Note for relativistic Dirac formalism
Tomohiro Oishi

1 Convention

See TABLE 1 for basic conventions.

TABLE 1: Conventional rules in this note.

Name Quantity Definition
flat metric " = guw = diag(+,—, —, —)
4D coordinate ot = (2% xt, 22 23) = (ct,x,y, 2)

x, = (xo, 1, T2, T3) = (ct,—x,—y,—2)
4D derivative or = % = (C%t, 6)

Ou = gz = Guw0” = <%7 6)
reduced derivative YO, = v, 0" =004 +7 - v
4D momentum pt = (p°, pt, p?, p3) = iho* =(£,p

Pu = G’ - (%7 _ﬁ)

1.1 spin algebra

Pauli’s sigma matricies read
01 02 03

—. 8 = 8 —Wherea—o1 U—O_i 0—10
Y z 27 1 — 10,2_ i 0 3 3 — 0 —1 .

27 27
These satisfy 0;0; = d;; + i€*oy,, and thus,

Sa

0'in + O'jO'i = 2(5¢j,

0,05 — 0;0; = 2iEZ]k0k <~ [§Z, §]] = Z-E’ijgk.

It is also worthwhile to define o 1;:
1 .
00 =05, 0+ = 5 (100 £ i)

1.2 gamma matrices

In Dirac’s representation, the (4 x 4) gamma matrices are defined as

P =(1°,9) = (8, 8a),



where o 0 5 .
70252(0 _,), ovz(g g) <—W’“=W>k=<_o—k ‘g’“). (5)

Note that 9 = 7°. The following matrices are also useful:

(0 I /w_i uov

Dirac’s conjugate: B
U(x) = i)’ (7)
Thus,

Ya(@)vp(x) = Fy (2) Fy(z) — Go(2)Gy(@),  val2)y ve(z) = F (2) Fy(z) + Gy (2)Gy(@).  (8)

1.3 Dirac spinor

Dirac spinor for the spherical system is generally given as

iFn(r) i ftg (1) Vijm (T)
1/)N(7“) = wnljm('r) = = . s (9)
Gn(r) Gnij (1) ZE Vijm(T)
where o
Vi) =Y G V() - X (10)
v=+1/2

Of course, §in% = j:%xi%. Note also that

g-r

= Vigm(T) = Veym (T), (11)

where { =1 F 1 when [ = j + % Thus, the Dirac spinor can be reformulated as

oy — (Vg zym(F)
Yt (r) = ( gnmj‘(r)y(ézj'qtl/?);m(f) ) . .

Remember also that (¢ - r/r)*> = r?/r? = 1. For example, when the larger component has the ds
(I = 2) charactor, the corresponding smaller component has the f5/2 (¢ = 3) charactor. Table 2 lists
some sets of ([, /).

1.4 angular-momentum convenstion

Clebsch-Gordan (CG) coefficient:

CLLAD2 = (1, my; o, ma | (i) J, M) <= [, M) = Y CYA0I92 |y g ) |jo, ma) . (13)

mi,mo mi,m2
mi,m2

Note EQs. (3.5.14) and (3.5.17) in Edmonds’s textbook [?]:

CcM)jz.g1 — pe(J,M)ji.j2 C(Jv_M)jle? — pC-M)ji.jz

ma,m1 mi,m2 ’ —mi,—ma2 mi,m2 )

(14)

where P = (—)7177277 CG coefficients can be defined as REAL in any case.



TABLE 2: Angular quantum numbers for Dirac spinors.

larger smaller

S1/2 P12
P32 dsz /2

(
(
(
P1/2 51/2 (
ds /2 f5/2 (

(

d3/2 P32

3j symbol as in EQ. (3.7.3) in Edmonds’s textbook [?]:

joode s\ 2 O i, ( ds B B\ B s G
mp My —Mms3 V23 +1 T2 —ms3 My My mg —mg My
(15)
Note that, for the 3j-symbol, an even permutation of any two columns keeps it identical, whereas
an odd permutation yields the factor (—)7*™/2%% as in Eq. (3.7.5) in Ref. [?].
Double-bar matrix element (DBME) or reduced matrix element as in EQ. (5.4.1) in Ref. [?]:

. - . i’ —m/ ¥ K ] . - .
(o Vicar Loy = = (20 ¥ 2 ) (01 11 3)

( J+K—j K R . (_)j,m KM
= Wcﬁm e <J' | Tk || J> = THC’(”"*")L] 7). (16)



2 Dirac equation with spherical potential(s)

We assume the (1 + 3)-dimensional time and space. In the MKSA or CGS-Gauss system of units,
except the electro-magnetic terms, the Dirac equation is given as

ihe a((zt) U(t.r) = [-iheBT - ¥ + AME 4 BS(r) + W ()] (e, ) (17)

where S(r) and W (r) are the spherical, scalar and vector potentials, respectively, given in the unit
of energy (e.g., MeV). From 5 = I and 7*0, = B0, +7 - V, it is also expressed as

[ihcy*0, — Mc® — S(r) — BW(r)] ¥(t,r) = 0. (18)
The Lagangian density, which works as the source of this equation, reads
L=1 [z’hc*y“@u — Mc* - S(r) — ﬁW(r)] (), (19)

where 1) = 3. Note that, in the meson-exchange model for atomic nuclei, the potential terms
are obtained from the sigma and omega meson fields. That is, S(r) = g,o(r) and W(r) = g,w(r)
with w, = d,0w(r), respectively. In numerical calculations, these meson fields need to be solved
self-consistently to the fermion field.

2.1 note for dimension

Note that, because the Lagrangian L = [ d*rL and M¢? have the dimension of energy, Yn is in the
unit of fm™3. As coincidence, if some interaction term(s) has the form,

Ly = Xo(x), (20)

then this wild-card part X must have the dimension of energy, e.g. in MeV. This knowledge may
help us, for example, to infer the unit of the coupling constant.

2.2 large and small components

For the time-independent solution of Eq. (17), that is, ihd;) = En, the Dirac equation reads
~iheBT -V + BM + BS(r) + W(r)| dw(t,m) = Extn (L), (21)

Dirac spinor for the spherical system is generally given as

iFn(r) 120 Y0 (7)
¢N(r) = %zym("“) = = ) (22)
G (r) U EE Y ()
where 1
N (j,m)l, % _ . ~
yljm(r) = Z Ch],v ? l,h:m—v(r) * Xv with SZX:{:% = iﬁXi% (23)
v=+1/2
Technique - Note that
o-r _ _
Tyljm(r) - yéjm<r)7 (24)

Where€:l$1whenl:j:|:%.



By using this ansatz, the Eq. (21) is transformed as

—ihed - VG (r) + [M* + S(r) + W(r)] iFn(r) = EniFy(r),
—ihcd - ViFy(r) + [-Mc* — S(r) + W(r)] Gn(r) = ExGy(r).

Before going to the further calculations, now we focus on the & - V term. By using,
(&.E) (aé) —A.-B+iz- (Ex E) ,

then the operator & - V becomes

B R I I S
d-V = = 0~V:r—2(a-f)(a-V)
52'F — — .= — =,
= — [7’ V—i—w~(r><V)]
Gl s L - G-i| d 25-L
- T roa ] < -

(25)

(26)

(27)

where we have used &@ = 25 /h, iV = —p/h, and L = 7 x p. Namely, the spin-orbit coupling is
naturally concluded from “kinetic term” in the Dirac formalism. If the gap of potentials, S(r) —

W (r), is constant, this spin-orbit term vanishes, as we see in the following.

2.3 spin-orbit coupling and Darwin term

From Eq. (25),
—ihc

B En+ Mc+ S(r)—W(r)

Thus, the corresponding large component reads

Cn(r) 5 SiFy(r).

G- ViFy(r)

—(he)?5 -V
(he)'3 N g+ 20 - S(r) W)

+ [M& + S(r) + W (r)] iFy(r) = ExiFy(r).

(29)

We use ex(r) = Ey + M + S(r) — W(r) and iFy — Fy in the following. Since (& - V)2 = V2,

it becomes

V2Fy(r) — (hc)? (5 - 6L> (- VEn(r))

en(r)
+ M+ S(r)+ W(r)] Ex(r) = EnxFn(r).

(fac)*

en(r)

Next, for the second term, please notice that

(30)

(31)



Thus, by using (¢ - 7)?/r* = 1/r?, the Eq. (30) is transformed as
(he)? _, (he)? [ dext(r)] | d 25-L
Fu(r) — L F
EN(T>V n(r) rz | dr Vdr h? w(r)
+ M+ S(r)+ W(r)] Fy(r) = ExFn(r),

() d o (he)? (=)ey(r) 28 - L

— —MVQ - (hc)2(_

)€ -
en(r) ex(r) dr r ex(r

+S(r) + W(r)| Fi(r) = (Bx — M)Fy(r), (32)

where the 1st term in the LHS corresponds to the kinetic energy, the 2nd term is so-called Darwin
term, and the 3rd term indicates the spin-orbit coupling. These Darwin and spin-orbit terms can be
naturally concluded from the Dirac equation, whereas those were just introduced as “phenomenol-
ogy” in the Schroedinger equation.

It is convenient to find that,

e the total potential is given as S(r) + W (r), whereas,

e the spin-orbit and Darwin terms depend on the € (r) = S'(r) — W’(r).

Thus, even though the total potential is zero or very small, it does not guarantee the free condition
for fermions. Remember also that, for the spin-orbit coupling term,

25 - LYyjm(F) = B2K 1 Vijm (), (33)
where
. 3 . 1
Klj:j(j+1)_l(l+1)_z_l = [, when j:l+§,
1
= —l—1, when j:l_i (34)
It is also convenient to note that,
I - 1
25 L2 Y@ = 28 LYVijm(F), with € =1+1for j =1+ >
T
= h2Qljy€,jm(IF)7 (35)
where
. 3 . 1
Qlj:](]‘i‘l)—g(g‘}‘l)—z = —1—2, when j:l+§,
1
= [—1, when j=1- 7 (36)

2.4 from Dirac to Schroedinger equations

The correspondence between the Eq. (32) and the Schroedinger equation is obtained as follows.
First (i) we assume S(r) = 0, namely, only the vector-type potential is finite. Notice that, e.g. the
Coulomb potential mediated by the photon (vector-gauge field) is consistent to this assumption.
Then (ii) in the non-relativistic limit, Exy — W (r) & Mc?, and thus, ex(r) = 2Mc?. Note also that
ey(r) = =W'(r). Therefore, the Eq. (32) is approximated as

o 2 W/(r) d | (he) W'(r) 25 L
2M AM2c4 dr r AMZ2c*t k2

V? — (he) +W(r)| Fx(r) = (Ex — Mc*)Fy(r).  (37)

The 1st and 4th terms are well-known kinetic and potential terms in the Schroedinger equation,
respectively.



2.5 Solution of free Dirac equation

For E = ++/c?*p? + ¢*M? > 0, there are two solutions with po = +F and pg = —FE:

y (z) p“a:u E+M 1
5 as(r) = ex G s

. — Py, \/ E+M M+E
Vi_p, —5, —s(T) = exp [4—1 - } 55 | s (38)

3 Numerical solution of spherical Dirac equation

Our goal in this section is to summarize the numerical method for the spherical Dirac equation. We
start again from Eq. (25),

—ihed - VG (r) + [M* + S(r) + W(r)] iFn(r) = EniFy(r),

—ihed - ViFy(r) + [-Mc* — S(r) + W(r)] Gn(r) = ExGy(r). (39)
and Eq.(27),
5-62(6'7)25-6:6'7"[fﬁ—a-i/h]: (40)

G- d_2§-E
" T2 |

r2 r2

where we have used ¢ = 25/71 iV = —p/h, and L = 7 x p. Using the label K); and @, which are
determined as 29 - Lyl]m =h? KijYijm and 29 - L”’"yl]m = h2Ql] == Vijm, one finds that

G-ViFy(r) = &-ViFu;(r)Vm(F) =

Ky Fy(r >] Vi (7).

dr
dF, K, g - _
- |: dl;( ) iFnlj(T)] OTyljm(r)a (41)
and
) ] - 7.r [ dG., 7 - )
5 TGn(r) = 3T I = T [P 0650)| T ()
dG i ; _
_ [d—‘” - %Gnlj<r)] Vi (). (42)

Therefore, Eq. (39) is transformed as

r

—ihc {%”(r) — %ij(r)} Viim(F) = [Exy —W(r) = S(r) — Mc*] iF; (1) Vijm(T),

e [dFd;;() Ki; Kyp o )} E%ryljm(f) = [Ey —W(r) + S(r) + Mc?*]
Gus) V). (43
Thus,
% _ Kly Kip o4 M+ S(r) h+c En — W (r) Colr)
% _ Mc + S(r )hCEN+W(T)Fnl]( )+ Q”Gn,]( ) (44)



nl](

For another representation with F,;;(r) = M and G(r) = r) , these equations change as

day,; K +1 Mc2+ S(r)+ Ex — W(r)

7] = ]r anij(r) + — b (1),

db,i M+ S(r)—Ex+W(r 41

By R )anw) ARG (45)

Here, one can use a trick: Kj; +1 = —@;; — 1 for whatever j = [ 4+ 1/2. Thus, using
ki =Kj+1=-Q;—1 = [+1 for j=1+1/2,
= —[ for j=1-1/2, (46)

then one finally gets

dCLnl' Kl MCQ+S(T)+EN—W<7’)

7] = TJGnla( ) + o bnij (1),

dbnl' MC + S(T) EN + W(T) — Ky

d—rj = e antj(r) + " — by (7). (47)

In the following, we introduce the new symbols as
s(ry=Mc+S(r), v(r)=Ex—W(r), ex(r)=s(r)+uor).
Then the last equations for {a,;;(r), by;(r)} read

dfaN_( 7 5%
ar\ b))\ =2 =

3.1 large component a(r)

> Q
~
~
e
oo
SN—

First, we eliminate b(r):

) = s () = Ralr).
o) = he{ () (20) = Zatr)) + 2 () = Za') + atr)) |
— (from EOM...) = wam - ;f—; (a’(r) - ga(r)) . (49)
By some calculations,
= d'(r) — ga/(r) -+ %a(’r’) — 6;,?;) a(r)— ga(r)) = Szh_c)gza(r) - ; <a’(7’) — ;a(r)>
= a”(r)—Z—Za'(r)+ (%+ZZ—§:;;—%—%) a(r)=0
') - Dl (1) + (—W; S ) a(r) =0, (50)

where we have used ry;(k;; — 1) = [(I + 1) for whatever j =1+ 1/2. Or equivalently,

(hc)2 )+ (he)?ey(r) d(r) + {(hc) [(1+ ) (he)?ely(r )E +s(r) — U(m} a(r) =0,

) ex(r) en(r) 2 ev(r) 7
P (hePey(r) d | [(heP U (hePey() ko e T
{ dr2 e?\,(r) = + LN(T) 2 ) +8(r) +W( )] } (r)

Then, in the non-relativistic limit, this equation becomes the Schroedinger equation with the po-
tential S(r) + W (r).



3.2 small component b(r)

Next we focus on by;(r). By introducing (v = s(r) —v(r) = Mc* + S(r) — Exy + W(r),

o) = s (V) + h0))
d(r) = m{(-)% (¥ + b)) + ch( ) (Vo) + 200 - %b(r))}
— (from EOM...) = ’: : ]f(c> <b’( )+ ;b(r)) + wbm (52)
By some calculations
— V() + 2B () — () C—g (V) +26(r)) = = (V) +2b(r)) + Szh_c)fb(r)
= V'(r) — g—gb'(r) - (_w — % : ; _ S(ﬁ;)s ) b(r) =0. (53)

Deviding this equation by —ey(r)/(hic)? where ey (r) = s(r) + v(r), one finds
(he)® & (he)*(y(r) d (he)® k(k+1)  (he)’ey(r) K . . .
Q=R o e e et riee FAR A L

= (EN — Mcz) b(r). (54)

3.3 asymptotic form at » = 0 with W'(r) = S(r) =0
Within this assumption, the Eq. (50) is approximated as

1l +1) - 8% (r) —v3(r) d -
g5~ g — )| aw(r) =0, C(r) = o SC(r=0)=0. (55
(i) Because this Eq. keeps the same for r — —r, the asymptotic form must be a(r) = Y r?t!

(&)

or & > r?" in its expanded form. (ii) By considering the special case with S(r) = W(r) = 0,
namely C(r) = const., the possible form can be limited as a(r) = v+ + O(r'*3). (iii) Assuming
a(r) = r' 4+ xC(r)rtt3 + O(r'*?), the factor y must satisfy that,

0T T MBI+ 2) — x4 - 1} O+ O 20— = (56)
r2 7"2 X X r r - X - 4[ + 6
Therefore, without the normalization,
N Cr)

anlj(r o~ O) _ rl+1 4+ 7 i 6 l+3 + O( l+5) (57)

The corresponding b,;;(r) can be computed from the Dirac equation:
A day; .
bug(r 2 0) =~ | S Mg i) (58)

s(r)+wo(r) | dr T



4 Isoscalar-scalar interaction

IS-S interaction:

Loelr) = ~SPN i) [yt

Vit = /dr’l—[mt,(’r) = —/drﬁmt,(’r)
= 5 [ drasipt)] [pr)e(n)] [Gu] (59)

Matrix element (ME) via basis states (12| = (ab| and |12) = |cd) reads

(ab | Vi | ed) = 5 [ driaslp(r)lia(en)u(on)oelan )l (60)

where z; = (r,5;), and ¥4(z;) = (x; | d) is the SP basis in the d orbit. By employing 6(r; — 73),
this can be represented as the ME of the point-coupling interaction:

(ab | Vins, | cd) = / dry / drsaslp(r) e (o) in(22)5(r1 — o)bulen)bales).  (61)

Note that

[e'S) A

7“ — T
5(ry — 1) = ;m 2) D Vac(r)Yy (). (62)

A=0 C=—\

4.1 calculation

In EQ. (61),

n _ anlj a)(rl)y(l =j+1/2)jm( a)('F ) > < ifnlj(c)(rl) l=j+1/2)jm(c) ( 1) )
Yel@)yela) ( Gnita) (1) Ve=ermm (1) ) 7° gnu(c)(ﬁ)y(z =i%1/2) Jm(C( T1)

1
fEka)y(*l)jm(a)'f(C)(rl)y(l)Jm(C)( 1) — (a)y(*e)jm(a) “9(0) (1) Ve jm(e) (1), (63)

as well as

Dy(z2)a(@s) = <Z.fnl‘j(b)(742) (1=j+1/2)m( b)(fz)) - (ifnl?'(d)(7"2)y(l:‘j:|:1/2)‘jm(d)(f2))
() (r2) Vie=j51/2)jm) nj(a) (r2) Vie=jz1/2)jm(a) (T2

)
FinYnime) - fay ()Y ima (T2) = 90y Vo jme) - 9@ (r2)Viejjm@a (T2),  (64)

are included. Thus, for the computation, one must evaluate four terms. By utilizing the formula
(62), the ME, (ab | Vi | cd), can be decomposed into the radial-integration and angle-integration
parts. That is,

(ab | Vie. | ed) = RIPH Syt timiptmetimls — B2+ Sijmlatgmly feiml. tjmla
—RIZTS - Syt tegmlytimcteimta + RIS - Sesmpateimpieimloftimla- (65)

Notice the minus sign for (fg, fg) and (gf, gf) terms. Here the radial-integration part reads
. o(ry —r
R = [ [ a2 ) 00 M ) ),

LAY
o(ry —r
Rg{:f; = /rfdrl/ er ]g(a (1) by (rZ)M

rire

9() (1) fiay(r2), (66)

10



etc., where we assumed that p(r) is spherical. The angular-integration part, on the other hand, is
given as

Slpjmis pgmla lpjmlalpimla = / dr / AT2Y (o) v (T1)V(p)jams (T2)
[Z Z Yae (Fl)Y):k,AF?)] Vips)jsms (fl)y(P4)j4m4 (72),
A<

= Z Z <y[pjm]1 | Y/\,( | y[pjm]3><y[pjm}2 ‘ Y)\*c ‘ y[pj7n,}4>7 (67)
A ¢

where p = [ or £ depending on each term.

4.2 angular-momentum projection
See also section D.2.1 in Ref. [2]. For a direct term, after the angular-momentum projection, the

(J, M)-projected ME is given as

(ab | Vi, | cd>(J’M) — Z (— )Jc mcc(JM)Ja Je (— )]b mp, (S M)ja-g (ab | Vi, | cd) (68)

Ma,—Me mq,—mp
Ma,Mp,Mc,Mq

Because the angular part of (ab | Vi, | cd) is separable from the radial part, we have

(J,M) m (JM) mo (J,M)
S il = O ()G (e A G o s (69)

(all m)

for the (J, M)-fixed ME. Now it is worthwhile to use (/s the following argument correct? )

_\j2—m2 o
Gt |5 | V) = [l | i | mia)]” = SO Dt 35 )

Notice that CG coefficients are defined as REAL. Thus, (70)

Stmbilalpalabils = D (D TCIIRT - (e

(all m)

Z Z 5 A — O (Vi Y5 [ Vi)

(\/;;%Cr(rioj%f Vo || Vo [ Vi) (71)
From the orthogonality of CG coefficients, we can get
S bilaloibiils = Z Z jéfﬁi ' \(S/gfﬁ’cl it 1Y Vits) Dt [ V2] Ve

= 2J — Vot [ Y3 Pt Vi [ Y3 pta)” (72)

11



5 Isoscalar-vector interaction

IS-V interaction;

Loelr) = PN (Gry0m)] [Bru(r)].

Vint, = / drH e (1) = — / drLin. (1)
_ ! / dray [p(r)] [ ()] [ )]
- / dry / drsav[p(r)] [Dr)7(r)] 8r — ) [B(ra)r b(r)] . (73)

Note that

{54 (D) wo{(35) (D)}

It is also useful to note this formula:

Ay, (1)Cy - By*(2)Dy = ANWCy- BYL,D,

where we have utilized 52(7) = 7°(i)y0(i) = 1(3).

5.1 time-space decomposition

The ME of Vj,;. via basis states (12| = (ab| and |12) = |cd) is decomposed into “timelike” and
“spacelike” terms. That is,

(ab | Vips. | ed) = (ab | Vine. | cd)p — (ab | Vips. | cd) 5, (76)
where

(b | Vi, | ed)y / dry / dry 2O g ()6 — T (e alas), (7T)

and

2
0 7(1) ot (2 0 7(2) .
—5(1) 0 >¢c(x1) Uy (2) ( _5(2) 0 )wd( 2). (78)

(ab | Vins. | cd) / dry / i, PT ) sy
it (

5.2 timelike term

By utilizing the formula (62), the timelike ME, (ab | V. | ¢d),, can be decomposed into the radial-
integration and angle-integration parts. That is,

(ab | Vie. | ed)y = RIS - Sigmamgy timleltsmla + B Steimaltmly.timetimla
RIS St tegmly timleltimla + B Sjmlalegmlytmieima- (79

Here the radial-integration part reads the same as EQ. (66), but replacing g — vy, where we as-
sumed that p(r) is spherical again. On the other side, the angle-integration part, Sy ml. jmls,[Ljm].[1jm]
etc., can be idential to EQ. (67).

12



5.3 spacelike term

First we note that

sl ( gy 78 )l = SiREWGw) - GEW)iE) = P
o) ( _gpoy T8 ) tuler) = —F D) - i) = P

Pac-Poa = Fi()E(2)T(12)G(1)Ga(2) + F; (DG (2)T(12)Go(1) Fa(2)
+ Gi(E@T(12)F.(1)Ga(2) + G5 (1G5 (2)T(12) F(1)Fa(2),  with  (80)
T(12) = &(1)-#2).
Thus, for the evaluation of (ab | Vi, | cd)g, one must compute the integration of these four terms
multiplied by ay[p]d(r1 — r3)/2. Each term can be again decomposed into the radial and angular
parts. That is,
(ab | Vig. | ed)q = RIP99 Ty o 4 RIGIF , -
int. s ab,ed " [Lim]a[ljm]y,[€jm]c[€jm]a abed "+ [lim]allim]p,[€jm]c[ljm]a
+Rgbf¢{d * Tlejmla tgmly.flim]eltimla Rab cd " Tltgmlaltimly,[tim]elijm]a- (81)

Here the radial part can be the same to EQ. (66), but for different sets of f and g. The angular
part, Tipjm:pjmla [pjmlslpjm)s: Teads

Tipgm: [pgmla lpgmlslpimla = / diry / AT jima (P1) Vo) jams (T2)

i
= ZZ y[ijh ’ Y)\,CU | y[ij]3> ’ <y[]3jm}2 | Y):k,go_r | y[ij]4>
A ¢

= 3> Vpgmh [ Yaeow | Vpgomts) (Vo | Yacow)™ | V)

A ¢ v=0,%1

= Z <y[pjm]1 | Y cou | y[pjm]zs>< [pim]s | Y) (0w | Vipjmla > ) (82)

A74‘7/1)

T(12)y(173)j3m3 (fl)y(P4)j4m4 (7:2) )

where we have utilized ¢ - =) o,0_, and O':E = 0_,. In addition, by utilizing

v, TK) Z ¢ TK),\ IY,\,C/UU' & Yo, = Z % TK))\ 1* ](TJ() , (83)
this angular part is represented as

T K )\1* T1 Kl
Tipjmly lpjmlo pjmslpimls = Z{ZC P < iy | [Ya ® 0] T | Y, >}

AN Ty, Ky

{ > <y[pjm]4 | [y ® o] ™5 | y[pjm]z>} ' (84)

T5,Ko
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For the ME <ymmh | Y ® ] | y[mm]3>, notice that

K (=)™ k)
s | D5 [ Vi) = g€ (O [ D501 [ )
(T2,K2) (=)™ 1y Ka)jas
<y[pjm}4 | [YA & (7] ’ y[pjm}2> = —2T_2 " 1Cm4 g <y[m]4 Y)\U H y[pj > (85)

5.4 angular-momentum projection of IS-V interaction

The timelike term of ME, (ab | Viy:. | cd);, can be easily projected to the well-defined (J, M) with
the same technique in the IS-S case.

For the spacelike term, (ab | Vi, | cd)éi]’M), one must evaluate the angular part after the (J, M)
projection. That is,

(J,M) _ m (JM ma o (J,M)
T el = D (Z) TGN ()i QU I T ) il fpimlalpimla- (86)

(all m)
By combining EQs. (84) and (85), that is

T(J7M) ) = Z ( )]3 m3c(JM)]1]3_( )j2 mgc JM]4J2

[pil1[pilz,[pilspils ms3 mq,—m2
(all m)
Jz—ms3
CTl K1) )\1* ) C(Tl Kl ]1]3 <y Y)\O' ‘y >
);}le;l 2T1 1 [pil1 [pi]s
(T kand (5)2™2 (1 Koo T .
S et CI et (0 | 501 || %) . 89)
’ 275+ 1
e
Since Y. .. T,{IM 713 0T, K%);l 98— § 1,001k, this quantity can be reduced as
(J,M) 1
Tpihbpsla.pslalpils = ;le;l ‘5JT15MK1\/2T7 Z ITOM Ko = 2T, + 1
Ty, K1)A 1% (T3,K2)
co <3’[pj J]3> o <3’[m14 Va0l H J’Lmb>
(J,M)A,1
= 2J_|_ 1 ZZ ‘C <y[pj]1 [Y/\U H y[m]3> <y[m H y[m]2>
1 J+1
J
= 571 2 <y[pj11 [Yao]®” H y[pj}3> <3’[pj14 [Yao]' H y[m]2> ) (88)

where it can be independent of M. Remember that p =1 or . As shown in EQ. (J.20) in [2],

[Y)\U](J)Hy[l)ﬂ2>* = <3’[pj12 {[YAU](J)}THJ’M4>=<3’[pj12
= (=)t <y[pj]4 Yol Hy[pj]2>, (89)

where we also utilized that, for the DBME, (f || AT ||i) = (f || A]| ).
Final result reads

%30 || V)

<y[pj14

, (M) ff99  p(J.M) fa.9f (M)
(@b | Vine. [ ed)s™ = Roped * Tjlauiteietea + Bavied * Tilatesio.eilelila
gf.fg (JM) 99.f f (JM)
TRabed " Tt tiitelesla + Labied ™ Teilatsloisleliila: (90)
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6 Isoscalar-pseudovector interaction

[S-PV interaction is given by the following Lagrangian density.

Lint(r) = =25 [Drhab(r)] [Br)sye(r)] .
Vint, = /dr?—tmt,(r) = —/drﬁmt,(r)
= 2 ar [l ()] [6r" o ()]

= aISQ_PV /drl/drz W(m)vo%wﬂm)} d(ry — 1) WT(T2>’YO’Y5VM¢(T2)} . (91)

Note that the coupling coefficient must keep that ays_py > 0 for the consistency with the one-pion-
exchange model. Note also that,

(0 ) (5o Jem = (0 )G 5 ) (5 7))
A ) (7 )= (00}
=y ) (7o) wesa={-n (7 o)} (92

Therefore,
Vint. = 04132_13\/ /d"“l /drzw("“l)w(ﬁ) [v5(1) - 75(2) — w(1,2)] ¢ (r1) P (r2)d(r1 — 72),
o(1)-o(2) 0
w<1,2>:( ()0 ( Uu)'a@)). (93)

7 Isovector-pseudovector interaction

IV-PV interaction is given by the following Lagrangian density.
3

Ling.(r) = y D [ syt (r)] [D(r)iasy ()] (94)

where 7, is the isospin operator. The corresponding Hamiltonian (interaction) reads

Vint. = / drHin: (r) = — / dr L (1)

- owvery / drz P)Fays b (r)] [0 Farysy ()

_ qu PV /drl/drzz (r) 75 (r1)] 0(re — 7o) [$(r2)Tasy ()] . (95)

Note that the coupling coefficient must keep that ary_py > 0 for the consistency with the one-pion-
exchange model. By using the formulas,

v%v“z(é _0[>(0 I)W 652}:{—75, —(g 2)}
= (o o) (7 0) esa={-n (7 2)} (96)
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the IV-PV interaction can be represented as

Vine, = 2555 Ly [ s (r)(r3) Ds() - 352) = (1.2 7(1) - 7)) (r)5 s — 72)

o(1)-o(2) 0
w<1’2):( ()0( 0(1).0@)). (97)
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8 appendix for movie

Schroedinger equation for electrons in the atom:

ﬁo ’1/Jn> = b, ’wn>

where E, = — czﬁ o = 6—2 ~ L — MeMNuycl.
! : 2n? 7 47-‘-60 - he N 1377 a Me + MNucl.

R _,
Hy=——

Other equations: X . ) ) R R
HO — H = Ho + HLS + HDarWin + TRela
Hyg - - - spin—orbit coupling
Hparwin - - - Darwin term

TRela - - - relativistic kinetic correction

P2
2

V<T) = VCentral("') + VLS(’I‘)f' s

~

His=X(r)-5 with [-§=

Hiy(r) = EY(r) , where

N h? N N .
H = _EVQ + V<r) + HLS + HDarwin + TRela .
Time-independent Dirac equation:

[—mcm- V + BMcE + V(r)] W(r) = Ep(r) .
Y(t,r) = exp {—z’t%} w(r) .
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