above the average for the star-forming galaxy sample.

   3.2. Radio-excess-MLAGN were selected as objects with a > 3σ radio-excess in the redshift-dependent distribution of log(L_{4GHz}/SFR_{IR}). This criterion selects 1,360 such AGN in the COSMOS2015/i-band counterpart sample, 505 of which overlap with the quiescent-MLAGN sample, and 855 of which overlap with the star forming galaxy sample.

We note that a certain overlap exists between some of the above described populations, as stated specifically above and illustrated in Fig. 8. Complete, non-overlapping samples can be formed by combining i) HLAGN, MLAGN, and clean SFG samples, or, alternatively, ii) the radio-excess and no-radio-excess samples. While the first reflects the multi-wavelength nature of AGN or star formation activity in our radio-detected sources, the latter can be taken to reflect the galaxies’ AGN or star formation activity signature specifically in the radio band. Overlap between these samples (e.g., X-ray AGN with no radio-excess) gives insight into the composite (AGN plus star forming) nature of the sources across the electromagnetic spectrum. The redshift distribution of the various populations is given in Fig. 9.

7. Final counterpart catalog

The VLA-COSMOS 3 GHz Large Project multi-wavelength counterpart catalog will be made available through the COSMOS IPAC/IRSA data-base. It is constructed in such a way that any user can easily retrieve our classification, or adjust it to a different set of selection criteria. The catalog lists the counterpart IDs, properties, as well as the individual criteria used in this work to classify our radio sources, as follows.

1. Identification number of the radio source (ID_VLA).
2. Right ascension (J2000) of the radio source.
3. Declination (J2000) of the radio source.
4. Identifier for a single- or multi-component radio source (MULTI=0 or 1 for the first or latter, respectively).
6. Identification number of the counterpart (ID_CPT).
7. Right ascension (J2000) of the counterpart, corrected for small astrometry offsets as described in the Appendix.
8. Declination (J2000) of the counterpart, corrected for small astrometry offsets as described in the Appendix.
9. Separation between the radio source and its counterpart [arcseconds].
10. False match probability.
11. Best redshift available for the source.
12. Integrated 3 GHz radio flux density [μJy].
13. Rest-frame 3 GHz radio luminosity [log W Hz^{-1}].
14. Rest-frame 1.4 GHz radio luminosity [log W Hz^{-1}], obtained using the measured 1.4-3 GHz spectral index, if available, otherwise assuming a spectral index of -0.7.
15. Star-formation related infrared (8-1000 μm rest-frame) luminosity derived from SED-fitting [log L_{IR}]. If the source is classified as HLAGN, this value represents the fraction of the total infrared luminosity arising from star formation, while it corresponds to the total IR luminosity otherwise (see Delle-Chio et al., accepted).
16. Star formation rate [M_{sol} yr^{-1}] obtained from the total infrared luminosity listed in column (15), by assuming the Kennicutt (1998) conversion factor, and scaled to a Chabrier (2003) IMF.

---

Footnote:

http://irsa.ipac.caltech.edu/Missions/cosmos.html
We note that the counterpart catalog presented here contains the full list of optical-MIR counterparts collected over the largest unmasked area accessible to each catalog, being 1.77, 1.73, and 2.35 deg² for COSMOS2015, i-band, and ICRC catalogs, respectively. We note that complete, non-overlapping samples within a well defined, effective area of 1.77 square degrees (COSMOS2015 masked area flag = 0, can be formed by combining i) HLAGN, MLAGN, and clean SFG samples, or, alternatively, ii) the radio-excess and no-radio-excess samples (see previous section).

8. Composition of the micro-Jansky radio source population

In this Section we analyze the composition of the faint radio population at micro-Jansky levels. We consider non-overlapping subsamples of the total sample of radio sources with counterparts in the COSMOS2015 or i-band catalogs, defined in two different ways as described in the previous sections (for a summary see Sec. 6.4 and Fig. 8):

1. based on multi-wavelength criteria.
   i) moderate-to-high radiative luminosity AGN (HLAGN; selected via X-ray-, IR-, and SED-based criteria),
   ii) low-to-moderate radiative luminosity AGN (MLAGN; consisting of two subsamples not identified as AGN by the X-ray, IR or SED criteria, i.e., AGN hosted by red/quiescent galaxies, and those showing a > 3σ excess in radio emission relative to the IR-based star formation rates in their host galaxies),
   iii) clean star forming galaxy sample (i.e., rest-frame color selected star forming galaxies, not identified by the X-ray, IR or SED criteria, and with radio-excess sources excluded; below often referred to as the SFG sample), and

2. based on radio criteria, samples of galaxies with
   i) radio-excess,
   ii) without radio-excess (defined as a > 3σ radio-excess in the redshift-dependent distribution of log (L₁₄₅GHz/SFRIR)).

8.1. Fractional contribution of the various populations at faint radio fluxes

In the top panel of Fig. 10 we show the fractional contributions of the various populations as a function of total 3 GHz flux (S₃GHz). Dividing the populations into clean SFG, MLAGN, and HLAGN samples we find that the fraction of MLAGN decreases from about 75% at S₃GHz ~ 400 – 800 μJy down to about 50% at S₃GHz ~ 100 – 400 μJy, and further to about 20% in our faintest flux bin at S₃GHz ~ 50 μJy. Through the same flux ranges, the fraction of SFGs increases from about 10% (S₃GHz ~ 400 – 800 μJy) to 60% (S₃GHz ~ 50 μJy), while that of HLAGN remains fairly constant in the range of 20–30%. Hence, while the combined AGN sample (MLAGN and HLAGN) dominates the radio population at S₃GHz ≥ 100 μJy, it is the SFGs that form the bulk (60%) of the population at S₃GHz ~ 50 μJy. For easier comparison with literature, in the middle panel of Fig. 10 we show the fractional contributions of the various populations as a function of total 1.4 GHz flux, computed using the 1.4 GHz detections where available and assuming a spectral index of -0.7 otherwise (see Smolčić et al., accepted, for details). The results are consistent with those described above. We find that only in our lowest flux bin (S₁₄₅GHz ~ 20 – 100 μJy) the SFGs start dominating reaching a fraction of ~ 60% at S₁₄₅GHz ~ 50 μJy. This is consistent with the results based on the ECDFS survey (Bonzini et al. 2013; see also below) yielding that the fraction of their SFGs is 50-60% within S₁₄₅GHz ~ 35 – 100 μJy. Within the total range of S₁₄₅GHz ~ 20 – 700 μJy we find a median fraction of about 40%, 30%, and 30% of MLAGN, HLAGN, and SFGs, respectively, in good agreement with the results based on the 1.4 GHz VLA-COSMOS survey (Smolčić et al. 2008).

As detailed in Sec. 6, the radio emission of ~ 70% of HLAGN is consistent with that expected from the star formation in their host galaxies (inferred from their IR emission). Hence, to set limits on the fractional contribution to the faint radio population by the star-formation- or AGN-related processes in the radio band, in the bottom panel of Fig. 10 we show the separation of all of our sources into those that show (> 3σ) radio-excess, and those with no radio excess relative to the host’s star formation rate (see Fig. 5). Consistent with the above conclusions, we find that the fraction of sources with total radio luminosity consistent with that expected from the star formation in their host galaxies increases with decreasing flux density from about 10% at S₁₄₅GHz ~ 700 – 1000 μJy to ~ 85% at S₁₄₅GHz ~ 50 μJy, while it correspondingly decreases (from ~ 90% to ~ 15%) for sources showing significant (> 3σ) radio-excess. The switch between the domination of the two, such selected populations, occurs at S₁₄₅GHz ~ 200 μJy.

In conclusion, the data used here probe the flux range of the faint radio population where a switch between the dominant AGN- or star formation-related contributions occurs. This is studied further in the context of radio source counts in the next Section.

8.2. Euclidean-normalized radio source counts

In Fig. 11, we show the 1.4 GHz source counts, normalized to Euclidean space, for all radio sources with counterparts in COSMOS2015 or i-band catalogs, and for each source class separately. The counts have been corrected for completeness as described in Smolčić et al. (accepted), assuming all populations are equally complete at the same 3 GHz flux. Since all the radio sources we are using in this analysis have counterparts, the radio false detection probability was assumed to be zero. From the left-hand panels in Fig. 11, showing the counts separated into clean SFG, MLAGN and HLAGN in the top panel and radio-excess and no-radio-excess samples in the bottom panel, it is obvious that galaxies with star formation activity start dominating the counts below S₁₄₅GHz ~ 100 – 150 μJy, while at higher fluxes the dominating population is related to AGN activity (see also top-right panel for the combined MLAGN and HLAGN contribution to the counts).
8.2.1. Comparison with radio source counts in the E-CDFS survey

In the right-hand panels of Fig. 11 we compare our Euclidean-normalized source counts to those from Padovani et al. (2015). They calculated the counts from 1.4 GHz VLA observations of the Extended Chandra Deep Field South (E-CDFS), and in the figure the color-shaded areas correspond to their counts within the reported errors (Tab. 1 in Padovani et al. 2015). Their sample reaches a flux density limit of 32 $\mu$Jy, and covers an area of approximately 0.3 deg$^2$. Bonzini et al. (2013) separated the ~800 ($z \leq 4$) radio sources within the E-CDFS into radio-loud (RL), radio-quiet (RQ) AGN, and star forming galaxies using the observed 24 $\mu$m-to-1.4 GHz flux ratio ($q_{24,\text{obs}}$). RL AGN were identified if, at a given redshift, laying below the $2\sigma$ deviation from the average $q_{24,\text{obs}}$, while RQ AGN were selected if being above the $2\sigma$ deviation, and at the same time fulfilling either X-ray or MIR diagnostics (similar to those used here)$^{19}$. The remainder of the sample was taken as SFGs. Thus, while their classification scheme is largely similar to the one used here, it also contains significant differences. We refer to Dlvecchio et al., (accepted; their Sec. 4.3.2.) for a detailed comparison of the two classification schemes.

In the top-right panel of Fig. 11 we, respectively, compare our SFG, and total AGN (MLAGN and HLAGN combined) counts with the SFG and total AGN (RQ and RL combined) counts from Padovani et al. (2015). The counts show similar trends, with a consistent flux of $S_{1.4GHz} \sim 100$ $\mu$Jy below which the dominant population switches from AGN to star forming galaxies. While the SFG counts are consistent within the errors, the E-CDFS AGN counts show a slightly lower normalization throughout the observed range, and more discernible at $S_{1.4GHz} > 200$ $\mu$Jy. This could be due to cosmic variance given the smaller, 0.3 deg$^2$ E-CDFS area (compared to the 2 deg$^2$ COSMOS field area).

In the bottom-right panel of Fig. 11 we compare our MLAGN and HLAGN counts with the RL and RQ AGN counts from Padovani et al. (2015). Due to similarity of the AGN selection methods used here and by Bonzini et al. (2013), our MLAGN (HLAGN) are expected to be a population comparable to the E-CDFS RL (RQ) AGN. The trends of our MLAGN and the E-CDFS RL AGN populations are in agreement. However, while agreement also exists between the trends of our HLAGN and E-CDFS RQ AGN at $S_{1.4GHz} < 200$ $\mu$Jy, a discrepancy at higher fluxes is discernible, with systematically lower count values for the E-CDFS RQ AGN. This can be understood given the differences in the selections of E-CDFS RQ AGN and our HLAGN. While the first do not contain sources with radio-excess (defined by Bonzini et al. 2013 as $> 2\sigma$ in the redshift-dependent $q_{24,\text{obs}}$, and using an M82 galaxy template), our sample of HLAGN contains 30% of radio-excess sources (defined as $> 3\sigma$ in the redshift-dependent distribution).

$^{19}$ Note that the $q_{24,\text{obs}}$ ratio is defined in an inverse manner compared to the log ($L_{1.4GHz}/\text{SFR}_{\text{IR}}$) ratio used here.
8.2.2. Comparison with the SKADS semi-empirical simulation

In the top-right panel of Fig. 11, we compare our source counts for populations of star forming galaxies and AGN with the results of the semi-empirical simulations from Wilman et al. (2008). These simulations are based on observed (or extrapolated) luminosity functions taking into account the measured large-scale clustering. Wilman et al. (2008) simulate classical radio-quiet quasars, FRI, and FRII sources, star forming and starburst galaxies. Since their classification is fundamentally different from ours, we compare only the total number of AGN and star forming galaxies. We consider radio-quiet quasars, FRI and FRII sources defined by Wilman et al. (2008) to be AGN and compare the sum of their counts to the sum of our HLAGN and MLAGN counts. The overall agreement between the two AGN counts is good, even if Wilman et al. (2008) predictions are a bit lower than our AGN counts at flux densities ~ 80 – 500 µJy, probably due to different population definitions. We consider the collective sample of star forming and starburst galaxies defined by Wilman et al. (2008) to be star forming galaxies, and compare the sum of their counts to the counts of our clean star forming galaxy sample. The prediction of Wilman et al. (2008) consistently follows the shape of our observed star forming galaxy counts.

8.3. Expectations for future surveys based on simple extrapolations

In Fig. 12 we show the faint end of our source counts, with two different definitions for non-overlapping populations (left and right panels), and extrapolations down to radio fluxes of ~10 mJy, encompassing the detection limits of SKA1 Ultra Deep, Deep, and Wide surveys (Prandoni & Seymour 2015). In a zero-order attempt to extrapolate the counts, not intended to be related to any physical model, we use a simple linear fit to the four faintest data points ($S_{1.4 \, \text{GHz}} < 100 \, \mu$Jy), for each of the various radio-detected subpopulations. As discernible from the middle panels in the figure, down to these fluxes the expected fractions of MLAGN and HLAGN (radio-excess sources) drop monotonously, while that of SFGs (no radio-excess sources) monotonously rises towards unity. In the bottom panels of Fig. 12 we show the cumulative fractions of clean SFGs, and no-radio-excess sources as a function of 1.4 GHz flux for each of the three SKA1 flux limits. This was computed as the total fraction of the population within the flux range limited at the low end by the 5σ limit of the corresponding SKA1 survey, and at the high end by the given flux value. For example, selecting radio-detected sources with $S_{1.4 \, \text{GHz}} < 100 \, \mu$Jy (corresponding to $S_{3 \, \text{GHz}} < 60 \, \mu$Jy, assuming $\alpha = -0.7$) will yield a sample consisting of about 71%, 80%, and 86% SFGs in the planned SKA1 Wide, Deep, and Ultra Deep surveys, respectively. Selecting sources with $S_{1.4 \, \text{GHz}} < 10 \, \mu$Jy (corresponding to $S_{3 \, \text{GHz}} < 6 \, \mu$Jy, assuming $\alpha = -0.7$) will result in samples consisting of about 75%, 81%, and 87% SFGs in the three SKA1 surveys, respectively. Considering only objects with no radio-excess these numbers are about 91%, 96%, 98% and 95%, 98%, 99% for upper flux limits of 100 and 10 µJy, respectively. Hence, it can be expected that at the faint flux limits to be reached by the SKA1 surveys, a selection based only on radio flux limits can provide a simple tool to efficiently identify samples highly dominated by SFGs.

9. Summary

Using one of the deepest radio datasets so far, the VLA-COSMOS 3 GHz Large Project, down to a flux limit of ~11 µJy at 5σ, we associated optical/NIR/MIR counterparts to radio sources. Countertop candidates were drawn from three different catalogs, COSMOS2015, i-band and IRAC, prioritizing them in that order. A false match probability was calculated for each counterpart candidate using a background model designed to reproduce realistic magnitude and spatial distribution of counterparts to radio sources. We select as reliable counterparts those counterpart candidates with false match probability below 20% in at least one of the three catalogs. In total, we find 8,035 counterparts to our 3 GHz radio sources over a common unmasked area of 1.77 deg², with an estimated fraction of spurious identifications of ~ 2%.

We analyzed the multi-wavelength star formation- and AGN-related properties of our radio-selected population, reaching out to a redshift of $z \sim 6$. Based on the multi-wavelength properties, including the estimated bolometric (i.e. radiative) AGN luminosities, we separate our radio sources into subsamples of clean star forming galaxies, and those of radio AGN into low-to-moderate, and moderate-to-high radiative luminosity radio AGN, and consider these AGN subpopulations to be candidates for high-redshift analogues to local low- and high-excitation emission line AGN, respectively. An alternative separation is that into subsamples of galaxies with and without radio-excess, where the radio-excess threshold is defined as a 3σ excess in radio emission relative to the IR-based star formation rates in their host galaxies.

An analysis of fractional contributions of various galaxy types as a function of radio flux shows that below ~100 µJy at 1.4 GHz star-forming (no radio-excess) galaxies constitute the dominant fraction of the radio population, with a ~ 60% (80%) contribution at $S_{1.4 \, \text{GHz}} \sim 50 \, \mu$Jy. At higher flux density levels the fractional contribution of star-forming (no radio-excess) galaxies diminishes, and AGN (radio-excess galaxies) constitute the dominant fraction.

The Euclidean normalized number counts of different observed populations are generally in agreement with the number counts of similar (observed or simulated) populations from the literature. Using simple extrapolations of our faint-end ($S_{1.4 \, \text{GHz}} < 100 \, \mu$Jy) counts we estimate the differential and cumulative fractions of star forming galaxies and galaxies with no radio-excess. These suggest that at the faint flux limits the planned (Wide, Deep and UltraDeep) SKA1 surveys will reach, a selection based only on radio flux limits can provide a simple tool to efficiently identify samples highly dominated by SFGs.

Acknowledgements. Zgal group: European Union’s Seventh Framework program under grant agreement 333654 (CIG, ‘AGN feedback’; N.B., V.S.) and grant agreement 337595 (ERC Starting Grant, ‘CoSMass’; V.S., J.D., M.N.). CL acknowledges the funding by a Discovery Early Career Researcher Award (DE150100618). Partially based on data obtained with the European Southern Observatory Very Large Telescope, Paranal, Chile, under Large Programs 175.A-0839 (the zCOSMOS Spectroscopic Redshift Survey) and 185.A-0791 (the VIMOS Ultra Deep Survey). AK and EV acknowledge support from the collabora-
Fig. 12. **Top panels:** VLA-COSMOS 3 GHz Large Project radio source counts at $S_{1.4 GHz} < 100 \, \mu$Jy for various, non-overlapping galaxy populations (symbols, as indicated in the top panels). Simple linear extrapolations (fit to the $S_{1.4 GHz} < 100 \, \mu$Jy data) are shown by lines. **Middle panels:** The fractional contribution of the various populations as a function of 1.4 GHz flux, extrapolated down to the 5σ detection limits of the SKA1 Ultra Deep, Deep, and Wide radio continuum surveys (vertical dashed lines; cf. Table 1 in Prandoni & Seymour 2015). **Bottom panels:** Cumulative fractions of clean SFGs (left), and no radio-excess sources (right) as a function of 1.4 GHz flux for each of the three SKA1 flux limits (shown by the three curves in each panel). For each given flux the $y$-axis value corresponds to the total fraction of the population within the flux range limited at the low end by the 5σ limit of the corresponding SKA1 survey, and at the high end by the flux value given on the $x$-axis.
Appendix A: Associating counterparts to single-component radio sources

We here describe in detail the procedure used to associate optical-MIR counterparts to our 3 GHz, single-component radio sources.

Appendix A.1: Separation between positions of radio and optical-MIR sources

Positional matching of the VLA-COSMOS 3 GHz Large Project (Smolčić et al., accepted) sources with those in the COSMOS2015 (Laigle et al. 2016), i-band (Capak et al. 2007), and 3.6 μm IRAC (Sanders et al. 2007) selected catalogs reveals small systematic positional offsets, listed in Table A.1, which also depend on the position on the sky (see left panels of Fig. A.1). Thus, prior to associating optical-MIR counterparts to our radio sources, we correct the multi-wavelength catalog positions for these astrometric offsets via a linear fit to the mean (radio-optical, radio-NIR or radio-MIR) astrometric offsets as a function of RA and Dec (see the right panels of Fig. A.1).

The best-fit expressions to determine the corrected optical-MIR positions (\(RA', Dec'\)) for each counterpart catalog are given below.

**COSMOS2015 catalog:**

\[
RA' = RA + ((-0.010 \times RA + 1.500)/3600.)
\]

\[
Dec' = Dec + ((0.055 \times Dec - 0.164)/3600.)
\]

**i-band catalog:**

\[
RA' = RA + ((-0.043 \times RA + 6.408)/3600.)
\]

\[
Dec' = Dec + ((0.048 \times Dec - 0.179)/3600.)
\]

**IRAC catalog:**

\[
RA' = RA + ((-0.041 \times RA + 6.059)/3600.)
\]

\[
Dec' = Dec + ((0.058 \times Dec - 0.147)/3600.)
\]

Table A.1. The mean offsets in RA and Dec separations for sources matched between the VLA-COSMOS 3 GHz Large Project catalog and the COSMOS2015, the i-band and the IRAC 3.6 μm selected catalogs.

<table>
<thead>
<tr>
<th>Catalog</th>
<th>(&lt;\Delta RA&gt;)</th>
<th>(&lt;\Delta Dec&gt;)</th>
</tr>
</thead>
<tbody>
<tr>
<td>COSMOS2015</td>
<td>~ −0.09′′</td>
<td>~ −0.014′′</td>
</tr>
<tr>
<td>i-band</td>
<td>~ −0.06′′</td>
<td>~ −0.011′′</td>
</tr>
<tr>
<td>IRAC 3.6 μm</td>
<td>~0.02′′</td>
<td>~−0.04′′</td>
</tr>
</tbody>
</table>

Fig. A.1. Systematic positional offsets in the (RA, Dec) plane between the VLA-COSMOS 3 GHz Large Project and the COSMOS2015 (top panels), i-band (middle panels), and IRAC (bottom panels) sources before (left panels), and after corrections (right panels). To obtain the corrections the 1.4′ × 1.4′ COSMOS field was divided into 100 bins 0.14′ on the side. In each bin, a Gaussian was fitted to the separation distribution in right ascension and declination. The means of these two Gaussians are shown as the vectors shown in the plot. For visibility, the sizes of the vectors are multiplied by a factor 3,600.
excess of counts with respect to what is observed around random positions. At intermediate separations the number of associations around the positions of the radio sources is smaller than that observed around random positions and this number reaches a minimum at separations of $\sim 1\text{-}1.5''$, where $\theta$ is the FWHM of the PSF ($\theta \sim 0''8$ for COSMOS2015/i-band, and $\theta \sim 1''66$ for IRAC). This deficiency in the number of matches with the radio sources, relative to the number of matches with the randomized position catalog (at $r \sim 0.7 - 3''$ for COSMOS2015 and the i-band selected catalogs, spanning up to 4'' for the IRAC catalog) is due to the fact that fainter optical/NIR/MIR sources close to the brighter counterparts of radio sources (see Fig. A.2) at smaller separations can not be easily detected and most of them are therefore missing in the catalogs (i.e., a blocking effect). Although Fig. A.3 appears to suggest, at face value, that most of the counterparts between $0''4$ and $0''8$ are not associated to radio sources, the magnitude distribution of these counterparts as a function of separation suggests instead that many of those sources, especially the brightest ones, are real associations, as will be discussed in the next section.

**Appendix A.2: False match probability**

To estimate the reliability of the radio-optical/NIR/MIR matches and the false match probability ($p_{\text{false}}$), we have created a background model that reproduces the blocking effect of optical, NIR and MIR sources around radio sources. To simulate the i-band and IRAC background, their selection band was used (i, and $3.6 \mu m$ respectively), while for the COSMOS2015 background model the $3.6 \mu m$ band, measured for a large majority of the sources, was chosen. First, we divide each sample of $N$ counterpart candidates (COSMOS2015, i-band and IRAC) into $N = N_u + N_r$, where $N_u$ is the number of closest counterparts found within $0.5\theta$ ((i.e., 0.5, 1.5$\theta$) from the radio source position. For all three catalogs $N_u$ and $N_r$ are $\sim$90$\%$ and $\sim$10-15$\%$ of $N$, respectively. As said above, it is this large number of relatively bright counterparts close to the radio positions that artificially reduces the number of sources in the optical, NIR and MIR catalogs at separations larger than $0.5\theta$. To reproduce this effect, from each catalog, we select $N_u$ sources requiring them to follow the magnitude distribution of real counterparts matched using a $0.5\theta$ search radius; then, starting from the positions of these randomly selected sources, we set the centre of our search region by moving it in a random direction following the separation distribution of real counterpart candidates matched using a $0.5\theta$ search radius. Thus, we simulate $N_u$ sources whose magnitudes and separations fully reflect those of the real sample of counterparts within the $0.5\theta$ search radius. Finally, we randomly distribute the remaining $N_r$ sources over the entire radio field. We generate 100 different mock (background) catalogs following this recipe, and extract the expected background magnitude distribution from the counterparts to these mock sources.

The false match probability as a function of magnitude was then calculated in three separation bins as the ratio between the distributions of the simulated background and real magnitudes. We then linearly interpolate the histogram of this ratio, and assign to each source the false match probability that this interpolation has at the value of the magnitude of the source. This is illustrated in Fig. A.4, and summarized in Fig. A.5. Details on matching with the COSMOS2015, the i-band and the IRAC sources, as well as the false match probability estimation, are given in the following sections. For sources without the measured magnitude in the band used for the background estimation, false match probabilities were not calculated, and their values were set to 1 (see Sec. A.3, and A.4).

**Appendix A.3: Cross-matching with the COSMOS2015 sources: NIR counterpart candidates**

Masked regions of the COSMOS2015 catalog illustrated in Fig. 1, reduce the effective area to 1.77 deg$^2$. A total of 8,696 ($\sim$80$\%$) 3 GHz sources fall within this area. COSMOS2015 sources outside the masked regions were positionally matched to the sources in the VLA-COSMOS 3 GHz Large Project catalog, using a search radius of $0''8$. Including multiple possible counterpart candidates for a single 3 GHz source, this yielded a total of 7,721 COSMOS2015 counterpart candidates, and 7,701 single radio-NIR source associations. Only 6 counterpart candidates did not have the 3.6 $\mu m$ magnitude listed in the catalog and their false match probabilities were manually set to 1. Magnitude distributions and $p_{\text{false}}$ (i.e. ratio between the number of associations with the simulated mock catalogs and the number of associations with the real catalog) vs. magnitude plots are shown in the top panels of Fig. A.4. The $p_{\text{false}}$ distribution of the matched sample is shown in the top panel of Fig A.5.


**Appendix A.4: Cross-matching with the i-band selected sources**

From the i-band selected catalog (Capak et al. 2007) of 2,017,800 sources, we have excluded those masked (i.e., if saturated or around bright sources) in the B, V, i, and z-bands, removing 26% of the sources, and leaving 1,484,453 reliable detections. A total of 8,696 (~80%) 3 GHz sources fall within the unmasked regions with an effective area of 1.73 square degrees. Within a search radius of 0.8', we find a total of 7,397 i-band selected counterparts of 3 GHz sources (including multiple possible candidates for the same radio source, and 7,321 for a one-to-one match). For only 16 i-band sources, the false match probabilities were not available, and their false match probabilities were set to 1. Magnitude distributions and false match probabilities are shown in the middle panels of Fig. A.4. The false match probability distribution of the matched sample is shown in the middle panel of Fig A.5.

**Appendix A.5: Cross-matching with the IRAC selected sources**

From the IRAC 3.6 μm selected catalog, we have excluded sources masked in any of the four IRAC channels. This reduced the number of sources from 345,512 to 278,897. Within a search radius of 1.7', we find 9,158 3.6 μm sources in total, all unique IRAC-radio source matches. All the counterpart candidates have a 3.6 μm magnitude. Magnitude distributions and false match probabilities are shown in the bottom panels of Fig. A.4. The false match probability distribution of the matched sample is shown in the bottom panel of Fig A.5.

**Appendix A.5.1: Final catalog of optical-MIR counterparts**

To find the best possible multiwavelength counterpart of VLA-COSMOS 3 GHz Large Project sources, we compared the three (COSMOS2015, i-band, and IRAC) counterpart candidate catalogs described in previous sections. Over 7,000 single-component radio sources have a counterpart candidate in all three catalogs. To verify whether the counterpart candidates found in the three catalogs represent the same physical source we proceed in the following way. To find COSMOS2015 counterparts to i-band and IRAC sources, and i-band counterparts to IRAC sources we perform positional matching between these catalogs. To determine the search radius for the association of sources appearing in two different catalogs we count the number of sources as a function of separation, as shown in Fig. A.6. As the maximum search radius, we use the radius where this number reaches the minimum: above this radius the associations are consistent with being spurious and their number, linearly increasing with separation, is simply due to the surface density of sources in the two analyzed catalogs. This radius is ~0.7 for the match between the COSMOS2015 and i-band catalogs, and 1' for the match between the COSMOS2015 and IRAC catalogs. Thus, after selecting a reliable (i.e., one with \( p_{\text{false}} \) less than 20%) counterpart in the i-band and IRAC catalogs, we shift the selection to...
we show the differential distribution is highly peaked at small separations. As evident in the cumulative distribution, separated into all counterpart candidates with \( p_{\text{false}} \leq 0.2 \) from the various catalogs, shown in the bottom panel, 99% of the associations are found within a separation of \( \sim 0.7'' \). The full 3 GHz radio source counterpart catalog contains all 3 GHz sources with counterparts assigned either in the COSMOS2015, \( i \)-band, or IRAC catalogs, as described in detail in Appendix A, and summarized in Secs. 3.2, 3.1, and 7. The final counterparts assigned to both our multi- and single-component 3 GHz radio sources are summarized in Table B.1. Overall, 7,742, 407, and 1,012 radio (3 GHz) sources are associated with COSMOS2015, \( i \)-band, and IRAC counterparts, respectively.

In total, we find 9,161 counterparts for our radio sources. Summing the computed false match probabilities we estimate a total fraction of spurious matches of \( \sim 2\% \). Since our identification procedure is based on ground-based catalogs, it is likely that this "formal" fraction should be considered as a lower limit because of the limited spatial resolution of these data used in these catalogs.

In the top panel of Fig. B.1 we show the differential distribution of the separations of final counterparts from the radio sources. The differential distribution is highly peaked at small separations. As evident in the cumulative distribution, separated into all counterpart candidates with \( p_{\text{false}} \leq 0.2 \) from the various catalogs, shown in the bottom panel, 99% of the associations are found within a separation of \( \sim 0.7'' \) between the 3 GHz and the COSMOS/i-band (IRAC) matches. This further affirms our choice of the limiting matching distance of \( 0.7'' \) for COSMOS2015/i-band (IRAC). Extending the chosen limiting search radii would not have significantly increased the counterpart sample, at the expense of the possible inclusion of a non-negligible fraction of spurious associations.

In Fig. B.2 we show the positions of the identified counterparts overlaid on the COSMOS field. We stress the difference in effective, unmasked regions of the maps where the three counterpart catalogs were extracted from (\( z^+ JYHK \)-stack, \( i \)-band, 3.6 \( \mu \)m-band, respectively): 1.77 square degrees for COSMOS2015, 1.73 square degree area for the \( i \)-band, and 2.35 square degree area for the IRAC catalogs. For this reason the bulk of the IRAC (79%) and \( i \)-band (76%) assigned counterparts, resides either in the outer regions of the field, not covered by the COSMOS2015 catalog or in COSMOS2015 masked regions.

Note that the association is constructed in such a way that the COSMOS2015 sources listed can have IRAC and/or \( i \)-band counterparts, while the \( i \)-band sources listed can have IRAC counterparts, but do not have unmasked COSMOS2015 counterparts, and the IRAC sources listed do not have unmasked COSMOS2015 nor \( i \)-band counterparts.
Fig. B.2. Positions of counterparts from COSMOS2015 (blue crosses), $i$-band (yellow circles), and IRAC (red triangles) catalogs overlaid on the VLA-COSMOS 3 GHz Large Project mosaic with grayed-out regions masked in COSMOS2015 catalog due to the presence of saturated or bright sources in the optical to NIR bands (see also Fig 1).