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The matrix equations of the relativistic random-phase approximation (RRPA) are derived for an effective
Lagrangian characterized by density-dependent meson-nucleon vertex functions. The explicit density depen-
dence of the meson-nucleon couplings introduces rearrangement terms in the residual two-body interaction.

Their contribution is essential for a quantitative description of excited states. Illustrative calculations of the
isoscalar monopole, isovector dipole, and isoscalar quadrupole response of 2°®Pb, are performed in the fully
self-consistent RRPA framework based on effective interactions with a phenomenological density dependence
adjusted to nuclear matter and ground-state properties of spherical nuclei. The comparison of the RRPA results
on multipole giant resonances with experimental data constrains the parameters that characterize the isoscalar
and isovector channel of the density-dependent effective interactions.
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I. INTRODUCTION

The success of models based on the relativistic mean field
(RMF) [1] approximation in describing structure phenomena,
not only in nuclei along the valley of -stability, but also in
exotic nuclei with extreme isospin values and close to the
particle drip lines, has also renewed the interest in theoretical
studies based on the relativistic random-phase approximation
(RRPA). Although several RRPA implementations have been
available since the 1980s, only very recently RRPA-based
calculations have reached a level on which a quantitative
comparison with experimental data became possible. Two
points are essential for the successful application of the
RRPA in the description of dynamical properties of finite
nuclei: (i) the use of effective Lagrangians with nonlinear
self-interaction terms, and (ii) the fully consistent treatment
of the Dirac sea of negative energy states. Many studies over
the last decade have shown that the inclusion of nonlinear
meson terms in meson-exchange RMF models, or nonlinear
nucleon self-interaction terms in relativistic point-coupling
models, is absolutely necessary in order to reproduce
ground-state properties of spherical and deformed nuclei on
a quantitative level. Techniques which enable the inclusion
of nonlinear meson interaction terms in the RRPA frame-
work, however, have been developed only recently in the
calculation of the relativistic linear response [2], and in the
solution of the RRPA-matrix equation [3]. For a quantitative
description of excited states, the RRPA configuration space
must include not only the usual particle-hole states, but also
pair configurations formed from occupied states in the Fermi
sea and empty negative-energy states in the Dirac sea. Even
though it was known for a long time that the inclusion of
configurations built from occupied positive-energy states and
empty negative-energy states is essential for current conser-
vation and the decoupling of spurious states [4], only re-
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cently it has been shown that the fully consistent inclusion of
the Dirac sea of negative energy states in the RRPA is essen-
tial for a quantitative comparison with the experimental ex-
citation energies of giant resonances [3,5].

The RRPA with nonlinear meson interaction terms, and
with a configuration space that includes the Dirac sea of
negative-energy state, has been very successfully employed
in studies of nuclear compressional modes [3,6,7], of multi-
pole giant resonances and of low-lying collective states in
spherical nuclei [8], of the evolution of the low-lying isovec-
tor dipole response in nuclei with a large neutron excess
[9,10], and of toroidal dipole resonances [11].

An interesting alternative to the highly successful RMF
models with nonlinear self-interaction terms, is an effective
hadron field theory with medium dependent meson-nucleon
vertices. Such an approach retains the basic structure of the
relativistic mean-field framework, but could be more directly
related to the underlying microscopic description of nuclear
interactions. In particular, the density-dependent relativistic
hadron field (DDRH) model [12] has been successfully ap-
plied in the calculation of nuclear matter and ground-state
properties of spherical nuclei [13], and extended to hypernu-
clei [14], neutron star matter [15], and asymmetric nuclear
matter and exotic nuclei [16]. Very recently, in Ref. [17] we
have extended the relativistic Hartree-Bogoliubov (RHB)
model [18] to include density-dependent meson-nucleon
couplings. The effective Lagrangian is characterized by a
phenomenological density dependence of the o, w, and p
meson-nucleon vertex functions, adjusted to properties of
nuclear matter and finite nuclei. It has been shown that, in
comparison with standard RMF effective interactions with
nonlinear meson-exchange terms, the density-dependent
meson-nucleon couplings significantly improve the descrip-
tion of symmetric and asymmetric nuclear matter, and of
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ground-state properties of N+ Z nuclei. This is, of course,
very important for the extension of RMF-based models to
exotic nuclei far from B-stability (description of the neutron
skin, the neutron halo, pygmy isovector dipole resonances),
and for applications in the field of nuclear astrophysics.

In this work we derive the RRPA with density-dependent
meson-nucleon couplings. Just as in the static case the
single-nucleon Dirac equation includes the additional rear-
rangement self-energies that result from the variation of the
vertex functionals with respect to the nucleon field operators,
the explicit density dependence of the meson-nucleon cou-
plings introduces rearrangement terms in the residual inter-
action of the RRPA. The rearrangement contribution is es-
sential for a quantitative analysis of excited states in the
RRPA framework. In Sec. II we present the formalism of the
relativistic RPA with density-dependent meson-nucleon cou-
plings, and derive the RRPA equations in the small amplitude
limit of the time-dependent RMF. The results of an illustra-
tive calculation of multipole giant resonances in 2**Pb are
analyzed in Sec. III. Section IV contains the summary and
the conclusions.

II. FORMALISM OF THE RELATIVISTIC RANDOM-
PHASE APPROXIMATION WITH DENSITY-DEPENDENT
MESON-NUCLEON COUPLINGS

The standard density-dependent relativistic hadron field
(DDRH) model [12] for nuclear matter and finite nuclei is
defined by the Lagrangian density

L=(i -(9—m)¢//+l(00')2—lm20'2—lﬂ Q#v
Y 2 2 Mo Ty

1 2 2 1 DMLY 1 272 1 v 7
—I—Emww —ZR#VRM +§mpp _ZF,U«VFM — g, Yoy

(1=73)
v ()

— 8oy 0—g, by prp—ePy-A

Vectors in isospin space are denoted by arrows, and boldface
symbols indicate vectors in ordinary three-dimensional
space. The Dirac spinor ¢ denotes the nucleon with mass m.
mg, m,, and m, are the masses of the o-meson, the
w-meson, and the p-meson. g, g,, and g, are the corre-
sponding coupling constants for the mesons to the nucleon.
e?/4m=1/137.036. The coupling constants and the mass of
the o-meson are treated as free parameters, adjusted to re-
produce nuclear matter properties and ground-state proper-

ties of finite nuclei. Q#7, ﬁ””, and F* are the field tensors
of the vector fields w, p, and of the photon

QF'= 0’ — ok, 2)
RM=atpr—a"p*, (3)
FRV=gHAY — g AM, (4)

The meson-nucleon couplings g, g, and g, are assumed
to be vertex functions of Lorentz-scalar bilinear forms of the
nucleon field operators. In most applications of the density-
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dependent hadron field theory these couplings are chosen as
functions of the vector density p,=\j,j* with j,
=iy w . Alternatively, the couplings could be functionals of

the scalar density p,= . It has been shown, however, that
the vector density dependence produces better results for fi-
nite nuclei [12], and provides a more natural relation be-
tween the self-energies of the density-dependent hadron field
theory and the Dirac-Brueckner microscopic self-energies
[16]. In the present work we choose the vector density de-
pendence for the meson-nucleon couplings.

The single-nucleon Dirac equation is derived by the varia-

tion of the Lagrangian (1) with respect to ¢
id,;={al —iV—V(r,t)]+V(r,t)+ Bm+S(r,1))
+35(r0} ;. 5)

The Dirac Hamiltonian contains the scalar and vector
nucleon self-energies defined by the following relations:

S(r,t)=gq(p,)o(r,t), (6)

V(0.0 =8 ,(p,) 0, (1.0 + g ,(p,) T p,(r.1)

(1—73)
2

+e A, (r,1). ™

The density dependence of the vertex functions g, g, , and
g, produces the rearrangement contribution to the vector
self-energy,

08 o
5o 0o ®)

R _(9gw_ ) 98y e
2O(I"l‘) - apv lM’ wwv—i_ apv lr//y ’Tl,/l' pv+
The inclusion of the rearrangement self-energies is essential
for the energy-momentum conservation and the thermody-
namical consistency of the model [12,13].

In the time-dependent RMF model [19] one usually ne-
glects the retardation effects for the meson fields, and the
self-energies are determined at each time by the solutions of
the Klein-Gordon and Poisson equations:

[—A+mZ]o(r,r)=—g,(p,) ps(r,1),

) ) )
[—A+mo]p,(r.0)=g,(p,) ) (r.1),

—AA (rt)=ej.,(r,1).

This approximation is justified by the large masses in the
meson propagators. Retardation effects can be neglected be-
cause of the short range of the corresponding meson ex-
change forces. The explicit solutions of Egs. (9) read, respec-
tively,

o(e0== [ £p D p (0
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a)’u(r,t)=fgw(pU)Dw(r,r’)j,u(r’,t)d3r',
pur0= [ 8 pD e 0, (10

A, (r,1) ZeI Dc(r,r’)jm(r’,t)d3r’,

with the Yukawa propagators
1 e ™ slr=r’]
Dy(rrx')= ————, (11)
¢ 4w |r—r'|
where ¢ denotes the o, w, and p mesons, and the photon.
The sources of the fields are the nucleon densities and
currents calculated in the no-sea approximation

A
ps(r7t): Zl Jli(rJ) ‘ﬁi(r,l),

A
j,u(r’t):i:El (Zi(r’t) yﬂl//i(r7l)7
A (12)
fﬂ(r,r>=; Bi(r.0) Ty, i(r),

z

jm<r,r>=i§1 Gi(r,0) Y, (r,1).

where the summation is over all A occupied states in the
Fermi sea, i.e., only occupied single-nucleon states with
positive energy explicitly contribute to the nucleon self-
energies. Even though the stationary solutions for the
negative-energy states do not contribute to the densities in
the no-sea approximation, their contribution is implicitly in-
cluded in the time evolution of the nuclear system [5,19].
The relativistic random-phase approximation (RRPA) rep-
resents the small amplitude limit of the time-dependent rela-
tivistic mean-field theory. In the remainder of this section we
will derive the RRPA equations with density-dependent
meson-nucleon couplings from the response of the density

matrix p(7) to an external field,

F(t1)=Fe '“+H.c., (13)
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which oscillates with a small amplitude. In the single-particle
space this field is represented by the operator

fm:; fu(ala,. (14)

The expression for the single-particle density matrix reads

A
ﬁ(r,r',t>=gl [ () (x' 1) (15)

By writing the Dirac spinor in terms of large and small com-
ponents

fi(r,1)
|w,-<r,r>>=( o) ) (16)
the density matrix takes the form
p(r.x’,1)
A A
2 filenfie ) =i fiengle'n
= a A
i g(enff(n X girngl(en
(17)

The equation of motion for the density operator reads

i9,p=[h(p)+](1).p], (18)
and in the small amplitude limit the density matrix is ex-
panded to linear order

p(1)=pV+p(1), (19)

where p© is the stationary ground-state density. From the
definition of the density matrix (15), it follows that p(7) is a
projector at all times, i.e., p>(r)=p(¢). In particular, this
means that the eigenvalues of p'® are 0 and 1. In the non-
relativistic case particle states above the Fermi level corre-
spond to the eigenvalue 0, and hole states in the Fermi sea
correspond to the eigenvalue 1. In the relativistic case one
also has to take into account states from the Dirac sea. In the
no-sea approximation these states are not occupied, i.e., they
correspond to the eigenvalue O of the density matrix.

0 for unoccupied states above the Fermi level (index p)

0)__ 0)__
Pfcz)— 5k1P1(< =11

for occupied states in the Fermi sea (index &) (20)

0 for unoccupied states in the Dirac sea (index «).

[)z(t) = f)( t) also implies, in leading order,

p'© sp+6pp = dp, (21)

and this means that the only nonvanishing matrix elements of

5p are OPphs OPhp> OPan-> and Opy, . These are determined
by the solution of Eq. (18), which in the linear approxima-
tion reads
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i9,6p=[h",5p]+ +[7.p7],  (22)

oh
T 5o 5
ap PP

with
oh oh oh oh
—8p=2 ——Spyt o — 5 + 5
ap P % ap f pph php E Pun P an
7h 1) (23)
apha Pha -

Under the influence of the external field (13), in the small
amplitude limit dp also exhibits the harmonic time depen-

dence e ~'“’. Taking into account that ﬁ,(c(,))z Oy €, 1s diagonal
in the stationary basis, the resulting RRPA equations read

(w—€,t€,)0p,,= fph+2 ph'hp' OPp i

+ Vpp’hh’5ph’p’+ 2 Vph'ha’ﬁpa’h’
a'n’

+Vpa’hh’5ph’a”
(w_€a+6h)5pah:fah+ z Vah’hp’app’h’
p'h’
+Vap’hh'5ph'p’+2 Vah’ha’épa’h’

a'h’

+Vaa’hh’5ph’a’ ’
(w_6h+€p)5php:fhp+ ’Eh’ thrpprapplhr
p

+Vhp'ph’6ph’p/+ 2 th’pa'épa'h'
a'n’

+Vha’ph’5ph’a” (24)

(w_€h+6a)5pha=fha+ 2 th’ap"spp’h’
p'h’

+Vhp’ah’5ph’p’+ E th’aa’épa’h’
a'h'

+Vha’ah’6ph’a’

or, in matrix form

1 0 A B X F
- = _]. 25
o —1) \Bx ax||\y] " \F @5)
The RRPA matrices A and B read
A_((Ep_eh)épp’ahh’ )
(Ea_eh)éaa’éhh’
V h/h ! V h/hal
( ph'hp p ’ (26)
Vah’hp’ Vah’ha’
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V ’hh’ V a’hh’
PP P (27)
‘/aa'hh/

Vap'hh/

and the amplitudes X and Y are defined

_ 5pph> :( 5php)
(apah ' ' (28)

5pha
The vectors which represent the external field contain the

matrix elements
fph ) — ( fhp )
= , F= . 29
(fah fha ( )

In the self-consistent RRPA the matrix elements of the re-
sidual interaction are derived from the Dirac Hamiltonian of

Eq. (5),

oh,,.
Vabea=75— :f W (r)W¥, (ry) V(r,.r,)
Ipap

XV (r)V  (ry)d>rd’r,. (30)

In order to calculate the contributions of each meson field to
V(ry,r,), we expand the meson-nucleon couplings and their
derivatives around the ground-state density pg

ag
_ 0 !
gi(pu)—gi(pv)Jrapv 05/3”,
ag;  dg; &2gA

~=—| +—| dp,. (31)
Ipy Pyl dp;

0

If for the meson fields appearing in the scalar and vector
nucleon self-energies we use the explicit solutions (10) in
terms of the meson propagators and nucleon densities and
currents, the individual contributions of the meson fields to
V(r;,r,) are obtained from the particle-hole matrix element
of the Dirac Hamiltonian.

The contribution of the isoscalar-scalar sigma field

Va'(rl ’rZ) == BIIBZg(r(pv(rl))ga(pv(rZ))Do—(rl ’rZ)

8 :

I°8s
1 +1,,———p,(r
{,31 2(9 0, (1)) 1 2(9p5(r1)p( 1)

g(r } (rl)

LB —— ap, (1)) o(ry—ry)

r

513 ( ) Ps ( 2)

{ IHZgU(pU(rI))
I8 s
+ Lﬂzmps(rl)go(m(rz))

98 &
Py (1)

g+
+]l lZﬁ )ps( )é,p ( )Ps(rz) o—(rl ’r2)’

(32)
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where
Ia(r1)=J rgo(pu(r)Do(ry.r)py(r)dr.

The contribution of the isoscalar-vector omega field

(ﬂyﬂ) 1 (Byy)Zgw(pv(rl ))
ng(pv(r2))Dw(rl ,1'2)

Vo(ry,r)=

o(r1)

I 80
+[2‘9Pu(r1) +(7p (rl)pv(rl)]]l 2

Xﬁ( _r2)+ gw(pv(rl))

%pv( 2)

J g
T P )8 (P2 ()

t?pv

y 98 o
apv(rZ)

pv(rz)]LlZDw(rl ), (33)

where

Iw(rl):f rgw(pu(r))D(z)(rl sr)pv(r)dr'
The contribution of the isovector-vector rho field
Vo(r1.0)=(BY")1(B,)27i 728 Py (1))
xgp(pv(rZ))Dp(r] ,T)

98p 4 98p 4 ﬁzgp
1+ T Pr(ry)
{ apo(r1) 2 gp2(e)

apv(r])rl
) d
x 1,1, p( 1 A(r;—ry)+1 8,(p,( (r)m 1(9 é():,z)
g,

xprv(rZ) 01) ( )ptv( )gp(pv(r2))7-2

g,
+ é,p (I' )ptv( )apv( )ptv( 2)]
X111,D ,(ry,15), (34)

where

Ip(rl): j rgp(pv(r))Dg(rl ’r)plv(r)dr'
Finally the contribution of the Coulomb field

Vc(rlsrz)zez(ﬁ?’#)l(ﬂ)’u)ch(rlsr2)~ (35)

The subscripts 1 and 2 of the Dirac matrices refer to particle
1 and 2, respectively. p,, p,, and p,, denote the vector,
scalar, and isovector-vector density, respectively, and the de-
rivatives of the meson-nucleon couplings with respect to the
vector density are evaluated at ground-state density p(v) . The
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radial integrals 1 4,(r) (¢=0,w,p) contain D?b(r,r’), which
is the radial factor in the first term of the multipole expansion
of the Yukawa propagator (11):

1 o0
D 4(r,xr")= ; LZO Dﬁ,(”,r,)M;L Y ()Y (QF).
(36)

We notice that, in addition to the direct contribution of the
meson exchange interactions [first terms in Egs. (32)—(34)],
the explicit density dependence of the meson—nucleon cou-
plings introduces a number of rearrangement terms in the
residual two-body interaction V(r;,r,). These rearrange-
ment terms are essential for fully consistent RRPA calcula-
tions. Only when their contribution is included in the matrix
elements of the residual interaction, it becomes possible to
reproduce reasonably well the excitation energies of giant
multipole resonances. Without rearrangement terms, one
finds discrepancies of the order of several MeV between the
experimental excitation energies and the RRPA peak ener-
gies, calculated with relativistic effective interactions that are
adjusted to ground state properties of spherical nuclei. A
similar effect is observed in RRPA calculations based on
effective forces with nonlinear meson self-interactions, when
the contribution of the nonlinear terms is not included in the
matrix elements of the residual interaction [8].

In the next section we present results of illustrative RRPA
calculations of the multipole response in spherical nuclei.

For the multipole operator O, u the response function R(E)
is defined

1"'2
R(E)ZZ B()\i_)of)m’ (37)

where I' is the width of the Lorentzian distribution, and

B(N—0p) = 5——(0]]0,|[N:)]%. (38)

2J+1

In all the examples considered in Sec. III, the continuous
strength distributions are obtained by folding the discrete
spectrum of RRPA states with the Lorentzian [see Eq. (37)]
with constant width I'=1 MeV.

III. ILLUSTRATIVE RRPA CALCULATIONS: GIANT
RESONANCES

In this section the RRPA with density-dependent meson-
nucleon couplings is applied in illustrative calculations of
giant resonances in spherical nuclei. In particular, we analyze
the isoscalar monopole, the isovector dipole and the isoscalar
quadrupole resonances in 2*®Pb. We will show which iso-
scalar and isovector properties of the effective mean-field
interactions affect the multipole strength distributions, and
how the results of RRPA calculations can be used to con-
strain the effective interaction.

For the density dependence of the meson-nucleon cou-
plings we adopt the functionals used in Refs. [13,16,17]. The
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coupling of the o-meson and w-meson to the nucleon field
reads

gi(p)=gi(pa)fi(x) for i=o,w, (39)
where
(x)= L+bix+dy® (40)
fil _ai1+c,-(x+d,~)2

is a function of x=p/pg,, and pg, denotes the baryon den-
sity at saturation in symmetric nuclear matter. The eight real
parameters in (40) are not independent. The five constraints
fi(Hh=1, fi(1)=fr(1), and f;(0)=0, reduce the number
of independent parameters to three. Three additional param-
eters in the isoscalar channel are g, (pg), €o(Psa), and
m,—the mass of the phenomenological sigma-meson. For
the p-meson coupling the functional form of the density de-
pendence is suggested by DB calculations of asymmetric
nuclear matter [20]

gp(p):gp(psal)exp[_ap(x_])]~ (41)

The isovector channel is parametrized by g,(pg) and a,.
Usually the free values are used for the masses of the w and
p mesons: m, =783 MeV and m,=763 MeV. In principle
one could also consider the density dependence of the meson
masses. However, since the effective meson—nucleon cou-
pling in nuclear matter is determined by the ratio g/m, the
choice of a phenomenological density dependence of the
couplings makes an explicit density dependence of the
masses redundant.

The eight independent parameters, seven coupling param-
eters and the mass of the o-meson, are adjusted to reproduce
the properties of symmetric and asymmetric nuclear matter,
binding energies, charge radii and neutron radii of spherical
nuclei. In particular, in Ref. [17] we have introduced the
density-dependent meson-exchange effective interaction
(DD-ME1), whose parameters are displayed in Table 1. The
seven coupling parameters and the o-meson mass have been
simultaneously adjusted to properties of symmetric and
asymmetric nuclear matter, and to ground-state properties
(binding energies, charge radii and differences between neu-
tron and proton radii) of 12 spherical nuclei. For the open
shell nuclei pairing correlations have been treated in the BCS
approximation with empirical pairing gaps (five-point for-
mula).

In Ref. [17] the relativistic Hartree-Bogoliubov (RHB)
model with the density-dependent interaction DD-MEI in
the ph-channel, and with the finite range Gogny interaction
DIS in the pp-channel, has been tested in the analysis of the
equations of state for symmetric and asymmetric nuclear
matter, and of ground-state properties of the Sn and Pb iso-
topic chains. It has been shown that, as compared to standard
nonlinear relativistic mean-field effective forces, the interac-
tion DD-MEI1 has better isovector properties and therefore
provides an improved description of asymmetric nuclear
matter, neutron matter and nuclei far from stability.

PHYSICAL REVIEW C 66, 064302 (2002)

TABLE 1. The effective interaction DD-MEI. See Egs. (39)—
(41) for the definition of the coupling parameters.

DD-ME1
m 549.5255
m, 783.0000
m, 763.0000
2o(Pa) 10.4434
8 ow(Psat) 12.8939
8p(Psar) 3.8053
a, 1.3854
b, 0.9781
Co 1.5342
d, 0.4661
a, 1.3879
b, 0.8525
Co 1.3566
d, 0.4957
a 0.5008

©

In the present analysis we perform fully consistent RRPA
calculations of isoscalar monopole, isovector dipole, and
isoscalar quadrupole giant resonances in 2*®Pb. The single-
particle basis and the particle-hole couplings are obtained
from the same effective Lagrangian, and the configuration
space includes both particle-hole pairs, as well as pairs
formed from hole states and negative-energy states from the
Dirac sea. Our starting point is the DD-MEI effective force,
both in the Dirac Hamiltonian (5), as well as the residual
interaction. We then proceed to construct families of density-
dependent interactions with some given characteristic (com-
pressibility, asymmetry energy, etc.), and study the resulting
properties of giant resonances.

A. The isoscalar monopole resonance and the nuclear matter
incompressibility

The isoscalar giant monopole resonance (ISGMR) repre-
sents the most simple mode of collective excitations in nu-
clei. In particular, the ISGMR in heavy nuclei is the only
source of experimental information on the nuclear matter
compression modulus K. . This quantity determines basic
properties of nuclei, supernovae explosions, neutron stars
and heavy-ion collisions. The range of values of K. has been
deduced from the measured excitation energies of the
ISGMR in spherical nuclei. The presently available experi-
mental data set, however, does not limit the range of K., to
better than 200—300 MeV. The microscopic determination of
the nuclear matter compressibility is based on the construc-
tion of sets of effective interactions that differ mostly by
their prediction of the excitation energies of ISGMR, i.e., by
the value of K., but otherwise reproduce reasonably well
experimental data on ground-state nuclear properties [21,22].
Effective interactions with different values of K., are used to
calculate bulk ground-state properties of heavy spherical nu-
clei in a self-consistent mean-field framework, and RPA or
time-dependent mean-field calculations are performed for the
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isoscalar monopole excitations. Such a fully consistent cal-
culation of both ground-state properties, as well as ISGMR
excitation energies, restricts the range of possible values for
K... However, since there are also other effects beyond the
mean-field level which influence the isoscalar monopole
resonance (anharmonicities, pairing, coupling between
single-nucleon and collective motion), it has been argued
[22] that, rather than on the systematics over the whole pe-
riodic table, the determination of the nuclear compressibility
should rely more on a good measurement and microscopic
calculations of GMR in a single heavy nucleus such as
208ph, Microscopic calculations have been performed both in
the nonrelativistic and in the relativistic mean-field frame-
work. Modern nonrelativistic Hartree-Fock plus RPA calcu-
lations, using both Skyrme and Gogny effective interactions,
indicate that the value of K, should be in the range 210—-220
MeV [21,22]. In particular, in Ref. [22] a set of effective
Gogny forces was generated, which on one hand allow a
good description of static properties of nuclei, and on the
other hand span the range 210<K.,<300 MeV. It was
shown that the RPA calculations reproduce the available ex-
perimental data on ISGMR in medium-heavy and heavy nu-
clei only for K., in the range 210-220 MeV. In Ref. [23] it
has been shown that even generalized Skyrme forces, with
both density- and momentum-dependent terms, can only re-
produce the measured breathing mode energies for values of
K. in the range 215+ 15 MeV. In relativistic mean-field
models based on nonlinear meson self-interactions on the
other hand, results of both RRPA and time-dependent calcu-
lations suggest that empirical GMR energies are best repro-
duced by an effective force with K.,,~250-270 MeV [24,6].
It has to be emphasized, however, that even though relativ-
istic calculations have been performed using nonlinear effec-
tive interactions with different values of K., these forces
were not constructed specifically with the purpose of deter-
mining K. . Rather, standard nonlinear effective interactions
have been used, which also exhibit other differences that
could affect the microscopic determination of the nuclear
matter compressibility.

Starting from DD-MEI, in this work we have generated a
consistent set of relativistic density-dependent effective in-
teractions with 220<K, <280 MeV. The same functional
form for the density dependence for the meson—nucleon cou-
plings has been used for these forces and, except for the
value of K., their parameters have been adjusted to the
same set of experimental data on ground-state properties of
12 spherical nuclei [ 17]. The results of fully consistent RRPA
calculations with these forces are shown in Fig. 1, where we
display the calculated excitation energies of ISGMR in 2%*Pb
as function of the nuclear matter compressibility. The shaded
region denotes the range of presently available experimental
data [25]. We notice that, in accordance with the results ob-
tained with relativistic effective forces with nonlinear meson
self-interactions, only the density-dependent interactions
with K.,~260-270 MeV reproduce the experimental value.
We have also verified that ISGMR excitation energies for
lighter nuclei, calculated with these particular interactions,
are closest to the empirical curve E,~80A > MeV and that
they reproduce the available data on experimental excitation
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FIG. 1. Density-dependent RRPA peak energies of the ISGMR
in 2®Pb as a function of the nuclear matter compressibility K. .
The calculated peaks are shown in comparison with the experimen-
tal excitation energy of the monopole resonance: E=14.1
+0.3 MeV [25].

energies. For the density-dependent effective interaction with
K. =270 MeV, in Fig. 2 we display the isoscalar monopole
strength distribution and transition densities in 2°*Pb. The
position of the ISGMR peak is at E=14.1 MeV, and we plot
the proton, neutron and total isoscalar transition densities.

The present analysis, therefore, confirms that there is a
pronounced difference between the values of the nuclear
matter compression modulus predicted by microscopic non-
relativistic (K,,~210-230 MeV) and relativistic (K.,
~250-270 MeV) mean-field plus random-phase approxima-
tion calculations. The origin of this discrepancy is at present
not understood, even though there are some indications that
it might be due, at least in part, to the differences in the
density dependence of the asymmetry energy predicted by
nonrelativistic and relativistic models [26].

B. The isovector dipole response and the nuclear matter

asymmetry energy

The calculated properties of isovector dipole giant reso-
nances (IVGDR) will be predominantly determined by the

30— T 0.0l ————— —

— total _
- neutrons
---- protons

0 10 20 30 40 50 2 4 6 8 10
E MeV) 1 (fm)

FIG. 2. The isoscalar monopole strength distribution (left panel)
and transition densities (right panel) in 2Pb, calculated with a
density-dependent effective interaction with K, =270 MeV. The
proton, neutron and total isoscalar transition densities correspond to
the peak at E=14.1 MeV.
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isovector channel of the effective interaction. In particular,
the excitation energies of IVGDR can be directly related to
the nuclear matter asymmetry energy. The energy per particle
of asymmetric nuclear matter can be expanded about the
equilibrium density pg, in a Taylor series in p and « [27],

E(p,a)=E(p,0)+Sy(p)a’+S,(p)a‘+---, (42)
where
_N-Z ;
““NvZ 43
_ Ky 2
E(pvo)__av_l——z(p_psat) +ee, (44)
sat
and
Po AK,
SZ(p):a4+ T(p_psat)+—2(p_psat)2+ Tt
sat Psat
(45)

The empirical value of the asymmetry energy at saturation
density (volume asymmetry) S,(pg)=as=30=4 MeV.
The parameter p, defines the linear density dependence of
the asymmetry energy, and AK|, is the correction to the in-
compressibility. The contribution of the term S,(p)a* in (42)
is very small in ordinary nuclei and the coefficient is not
constrained in the mean-field approximation.

A ground-state nuclear property which is directly deter-
mined by the asymmetry energy is the difference between the
neutron and the proton radii. In a recent study of neutron
radii in nonrelativistic and covariant mean-field models [28],
the linear correlation between the neutron skin and the sym-
metry energy has been analyzed. In particular, the analysis
has shown that there is a very strong linear correlation be-
tween the neutron skin thickness in 2°*Pb and the individual
parameters that determine the symmetry energy S,(p): a4,
Po» and AK,. The empirical value of r,—r, in 208ph (0.20
+0.04 fm from proton scattering data [29], and 0.19
*0.09 fm from the alpha scattering excitation of the isovec-
tor giant dipole resonance [30]) places the following con-
straints on the values of the parameters of the symmetry
energy: a,~30-34 MeV, 2 MeV/fm’<p,<4 MeV/fm?,
and —200 MeV=AK,<—50 MeV.

Properties of isovector collective modes in finite nuclei
should, in principle, provide additional constraints on the
isovector channel of the effective interaction. In an analysis
of Skyrme forces and giant resonances in exotic nuclei [31],
Reinhard noticed a somewhat surprising property of the
IVGDR: while it is true that the excitation energy of this
resonance is sensitive to the volume asymmetry a4, the reso-
nance energy decreases by increasing the asymmetry energy
at saturation. This was qualitatively explained by noticing
that an increase in the volume asymmetry is always accom-
panied by an increase of the slope pg, i.e., of the linear
density dependence of the asymmetry energy. In order to
study this effect in a more quantitative way, we have gener-
ated, starting from DD-MEI, a set of eight density depen-
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FIG. 3. The IVGDR excitation energy of 2°Pb (upper left
panel), and the parameter p, of the linear density dependence of the
nuclear matter asymmetry energy, as functions of the volume asym-
metry a,. The shaded area denotes the experimental IVGD reso-
nance energy 13.3%0.1 MeV. In the right panel the asymmetry
energy curves, as functions of the baryon density, are plotted for
different values of the volume asymmetry a,.

dent effective interactions with 30 MeV <a,=<37 MeV. The
parameters of the density-dependent meson—nucleon cou-
plings have been adjusted in such a way that, while increas-
ing a4 in units of 1 MeV, the resulting effective interactions
still reproduce the same set of data on ground-state proper-
ties of spherical nuclei, that was used for the original inter-
action DD-MEI1 [17]. This means that these effective inter-
actions essentially differ only in their description of the
asymmetry energy curve as function of the baryon density.
The resulting nuclear matter asymmetry energy curves,
and the calculated IVGDR excitation energies in °*Pb, are
displayed in Fig. 3. In the upper left panel we plot the RRPA
excitation energy of the IVGDR in 2%®Pb as function of the
volume asymmetry a,. Similar to what has been observed in
Ref. [31], the resonance energy decreases with increasing a.
The reason for this decrease is shown in the lower left panel,
where we plot the corresponding values of the slope param-
eter py, which defines the linear density dependence of the
asymmetry energy. We notice that, in order to reproduce the
bulk properties of spherical nuclei, an increase of a, neces-
sitates a nonlinear increase of p,. The resulting asymmetry
energy curves as functions of the baryon density are shown
in the right panel of Fig. 3. The increase of p, with a,
implies a transition from a parabolic to an almost linear den-
sity dependence of S, in the density region p=<0.2 fm 3.
This means, in particular, that the increase of the asymmetry
energy at saturation point will produce an effective decrease
of S, below p=~0.1 fm™3. But this is, of course, the density
region characteristic for the IVGDR. We find, therefore, that
the excitation energy of the IVGDR decreases with increas-
ing S»(pga) =ay, because this increase implies a decrease of
S, at low densities characteristic for the surface modes. In
the upper left panel of Fig. 3 we also compare the calculated
IVGDR peak energies for **Pb with the experimental value
of 13.3%0.1 [32]. It appears that the experimental IVGDR
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FIG. 4. The isovector dipole strength distribution (left panel)
and transition densities (right panel) in 2%®Pb, calculated with a
density-dependent effective interaction with a,=35 MeV. The pro-
ton, neutron and total isovector transition densities correspond to
the peak at E=13.3 MeV.

excitation energy constrains the nuclear matter asymmetry
energy at saturation density to the interval 34 MeV =ay,
=36 MeV. For the effective interaction with a,=35 MeV,
in Fig. 4 we display the RRPA isovector dipole strength dis-
tribution and the corresponding proton, neutron, and total
isovector transition densities for the peak at 13.3 MeV in
208Pb.

Figure 5 illustrates what happens when the increase of the
nuclear matter asymmetry energy at saturation density is not
accompanied by an increase of the slope parameter p,. Start-
ing with DD-ME1, which has a,=33.1 MeV, we have gen-
erated a set of effective interactions with different values of
a,, but now they all have the same slope parameter p,
(lower left panel), i.e., the parameters are not readjusted to
reproduce the data set of ground state properties of spherical
nuclei. Binding energies and radii are only approximately
reproduced with these effective interactions. The resulting
asymmetry energy curves as functions of the baryon density

s T T T —T ] T T T T
L 208Pb 1 F— a,=317MeV .
e 141 i 2,=33.1 MeV
> L . o a,=347 MeV
g o
S 136 7]
S 136
132”
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sE |
> 4 -
g ]
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32

34

36

a, (MeV)

0.04

0.08
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FIG. 5. The IVGDR excitation energy of 2°°Pb (upper left
panel), and the parameter p of the linear density dependence of the
nuclear matter asymmetry energy, as functions of the volume asym-
metry a,. The shaded area denotes the experimental IVGD reso-
nance energy 13.3%0.1 MeV. In the right panel the asymmetry
energy curves, as functions of the baryon density, are plotted for
different values of the volume asymmetry a,.
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are plotted in the right panel. Since p, is constant, by in-
creasing a, the asymmetry energy S, increases for all den-
sities. As a result, the IVGDR peak energies of 2°Pb in-
crease linearly with a, (upper left panel).

C. The isoscalar quadrupole response and the nucleon
effective mass

In nonrelativistic RPA calculations, the excitation energy
of the isoscalar giant quadrupole resonance (ISGQR) can be
directly related to the nucleon effective mass that character-
izes a given effective interaction. In the nonrelativistic mean-
field approximation, the total effective mass m™* of a nucleon
in a nucleus characterizes the energy dependence of an ef-
fective local potential that is equivalent to the, generally non-
local and frequency dependent, microscopic nuclear potential
[33]. m* is a measure of the density of single-nucleon states
around the Fermi surface and, therefore, it affects the giant
resonances. For Skyrme interactions, in particular, a linear
dependence on m™* is found for the RPA excitation energies
of the ISGQR. The larger the effective mass, i.e., the higher
the density of states around the Fermi surface, the lower is
the calculated ISGQR excitation energy. Both the calculation
of ground-state properties in spherical nuclei, as well as the
RPA results for ISGQR excitation energies, place the follow-
ing constraint on the nucleon effective mass for Skyrme-type
interactions: m*/m=0.8+0.1 [31].

In the relativistic framework the expression ‘effective
mass”’ has been used to denote different quantities. The
quantity which is usually used to characterize an effective
interaction, and which in the literature is most often called
“the relativistic effective mass,” is also known as the ‘“‘Dirac
mass” [34]

mp=m+S(r), (46)
where m is the nucleon mass and S(r) is the scalar nucleon
self-energy. Here we also adopt the term ‘““Dirac mass.” The
Dirac mass should not be identified with the effective mass
determined from nonrelativistic shell and optical model
analyses of experimental data, i.e., with the ““nonrelativistic-
type effective mass.” The Dirac mass is determined, on one
hand by the binding energy at saturation density in nuclear
matter (the effective single-nucleon potential is the sum of
the attractive scalar and repulsive vector nucleon self-
energies), and on the other hand by the empirical spin-orbit
splittings in finite nuclei (the effective single-nucleon spin-
orbit potential is proportional to the difference between the
scalar and vector self-energies). This is the reason why, for
virtually all mean-field relativistic effective interactions,
0.55m=mp=<0.60m. In this range of values the Dirac mass
does not affect the spacings between single-nucleon energies,
and therefore it cannot be related to the ISGQR.

The “nonrelativistic-type effective mass” m*(¢g), i.e., the
quantity that should be compared with the empirical effective
mass derived from nonrelativistic analyses of scattering and

bound-state data, is defined by the k—mass m(e) (character-
izes the momentum dependence of the mass operator), by the

E—mass m(e) (characterizes the explicit energy dependence
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FIG. 6. Average energy gap between the last occupied and first
unoccupied major shells in 2%Pb, as function of the isoscalar pa-
rameter & Eq. (49). The average gaps of neutron states are denoted
by dots, and those of proton states by squares.

of the mass operator), and by the “Lorentz mass” mX*(¢)
(results from different Lorentz transformation properties of
the scalar and vector potentials) [34,35],

m*(e) m(e)|mi(e) m(e) el m
m om m * m _I_E nNz(s)_] ’
(47)

The nonrelativistic-type effective mass and its energy depen-
dence near the Fermi surface has been analyzed in Refs.
[34,35] for symmetric nuclear matter. In Ref. [36] the stan-
dard relativistic mean-field model has been extended by in-
cluding dynamical effects that arise in the coupling of single-
nucleon motion to collective surface vibrations. It has been
shown that a simple phenomenological scheme, based on a
linear ansatz for the energy dependence of the scalar and
vector components of the nucleon self-energy for states close
to the Fermi surface, allows a simultaneous description of
bulk nuclear properties and single-nucleon spectra in a self-
consistent relativistic framework.

Here we would like, without going beyond the mean-field
level, to use the isoscalar quadrupole response to constrain
the isoscalar properties of our density-dependent effective
interactions. This can be done in the following way. We first
notice that a particular ratio of isoscalar parameters b; and c;
(i=0,w) in Eq. (40), characterizes the density of single-
nucleon states around the Fermi surface. In Fig. 6 we display
the average energy gaps between the last occupied and the
first unoccupied major shells (E pyicies) — {Enotes) in “"°Pb,
where

> (2j+1)E,;

(Ey=" (48)
21,- (2j+1)
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FIG. 7. Centroid energies of the isoscalar quadrupole Hartree
response (upper panel), and the ISGQR peak energies calculated in
RRPA (lower panel), for five different density-dependent interac-
tions characterized by the parameter § Eq. (49). As in the previous
examples, the calculation is performed for 2°®Pb. The shaded area
denotes the empirical ISGQR excitation energy in 2%®Pb: 10.9
+0.3 MeV [37].

and the sums run over occupied (unoccupied) states within a
major shell. The average gaps for proton and neutron states
are plotted as functions of the parameter &

5e b,lc,
Cb,lc,’

(49)

see Eq. (40). Starting from DD-MEI, we have generated a
set of five effective interactions with 0.93<6=<1.01. For
each interaction the remaining parameters were readjusted to
reproduce our standard set of ground-state data for 12 spheri-
cal nuclei, as well as the nuclear matter equation of state. In
particular, for all five interactions the Dirac mass is mp
~(0.58. The average gap between the last occupied and first
unoccupied major shells, both for proton and neutron states,
is approximately linearly proportional to &. This parameter,
therefore, plays the role of the inverse of the effective mass.
As functions of J, in Fig. 7 we plot the corresponding cen-
troid energy of the isoscalar quadrupole Hartree response in
208pp (upper panel), and the peak energies of the ISGQR
obtained by the full RRPA calculation with the five density-
dependent interactions (lower panel). The calculated ISGQR
excitation energies are compared with the experimental value
of 10.9+0.3 MeV [37] (shaded area). Both the centroids of
the Hartree response and the ISGQR peak energies are lin-
early proportional to ¢ and the comparison with experimen-
tal data on ISGQR, therefore, places an additional constraint
on the parameters that characterize the isoscalar channel of
the effective interaction. For 6=0.93, in Fig. 8 we plot the
RRPA isoscalar quadrupole strength distribution in 2°Pb
(left panel), and for the ISGQR peak at 11.2 MeV the proton,
neutron, and total isoscalar transition densities. The position
of the calculated peak should be compared with the empirical
excitation energy 10.9+£0.3 MeV, and also the 0w low-
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FIG. 8. The isoscalar quadrupole strength distribution (left
panel) and transition densities (right panel) in 2°*Pb, calculated for
6=0.93 (see text for description). The vertical bar denotes the 0% @
2% discrete state. The proton, neutron, and total isoscalar transition
densities correspond to the ISGQR peak at E=11.2 MeV excitation
energy.

lying discrete 2 state at 4.62 MeV is found in good agree-
ment with the experimental value of 4.07 MeV.

IV. SUMMARY AND CONCLUSIONS

During the last decade the standard RMF models with
nonlinear meson-exchange effective interactions have been
very successfully applied in the description of a variety of
nuclear structure phenomena. In recent years also the relativ-
istic random-phase approximation (RRPA), based on effec-
tive Lagrangians with nonlinear meson self-interaction
terms, has been used to investigate properties of low-lying
collective states and of giant resonances. The use of nonlin-
ear effective interactions, however, presents not only a num-
ber of technical problems, but also the predictive power of
models based on these type of interactions appears to be
somewhat limited, especially for isovector properties of ex-
otic nuclei far from S-stability. An interesting alternative are
models with density-dependent meson-nucleon vertex func-
tions. Even though these two classes of models are essen-
tially based on the same microscopic structure, i.e., on
density-dependent interactions, the latter can be more di-
rectly related to the underlying microscopic nuclear interac-
tions. In a number of recent analyses it has been also shown
that relativistic effective interactions with explicit density de-
pendence of the meson-nucleon couplings, provide an im-
proved description of asymmetric nuclear matter, neutron
matter and nuclei far from stability.

Among the new structure phenomena observed or pre-
dicted in nuclei far from stability, one of the most interesting
is the evolution of the isovector dipole response in nuclei
with a large neutron excess. The multipole response of nuclei
with large neutron excess has been the subject of many the-
oretical studies in recent years, and some predictions have
been confirmed by very recent experimental data on low-
lying electric dipole strength in neutron rich nuclei [38,39].
There are, however, many unknowns and this topic presents
an interesting challenge for modern theoretical advances. It
is, therefore, important to develop also a relativistic frame-
work, based on effective Lagrangians with density-
dependent meson-nucleon couplings, in which the dynamics
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of exotic collective modes in nuclei far from stability can be
investigated.

In this work we have derived the RRPA matrix equations
in the small amplitude limit of the time-dependent relativistic
mean-field theory. The explicit density dependence of the
meson-nucleon vertices introduces a number of rearrange-
ment terms in the residual two-body interaction. We have
found that the rearrangement contribution to the matrix ele-
ments of the RRPA equations is crucial for a quantitative
comparison with experimental data on giant resonances. In
the present analysis we have performed illustrative RRPA
calculations of the isoscalar monopole, isovector dipole and
isoscalar quadrupole response of 2°*Pb. The calculations are
fully self-consistent: the single-particle basis and the
particle-hole couplings are generated from the same effective
Lagrangian, and the RRPA configuration space includes both
the positive-energy particle-hole pairs, as well as pairs
formed from hole states and negative-energy states in the
Dirac sea. On the one hand, we have tested our approach by
comparing the RRPA results for giant resonances with well
known experimental data. On the other hand, we have also
analyzed how the RRPA results on multipole giant reso-
nances can be used to constrain the parameters that charac-
terize the isoscalar and isovector channel of the density-
dependent effective Lagrangians. Starting with the recently
introduced effective interaction DD-MEI [17], RRPA calcu-
lations have been performed for families of density-
dependent interactions with a given characteristic (nuclear
matter incompressibility, asymmetry energy, etc.).

The analysis of the isoscalar monopole response has
shown that only the density-dependent interactions with the
nuclear matter compression modulus in the range K.,
~260-270 MeV, reproduce the experimental excitation en-
ergy of the isoscalar giant monopole resonance in “°*Pb.
This confirms our previous results obtained with relativistic
effective forces with nonlinear meson self-interactions and
points, once again, to the pronounced difference between the
values of the nuclear matter compression modulus predicted
by microscopic nonrelativistic and relativistic mean-field
plus RPA calculations. The RRPA results for the isovector
dipole response constrain the isovector channel of the effec-
tive interactions. By using interactions with different values
of the volume asymmetry energy a4, but which otherwise
reproduce the same data set of ground-state properties of
spherical nuclei, we have shown that the calculated IVGDR
peak energy actually decreases by increasing the asymmetry
energy at saturation. The comparison with the experimental
IVGDR excitation energy constrains the volume asymmetry
to the interval 34 MeV=a,=<36 MeV. In the nonrelativistic
framework the isoscalar quadrupole response can be related
to the effective mass of the mean-field interaction. The con-
cept of effective mass in the relativistic mean-field models is
more complicated, and the quantity which is usually termed
as “‘effective mass’ cannot be identified with the effective
mass determined from nonrelativistic shell and optical model
analyses of experimental data. Nevertheless, we have shown
that a comparison of RRPA results with the empirical ISGQR
and with the low-lying 0w 27 state, places an additional
constraint on the parameters which characterize the isoscalar
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channel of the density-dependent effective interactions.

The RRPA with density-dependent meson-nucleon cou-
plings presents an important step in the relativistic descrip-
tion of the nuclear many-body problem. In this work we did
not attempt an analysis of the multipole response in exotic
nuclei far from S-stability. In order to do that, pairing corre-
lations must be included in the RRPA framework. Work is in
progress on the fully self-consistent relativistic quasiparticle
random-phase approximation (RQRPA), based on effective
Lagrangians with density-dependent meson-nucleon cou-
plings, and formulated in the relativistic Hartree-Bogoliubov
canonical single-particle basis.

In the present analysis we have only considered the ex-
change of the isoscalar-vector o-meson, the isoscalar-vector
w-meson, and the isovector-scalar p-meson. Other meson
fields, of course, could be included in the relativistic mean-
field model description of ground-state properties of finite
nuclei, as well as in the RRPA treatment of excited states.
For the latter, in particular, it might be important to extend
the model by including at least the isovector-pseudoscalar
m-meson and the isovector-scalar S-meson. The problem,
however, is our very limited knowledge of the meson-
nucleon couplings in these channels at finite density. In the
mean-field Hartree approximation the contribution of the
pion vanishes in nuclear matter and in the ground states of
finite nuclei. Relativistic Brueckner-Hartree-Fock calcula-
tions of asymmetric nuclear matter indicate that significant
strength can be expected in the isovector-scalar channel, and
that the isovector-vector and isovector-scalar meson-nucleon
couplings at saturation density are of comparable strengths
[20]. Several calculations of finite N#Z systems have
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shown, however, that while the overall isovector strength has
a relatively well-defined value, the distribution between the
scalar and vector channels is not determined by ground-state
properties, at least for nuclei not too far from stability. It
appears, therefore, that at present it would be rather difficult
to extend the relativitic RPA by including additional meson
degrees of freedom, since the corresponding meson-nucleon
couplings cannot be determined in the usual way, i.e., from
the calculated ground-state properties of spherical nuclei. On
the other hand, RRPA calculations of excited states, and of
giant resonances in particular, could be used, as shown in the
present analysis, to constrain the vertex functions for addi-
tional channels of effective nuclear interactions. For the
isovector-scalar channel, for example, additional information
could be obtained from the isovector dipole response in nu-
clei with a large neutron excess. The excitation energy and
strength of the dipole pygmy resonance in neutron rich nu-
clei, as well as its relative position with respect to the
IVGDR, could provide information about the distribution of
the strength of the isovector nuclear effective interaction be-
tween the scalar and vector channels. The pion-nucleon RMF
channel could be constrained, for example, by RRPA calcu-
lation of spin-multipole resonances and of the strength and
energy of Gamow-Teller resonances.
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