Basic Formalism of Relativistic Nuclear Many-body Theory
Tomohiro Oishi

1 Convention and basic formulas

See TABLE 1 for basic conventions.

TABLE 1: Conventional rules in this note.

Name Quantity Definition
flat metric 9" = gu = diag(+, —, —, —)
4D coordinate ah = (20 2, 22 23) = (ct,x,vy, 2)
x, = (xg, 1, T2, T3) = (ct,—x,—y, —2)
4D derivative ot = % = (C%t, — 6)
O = % = Gu9” = (%7 6)
4D momentum = (% p',p? p*) = iho* = (Z.p)
Pu = Gub” =(£,-p)
gamma matrices = (7°79) = (5, 57)
reduced derivative YO, = v, 0" =199, +7-V
2 Units

We assume the (1 + 3)-dimensional time and space. In the MKSA or CGS-Gauss system of units,
except the electro-magnetic terms, the Dirac equation is given as

zh%w(t, r) = [—ihcﬁ’? -V + BME + W] Wit T, (1)

where W is some external potential in the unit of energy (e.g., MeV). From 3 = I and "0, =
B0 + 7 -V, it is also expressed as

[ihcy*0, — Mc® — BW] (t, ) = 0. (2)
The Lagangian density, which works as the source of this equation, reads
L=1 [ihcv“@u — M — BW} (), (3)

where ¢) = ¢T3, Note that, because the Lagrangian L = [ d*rL and Mc* have the dimension of
energy, 1 is in the unit of fm™. As coincidence, if some interaction term(s) has the form,

L1 =Xy (x), (4)



then this wild-card part X must have the dimension of energy, e.g. in MeV. This knowledge may
help us, for example, to infer the unit of the coupling constant.

For dimensional analyis, the action follows [S]p = [[dt [ d®rL], = ET, since Lagrangian (as
well as Hamiltonian) keeps the dimension of energy, [d*rL],, = E = M L*T~?. Thus, Lagrangian
density has [£]p = FL™3. Note that, in the MKSA or CGS-Gauss system of units, the dimensional
analysis concludes that,

[ h ] _B (5)

[c? - mass]p = [energy]p = he
length |

2.1 Plank’s natural system of units

In the Plank’s natural system of units, we assume that A = 1 and ¢ = 1. With this assumption,
dimensions of mass, energy, length, and time can be related as

Lnlne} e (6)

[ress]p = [energy] !
m = ner =
ass|p = |energy|p length | ,

TABLE 2: Dimensional numbers of some quantities, [Quantity]p.

Quantity In MKSA or In Plank’s
CGS-Gauss natural
mass M M+t
time and length T and L Mt
energy E = MIL*T? M+
LorH EL3 M*
V() L~ M+
¢*(x) (scalar boson) E-'L—3 M2
Ar A, (x) (vector boson) E-'L3 M2

3 Lagrangian

In the relativistic nuclear theory (RNT), nucleon is described by a Dirac spinor 1 (x), where z =
{r,s,7}. The phenomenological Lagrangian density reads

L = ()], 0" — Mp(z) + Ly + L1 (7)

Here Ly is the kinetic and self-interaction part of mesons in the model. The interaction part, L,
on the other hand, includes all the possible terms of interactions. See TABLEs 3 and 4 for details.
For meson terms L/,

—

Ly = % [8#08“‘7 —myo } +U(o) - % [QWQW - miw“w“] - [TWTW - mf)ﬁﬂﬁ“

N | —

1 1
+5 [0,F0F — m2R7] — SF, ™. 8)



TABLE 3: Kinetic and self-interaction terms included in £y;. Label (i) indicates isoscalar (IS) or
isovector (IV). Label (ii) indicates scalar (S), vector (V), pseudo-scalar (PS) or pseudo-vector (PV).

(i) (ii) (T,J7) Meson
IS S (0,0%) o +3 [0,00"0 —m20?] + U(o)
\% (0,17) wh —3 [ W — m2w,wh]
with Q,, = d,w, — Ow,
PS (0,07) X
PV (0,17) X
v S (1,07) X
v (1,17) 7 [T — w2
with T, = 0.0, — Oy
PS (1,07) 7 +1 0,77 — m27T]
PV (1,17) X
Coulomb —%FWF’“’

with F,,, = 0,4, — 0,4,

In the meson-exchange model,

L; = —goot) — gu[hy,w" Y] — g1, (TP )Y] — ige[00ys(FT)Y] — ﬂ‘i—[@b%mﬁ“(? )]

el (157 o) 0

In the point-coupling model,

£ =~ 25O gy — BN g gty - OV g1y
- R st sl 57 - —W‘SV( s [mww
—emm‘( ! (10

4 Equation of Motion

The euqation of motion (EOM) reads

g (mg—fqz-)) B g_; =0 (11)

Here ¢;(z) is generally utilized for ¢(z), A,(z), or meson fields.



TABLE 4: Interaction terms included in £;. Label (i) indicates isoscalar (IS) or isovector (IV).
Label (ii) indicates scalar (S), vector (V), pseudo-scalar (PS) or pseudo-vector (PV).

(i) (i) (T,J7) Meson Meson-exchange Point-coupling
IS S (0,07) o ~goo —aus-s(p) [VY][UY] /2
—dis-s(p) O[]0 [Y1] /2

Voo(0,17) wh — G [ y] —aus—v (p) [y v] [Py ) /2
PS (0,07) x X X
PV (0,17) x X X

v S (1,0t) x X X
v — o[ (TP )V —arv-v(p) [y Tl [y 7] /2
Ps (1,07) = —ig [1hy5 (T7) )] —ary_ps(p) [PysTY] [y TY] /2
PV (L,17) 07 =Ly 0t (7R —arv—pv(p) [y, 7Y sy 7l /2

Coulomb —e¢'yMA“ (1 ) Y

4.1 IV-PS (pion-nucleon) coupling

Focusing on the isovector-pseudoscalar (IV-PS) coupling, the pion-exchange model is defined with
the following interaction:

Lve = @ [i7,0" — M]¥(x)
~igny-rs [Fr(R)] + 5 [0,70F — m?77] . (12)

On the other side, based on the point-coupling (zero-range) model, it is defined as
Lec = 9 [i7,0" — M|¢(z)
QIV_Ps - g ooy 9
(¢75T¢) (w'yg,Tw) + 3 [8u7r8 T—m 7r7r] ) (13)

neglectable

Thus, roughly speaking, these two models can be related as

—igv_ps7(z) «— — aIVQ_PS VTYY(). (14)

In the following, we explain the background of this analogy. The factor 1/2 is indeed not correct,
but the derivative of the square term works instead.
First we note the equation of motion for ¢(x) of the pion-exchange model. That is,
0Lye  0LuE
oy — =0,
6(9uvt) oyt
0 — 70 [17,0" — M| (x) + igrv_psyoYs (7)Y (x) = 0,
[(7u0" — M](2) = igv—ps®TY59 (). (15)




Second, from the equation of motion for ¢(x) of the pion-exchange model,

a 5£ME . 5£ME
'ué(au’ffa) 57Ta
0,00, — [—mPm,(x) — igIV—PS'75TaEZ)w(l‘)} =0,

[0,0" +m?] ma(2) = —igrv_psY5Tatt().

=0,

Then, we suppose the heavy-pion limit. In this case, we can naively approximate as

P _
Ta(@) = (),
m
By substituting this into the EOM of (), we find that

[i7,0" — M]¢(x) ~ —anry—ps (V5Tat0?) Y5Tath(),

(17)

(18)

where —ary_ps = (—igrv_ps)?/m?. This is indeed the EOM but obtained from the other, point-
coupling Lagrangian. Notice also that, for the correspondence of two models, ary_ps > 0. Its unit
must be in, e.g., MeV-fm?, since Lpc and 1) (z) have the units of MeV-fm~3 and fm~3, respectively.

4.2 1IV-PV coupling

Focusing on the IV-PV coupling, the pion-exchange model reads

- 1
—gv—pv (Vs) T - M + 3 (0,7 - "7 —m’7 - 7] .

On the other side, based on the point-coupling model, it is usually given as

Lec = ¢[inu0" — M]y(x)

_ aIV;)V (zﬁw%@ 7. (1/_)7“75@ 74+ (% [(%7?8#7? — m%‘fﬂ)

Thus, roughly speaking, these two models can be related as

av—_pv

—glv,pvﬁuﬁ(x) < — 5

(Vyy5) 7
In the following, we explain the background of this analogy.

e The equation of motion for ¢ (x) from Lyg:

o Olus 0Lws
“5(@0)  ouT

[(7,0" = M (2) = =g 7 - T 59 ().

e The equation of motion for 7,(x) from Lyg:

o OLue 6L
"6(0,ma) 0m,
Oy (0" — gTa - YY" v51p(x) | + mPme(z) = 0,

[dﬁ“ + mﬂ To(T) = 9740, (@7“75@ )

=0,

neglectable

(19)

(20)

(23)



By using the free-meson Green function (propagator),

N C )
Aﬂ(m—y):/ﬂ— = [0,0" + m®] Ar(z —y) = 0(z —y), (24)

1674 p?2 — m?

then the pion field can be formally solved as

ma(e) = gm0 [ dyate =) [0, (5r250)] - (25)

With the partial-integration technique combined with the vanishing-flux condition, one finds
that

Ta(z) = 0— g7, / dy [0 An(x —y)] - (V7" 5¢) )
O ma(x) = —gma / dy [0570 An(z —y)] - (97" %9) - (26)
In the heavy-pion limit, 81(,@8,(}')A7r(:c —y) ~ —g,,0(x —y)/m?. Thus,

0,7 =~ %F (Vv y59) - (27)

m

Therefore, the EOM for ¢(x) is approximated as

2
. [ N
[Z’Vua” — My(x) ~ _WT (WV“%W - Ty s (). (28)
This equation is the same to that obtained from Lpc, with a relation,
2

g
T2 = —amv-pv. (29)

Notice that, for_the correspondence of two models, apy_py > 0. Its unit must be in, e.g., MeV-fm?3,
since Lpc and ¥1)(x) have the units of MeV-fm ™3 and fm=3, respectively.

5 Quantization of Dirac spinor

In general, the spinor field consists of particle states with £ > 0 and anti-particle states with
—F < 0. Thus, it can be formally expanded as

U(z) = ) di(w),

Ys()

(x| s) = /E B s (w)ens (o) e], (30)

as well as,
wl@) = [ B [ul po)e s+ ol @], ], 3
E>0

where us p(z) = (v | s, E) and v, _g(z) = (x| s,—FE). Here the index s indicates the spin com-
ponent, whereas E > 0 means the eigenvalue for certain Dirac’s Hamiltonian. Assuming this
Hamiltonian as h, these basic states satisfy that,

hig g(x) = Bug p(z), hvs_p(z) = —Euv, _p(2). (32)



In the following, we assume that h does not depend on time apparently. Thus, from Dirac equation,

ihdyu(x) = hu(x), it is represented as
U p(r) = e’
Note the following points.

e Completeness of basis:

1_2/

Thus, from the overlap of y and =,

win=3 [ 4B il ) p(a) + 0] _p (@i (a)] =50 - o)

dE |s E) (s, E| +|s,—E) @,—E\].

From Eq. (33), it is also concluded as
S [ 4B [ul s@ues@) +olp(w)ens(@)] = oy — ).

e Orthogonality of basis:

(r,E'| s,E) =6(E — E)bps, (r,—FE'|s,—E)=0(E"— E)d,s.

— /d?’ruT o (r)us p(r /d3rv r)vs —p(r) = 0(E" — E)d,s.
Also, remembering £/, E > 0,

(r,—E'|s,E) = d*ro] v (T)us p(x) =0,
(r,E'|s,—FE) = /d?’rui’E,(q:)vs’E(x) =0.

e Spinor field must satisfy the anti-commutation relation at the same time:

{vlw), v@)}, ., = oy —z)d.,
{0 W), ¥s(@)} sy = {0IW), ¥i@)}, _,, =0

For the first relation, we find that,

(. v}, =2 [z [ e

[uI,E’ <y>us,E‘<x) {CI,EH CS,E} + UI,_E'<y)U3,fE(x) {bi,_EH bs,fE}
+U:,—E’ (y)us,—E(x) {biﬁEH Cs,E} + U:[,fE/ (y)U&_E(«T) {CLEM bs,—E}]

Therefore, to keep consistency with Egs. (36) and (39), the operators must satisfy that

{C;[’E,, CSVE} = {bIﬁE/, b&_E} =0,s0(E' — E), {others} =0.

Yo==xo

(33)

(35)

(37)

(41)

(42)

Notice that above formulas can work even in the case with general interaction(s) included in the

Lagrangian density.



5.1 Hamiltonian

In general, Lagrangian density is written as £ = ¢ (i @ — M) (z) + ¥ X4 (x). The corresponding
Hamiltonian density reads

H(z) = (aOT/JT) 5(2(JE¢T) + 5 ((;fw) Qo) — L (43)
= 0+ ¢in® (Oop) — Ui [7°00 + 7*0k] ¥ () + My () — pXe)(x)
= ol [~id -V + M - BX] b(x) = lhpu(a), (44)

where hp indicates the Dirac single-field Hamiltonian. Note that, however, here I neglect the
exchange (Fock) tE‘IIIIb which could appear from the interactions 1) X1)(x). The proper Hamiltonian
is then given as H(t) = [ &*rH(z).

By employing the basis expansion introduced above, it can be represented as

Z / dE' / dE / dr
[ @) 4ol ] o] Blues(@)eas = vuop(@)hes]. (45)

where we have used izDus,E = Fu, g and fALD%,E = —Fv, _p. From Egs. (37) and (38), one can
find that only the CIC* and bib* terms survive. That is,

H =) / dF' / dE [ei“E’*E el pies s — e*”(E'*E)/hbi,_E,bs,,E] ES(E' — E)ps +0

=y / dE [cLEcs,E—b;_Eb&_E E. (46)

This equation almost looks as the proper form for the total energy. However, the second term means
that bl creates the negative-energy particle. To remedy this wired property, the anti-particle states
are re-defined as a, = bi and ai = b,. By this procedure, finally we can find that

H = Z / dE [C;EC&E + aiﬁEas,,E] E — const. (47)
The vacuum is then defined as the state to become zero for ¢, and a,.

5.2 general representation with basis

In practical calculations, the Hamiltonian is represented with the choosen basic states. That is,
:Z/dE’/dE/d3r
l @)l g+ 0] @ | B (@) + v (@b, (48)

where u(z) and v(x) are, however, NOT the eigenstates of hp anymore. Thus, the labels E and E’
are now general ones: those are not definitely for energies. By using the matrix elements,

h%) o) = / dru (@) hpusp(e), By o) = / &rol_p (0)hpu,p(r), ete,  (49)



then it can be formally given as

Z/dE//dE hf“pg)’sE ) iE’CSE+hr E’sE( )b:[,—E’CS’E

hr E' s, E(t)ci E'bs Bt hr —E's, E( )bi,—E’bS,—E]‘ (50)

Within the no-sea approximation, we neglect the anti-particle components, namely the 2nd to
4th terms in the Hamiltonian. In this case, one finds the usual form,

Zh CkCl, (51)

where the simplified labels k = {r, E’'} and | = {s, E} are employed. The vacuum-expectation
value (H(t))4 is then a functional of several densities, similarly in the non-relativistic multi-fermion
models. The Bogoliubov transformation can be also determined for ¢! and ¢, operators.



Basic Formalism for Meanfiled, HFB, and QRPA Methods

Tomohiro Oishi

6 Operators
Creation and Annihilation Operators;

{Ca; Cg} = dagp
{carcg} = {ch,ch} =0

{w) O (y)} = b(z,y)
()} = {1 (@), 91 ()} =0

7 States

Vacuum;

Slater Determinant;

o, 00, o) = s (=) Jap) lap,) - lapy)
T PeSy
e chy [0
f —
Cﬂ |Oél,052, 7aN> - |57alya2a ,OéN)
Completeness;
1
N o Jar-an)(a--an| = g,
Carean
Z - an) (o --an| = 1x,

ap<ag<--<an

0’+Z N' Z |061 OéN| :1]:

ap-QN

F = .7:169.7:2 - DFND--



General A-body State;

[Wa) = W) = \/—ZD an)el,cly el [10)
{ar}
— ZD caq) | - an)
{ak}
— Z D(cvy - oq)]ay - aq)
ap<an<--<opg
D(akal) — (—)D(...al...ak...)
Normalization;
{ak} {61}
= EZ’D(OQ"'O[A”Q: Z |D(Oél"'OéA>|QEl
{ar} ap<ag<---<ag
8 Density Matrix
Several Representations (even with Time-Dependence);
o = dhea
P = i y)d(a)
psl?f()t),\I/A(t) <‘ij4(t) p > <\I”A(t)‘cﬁca \IJA(t)>,
= (el pu,wwim|B)
s = (Ta®) |5 [0a®) = (Wa(0) | §1(m)d() | wa0))
= <95 ‘ DW, (£),9 4(t) | y>
~ (0B
PUL (1) Wa(t) = ZZ @) PG5 iy (Bl
= /d:l:/dy|23> p\;’j(t)gllA(t) (yl
Density Matrix of |W4);
o = <\PA e \IJA> (= {a] puava ] B)
= | ZZD 0|(CBA Cﬁl)cTﬁca (Clq "'CLA) |0> D(al"'aA)
{Br} {ow}
(A-D! ‘ .
= Al Z [D (ﬁ,’yg,)—i—(—)D (72767“'>+“'](Aterms)
Y2:yA

X[D(Od7727"')+(_)D(’727057“')+'“](Aterms)
= A Z D*(B,72 -+ va)D(e, 72 -+ 7a)

72 YA

= (A) > DBy 7a)D(e,y27a)

Y2 <<y

(69)

(70)

(71)

(72)



A = (a | $ i) [0a) (= @ pwaws|9)

= ZZ% <\I/A‘cﬁca \IIA>¢a(x)
B «
= ZZ% v [ZZm ) o5 m] )

Density Matrix of the Single Slater Determinant;

p(aﬁ) = <a1 ceeQiy ‘ CECa

) 0 (a>ay)
o= {1 (agaj)

ozl---ozA> X Oap;

p

po= ZZ\a DBl =D"13)

Jj<aa
poo=p
9 Hamiltonian

Basis Representation;

1 N
H=T+V = Ztaﬁc:&cw + 1 Z VaB s (Cﬁcoz)T (cscy)

ary afyo

foy = (| T[7)
apns = 3 [@B1V[78) = (a0 ) — (7 63 8) + (0 B & 7 5 0)]
Local Force Assumption:
(@Y |V |ay) = 02", 2)o(y', y)V (2, y)

Expectational Value via Slater Determinant;

Ey = (av--rany|H|ay-~an)={a1---an|T+V|ay - -ay)
oo 1 o R R
= Zeptp,p""zl Z Quev (B — V]
(/HéV)

= Ztkk+_ Z UZ]Z]

(i#4)=

I LLILE iz<<¢j|vm>—<mvuz'>>
J(#1)

GITR) = /dm/dm 7| T| 7) ()

(2)
G|V kD) = / d'dy/ / dedydt ()6 (y') &'y | V| 2y) du(@)buly)

(2)
_ / dxdyd; (x)5(y)V (@, y) o () di(y)

(99)

(100)

(101)

(102)
(103)
(104)

(105)



Coordinate Representation;

T:/dx/dxw | T 2) ()

@) o
V- . / 'ty [ dedyi @)1 ) @' |V ) ) i)
1 (2) R R . .
- ; / dedydt (@)D )V (2, y)d (@) d(y)
External Local Field;

‘/ezt - Z |‘/;xt|’yccy
/daz/dazqu 2| Vgt | ) ()c Cy

= [ [ il ) (| Ve ) 0)

= /d:mp( ) emt('x)w(‘r)

(0| Vg [0 - Z/dm e (2)4(2)

10 Hartree-Fock Method
HF-Ground State as a Slater Determinant;
W) =lon--an), Eo=(V[H|V) (H=T+V+ V)

Variational Principle;

6 (Bo—Yyes (051 05)
365w)

Self-Consistent Equation;

{—h—2V2 + Vi (w) + ‘/emt(w>:| Palw) — /dyVF(way)%(y) = €ada(w)

Z /dy% V(w,y)ds(y)

;éa) 1

Ve(w,y) = Z P5(y)V (w, y)ds(w)
B(Fa)=1
1-Body Density;

pr):ZW(rs)?ﬁ(rs):ZZ(a\rs cl Z |7rs)c

B

(106)
(107)

(108)

(109)

(110)

(111)

(112)

(113)

(114)

(115)

(116)

(117)

(118)

(119)



(Wlpl) < p(r) = (V]p(r)|¥)

_ <a1...@N

Energy Density Functional (at HF-level);

Enrlp] = (Y[p]| H[¥]p])
Thl = 5 > V(o)
EH[P] =

EF[P]

Eea:t[p] =7

> D dulrs)eh Y ds(rs)es
s a 3
= ZZZQS rs)ps(rs)p (50‘

al...aN>

=30 fours

s a=aj

=TI[p] + Eulp| + Er[p] + Eextlp]

(x =1mrs)

%/dx/d:c"/(x’,x)p(f/)ﬂ(@
0

11 HF + Bogoliubov Method

Hamiltonian (with Einstein’s Rule);
H' =H — AN = (tgm —

Bogoliubov Transformation;

{ bk = U:}CCl + V,kc
bl = Upe! + Virey

b c Ut
(i) =w()= (o or)
Unitarity;
W — Utu +viv. - UtV 4 viu*
S\ VTu+Uutv vivr4+UTU*
W —
W= ( VUt + vt vvi+ T
HFB Vacuum and Normal Ordering;
bi |.) =0,
(| X,
Density-Tensor and Pair-Tensor;
Pkl = < C;Ck > = VlmV,;;n s
= p=VVT=1-U0U =)' |,

C
T

1.
Akm ) Chcom + kal,mn(clck)T(cncm)

= Uppbm + Vi b1
c =U* bl + Vb,

m-m

Jo(a)=(v i) (i)

) (1 0> {UTU+VTV:1
“lo1)7 -

uut+vevt UVT+V*UT)_<1 0) {UUT+V*VT 1
~\o01

VIU+UTV =0

UVt +v*UT =0

(|bl =0

b):|.)=0

Rl = < | CiCk | > = (—)/ﬁk = Ulmvk*m

k= (—)kT =VU" = -UVI

(120)

(121)

(122)

(123)

(124)

(125)

(126)
(127)

(128)

(129)

(130)

(131)

(132)

(133)

(134)

(135)
(136)



Meanfield and Pairing Potantials;

1 1
~ ~ * ~ *
Uit = Okminfni;,  Dw = 5 VkLmnmn A = o Umn ki

Quasiparticle Representation of H' = H — AN;

H = HO9 4+ g® 4 gWw

1 1
HO = (|H'|)=tr [(t—)\l)p+§Fp—§A/<;*}
I (ct ¢) (h=2X1 A c
@ _ L. . _
po = L (s Y Y

T T _
ay o, [(UT V) (h—al A U
= bmbn{ SN ' AR I

H® 4 pe = le bi

an

1.
H(4) = Z'Ukl,mn : (Clck>T(C”Cm) :

HFB Solution (U, V);
H =H" 4> " Eblb +0+ HY
k
Energy Density Functional (at HFB-level);
Elp, k"] = ([H'|.) = Eurlp, K, K] + Epainlps £, K7]
1 1
= HO —¢r [(t —Al)p+ 2Fp — —A/-i

€ o€
a—:<t—/\1)kl+rkla Akl[pﬂi 'KL]
Pik

hkl[pa Ry K ] - 6’@@1

12 Finite Amplitude Method

FAM Linear Responce Equation;

() - (EL)
s = (@RI

D
8y
I
s

=

5H32(w) = +UT6hV* — VT(SA(_)*V* + UT5A(+)U* _visnTur
5H212,(w) — —VTIShU + UTSA*U — VISADV L UTSHTY

(UF V) (A=Al A v
{ N N AN

(137)

(138)
(139)

(140)
(141)
(142)

(143)

(144)

(145)

(146)

(147)

(148)

(149)

(150)

(151)

(152)
(153)



13 Wick’s Theorem

Philosophy;
. T0]=(-10|-)+N[O] (154)

Formulas;

T () ()] = :(m) - p(an) :
+ ) (=) v(an) | =) d(ep) - (o) :

PeS,
Z |77Z) xPl xPQ) ‘ _> <_ | @/J(JZP3)77/)(.IP4) | _> : ¢($P5) o ¢<xpn) :
PeS,
Z —[Y(@p)(en) | =) (= ¥@n,_ )0 (zr,) | ) (155)
PeS,
dy---dy = :dy---dy: (dk<—ck cl)
+ Z ‘dpldp2 dps"'dpn .
PeS,
+ > (= ldpdp, | =) (= |dpdp, | =) s dp, - dp, :
Pes,
+ Z —|dpdp, | =) (= |dp, dp, | =) (156)

PeSy



Dirac HFB equation from the sigma-nucleon model

14 Introduction

After reading Ref. [2], here I try to formalize the HFB equation from the relativistic Lagrangian
(density), which is, however, simpler than the original version. Namely, it contains only the nucleon
Y(z) and the sigma meson o(x)'. That is,

Ll 6, 0] = §(7"9, — m) b(x) + % (000,0 — 1%0?)

—9015019(90)7 (157)
where O = (%, —6) and 0, = (%, +§) Thus, conjugate fields are
oL - .
ly(a) = s = it = iv(a).
Hd,*(x) = 0,
oL
,(z) = 5a00) %o (z) = o(x). (158)

Therefore, the Hamiltonian (density) is given as
H = Ty + 1,6 - L
= iWp(2)7" () + 8o () - Qyo(x) — L
= 044 [7'O0 +7°02 + 7’05 + m] ¢()

+% [dQ + (Vo)* + uQUQ(x)} + oo,
" - /d\/;H:HNJrHMJrH[, (159)
where
Hy = [ Vi) p+ pm)v(a),
Hy = / de% [H§+ (Vo)? + p2o?(x)|
o = [ Vg i@ola)ie) (160)

Remember that 8 =%, a,, = 79", and p, =9, (n =1,2,3).

15 Equations of Interacting Fields

15.1 sigma meson

First we solve the o-meson field. Klein-Gordon equation for o(z) reads

. 0L oL
d(ora)  do
= (0"0u + 1i?) 0(x) = —goP(x)¢(2). (161)

!This model is indeed Yukawa model as written in Eq. (4.112) in the textbook [1].



By using the Green function D,, which satisfies
(0"0, + 11%),, Doz —y) = 6(x — ), (162)
the formal solution is given as
o) = [ dyDae ~ 1) ()50 ) (163)

As well known, this Green function is indeed propagator of the scalar field:

d'k <_) —ik(z—y)
D,(x —y) —/ o) l{:2—u2+iee . (164)

15.2 nucleon

Next we consider the nucleon field. Within the Heisenberg representation 1 (z) = e4)(0, z)e "1
the field operator follows the time-development equation,

0

i (@) = [6(), H] = [b(x), Hy + Hi)

= [ Ve [6(a). vl @) (@ po+ B+ g0}, vlw)]. (165)
The first plus second terms yield the usual formula:
i) Hy) = [ dVab(@)d!(w) (@ p o+ pmb, v(w)
- [ @Vt (w) @ p+ ), wlw)(o)

= /deé(a: —w){a - p+ pm}, Y(w)+0
= {d-p+8m} ¢Y(x), (166)

from v (2)yT(w) = §(x —w) — T (w)ah(z). This result is consistent to the free Dirac equation. From
the similar calculation, the third term yields

[W(2), Hi] = g7 o (2), (167)

consistently to the interaction term in the Dirac equation. Note that its conjugate version follows
the similar form. Summarizing these results, we have obtained

9 p(a) = (), H) e [0~ (@ P+ S, 0(a) = g Pow(a),

0 . . -
zaw(x) = [W(x), H] & YN(x)[io, — {d p+ pm} ] = g-¢(x)o(z), (168)
where the source term g,7o0(z) shows up. It is useful to note that

T [0@)d(y)] = Se(r,y) + No [p(2)d(y)] = Sp(,y) + ()b (y)v (),

Se(@,y) = (017 [u(@)d(y)] | 0) (169)



from the Wick’s theorem?, where N, means the normal ordering with respect to the free vacuum:
<O | No [...] ] 0>. The Sp(z,y) is the Feynman propagator of the free fermion, satisfying

(170, —m], Sp(z,y) =d(x,y) [@'7080 —5-p— m]x Sr(z,y) =0(x —y)
& [i0,—{ad-p+Bm}], Se(z,y) =~"6(x —y).  (170)

Using this Sp, the fermion (nucleon) field can be formally solved as

vle) = [ dySe(e)gnot)viw) ()
We can also follows the time-development of the fermion propagator. That is
Gle.y) = (A|TY@)b) | A)
= Sr(z,y) + (A (=)d@)e(r) | A). (172)

This G(z,y) can be also interpreted as the density tensor, p,, = G(x,y), in the usual meanfield
framework. For this propagator, one finds

10, —{@-p+ Bm}], Gle.y) = 13z —y) = (A| D) [i0 —{a@-p+ Sm}], d(z) | 4)
= 7"8(x —y) — (A dW)g (@) () | A)
(770, —m], G(z,y) = 6z —y) g (A|Y(y)o(a)p(z) | A). (173)

From Eq. (163), o(z) can be eliminated:
70, ], Gl = 3(a =) + 62 {41 6) [ dwDafe ~wiwwiwvto) | 4). (70
Notice that the quadratic term of ¥1)yn) appears in the RHS.
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