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The relativistic Hartree-Bogoliubov !RHB" model is extended to include density-dependent meson-nucleon
couplings. The effective Lagrangian is characterized by a phenomenological density dependence of the # , $ ,
and % meson-nucleon vertex functions, adjusted to properties of nuclear matter and finite nuclei. Pairing
correlations are described by the pairing part of the finite range Gogny interaction. The new density-dependent
effective interaction DD-ME1 is tested in the analysis of the equations of state for symmetric and asymmetric
nuclear matter, and of ground-state properties of the Sn and Pb isotopic chains. Results of self-consistent RHB
calculations are compared with experimental data, and with results previously obtained in the RHB model with
nonlinear self-interactions, as well as in the density-dependent relativistic hadron field !DDRH" model. Parity-
violating elastic electron scattering on Pb and Sn nuclei is calculated using a relativistic optical model with
inclusion of Coulomb distortion effects, and the resulting asymmetry parameters are related to the neutron
ground-state density distributions.
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I. INTRODUCTION

Models based on concepts of nonrenormalizable effective
relativistic field theories and density functional theory pro-
vide a rich theoretical framework for studies of nuclear struc-
ture phenomena, not only in nuclei along the valley of
&-stability, but also in exotic nuclei with extreme isospin
values and close to the particle drip lines. A well known
example of an effective theory of nuclear structure is quan-
tum hadrodynamics !QHD", a field theoretical framework of
Lorentz-covariant, meson-nucleon or point-coupling models
of nuclear dynamics '1(. The effective Lagrangians of QHD
consist of known long-range interactions constrained by
symmetries and a complete set of generic short-range inter-
actions. The QHD framework implicitly includes vacuum ef-
fects, chiral symmetry, nucleon substructure, exchange
terms, and long- and short-range correlation effects.
Structure models based on the relativistic mean-field

!RMF" approximation have been successfully employed in
studies of spherical and deformed nuclei all over the periodic
table '2(. The relativistic framework has also been applied in
studies of nuclear structure phenomena in nuclei far from
&-stability. In particular, in studies of isotopic chains that
also included exotic nuclei with extreme isospin values, we
have used the relativistic Hartree-Bogoliubov !RHB" model,
which encloses a unified description of mean-field and pair-
ing correlations. A number of interesting nuclear properties
have been studied with the RHB model: the halo phenom-
enon in light nuclei '3(, properties of light neutron-rich nu-
clei '4(, the reduction of the effective single-nucleon spin-
orbit potential in nuclei close to the drip-lines '5(, properties
of neutron-rich Ni and Sn isotopes '6(, the location of the
proton drip-line between from Z#31 to Z#73 and the phe-

nomenon of ground-state proton radioactivity '7–9(.
The details of calculated nuclear properties that can be

compared with empirical data, as well as the predictions of
new phenomena far from &-stability !halo nuclei, neutron
skins, suppression of shell effects in neutron rich nuclei,
ground-state proton radioactivity beyond the drip-line, the
onset of exotic collective modes", crucially depend on the
choice of the effective RMF Lagrangian in the ph channel,
as well as on the treatment of pairing correlations. Several
phenomenological parametrizations of the effective Lagrang-
ian have been derived that provide a satisfactory description
of nuclear properties along the &-stability line, as well as in
regions far from stability. These effective interactions are
characterized by a minimal set of model parameters: meson
masses and meson-nucleon coupling constants. The most
successful RMF effective interactions are purely phenom-
enological, with parameters adjusted to reproduce the
nuclear matter equation of state and a set of global properties
of spherical closed-shell nuclei. In most applications of the
RHB model, in particular, we have used the NL3 effective
interaction '10( for the RMF effective Lagrangian. Properties
calculated with NL3 indicate that this is probably the best
effective interaction so far, both for nuclei at and away from
the line of &-stability.
The limitations of standard RMF effective interactions

are, however, well known, even for nuclei close to the sta-
bility line. They are more pronounced in the isovector chan-
nel, which is poorly constrained by the available experimen-
tal data on ground-state properties of nuclei. For example, in
a recent analysis of neutron radii in the framework of mean-
field models '11(, it has been shown that conventional RMF
models systematically overestimate the values of rn!rp . It
is well known that they also predict an equation of state of
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neutron matter that is very different from the standard micro-
scopic many-body neutron matter equation of state of Fried-
man and Pandharipande '12(. The parametrization of the is-
ovector channel of an effective RMF interaction is, of
course, extremely important for possible extrapolations to
neutron- or proton-rich nuclei. For example, various nonrel-
ativistic and relativistic mean-field models differ signifi-
cantly in the prediction of the two-neutron separation ener-
gies of the Sn isotopes with A$132 '13( and, therefore, of
the exact location of the drip-line. There are also differences
in the predicted location of the drip-line on the proton-rich
side '9(. The properties of effective interactions are very im-
portant for the description of phenomena in nuclear astro-
physics. The choice of the effective RMF Lagrangian di-
rectly determines the calculated properties of neutron stars
!radii, surface crust" '14,15(, as well as the properties of
nuclei that take part in the r-process or rp-process of nucleo-
synthesis.
In order to overcome the limitations of standard RMF

models, several solutions have been put forward. An obvious
choice is to extend the minimal six-parameter RMF model
by including additional interaction terms in the isoscalar, as
well as in the isovector channel. The complex many-body
dynamics is effectively included in additional nonlinear self-
interactions. This approach has been investigated both in the
framework of meson-exchange models '15–18( and with
relativistic point-coupling models '19,20(. Even though
some interesting results have been obtained, especially in
applications to nuclear astrophysics, the situation is not sat-
isfactory. The problem is that the empirical data set of bulk
and single-particle properties of finite nuclei can only con-
strain six or seven parameters in the general expansion of an
effective Lagrangian '21(. One can, of course, include inter-
action terms that describe specific phenomena, but their cou-
pling parameters and even their forms cannot be accurately
determined in this way. In some cases even the signs of
interaction terms are not determined by the data. The general
expansion of an effective Lagrangian in powers of the fields
and their derivatives can be controlled by the ‘‘naive dimen-
sional analysis’’ !NDA" '19,20,22,23(. NDA tests the coeffi-
cients of the expansion for ‘‘naturalness,’’ i.e., this method
controls the magnitude of the coupling constants. Although
NDA can exclude some interaction terms because their cou-
plings would be ‘‘unnatural,’’ it cannot determine the param-
eters of a model on a level of accuracy that is required for a
quantitative analysis of nuclear structure data.
Instead of including additional nonlinear self-interaction

terms in effective RMF Lagrangians, another possibility is to
formulate an effective hadron field theory with medium de-
pendent meson-nucleon vertices. Such an approach retains
the basic structure of QHD, but could be more directly re-
lated to the underlying microscopic description of nuclear
interactions. In the density-dependent relativistic hadron field
!DDRH" model of Refs. '24–26( the medium dependence of
the vertices is expressed by a functional of the baryon field
operators. The meson-baryon coupling constants in nuclear
matter are adjusted to the Dirac-Brueckner !DB" self-
energies. A Lorentz-invariant functional is defined to project
the nuclear matter results onto the meson-nucleon vertices of

the effective DDRH model for finite nuclei. In the early ver-
sion '24( of this model, the density dependence was only
included in the field equations after the variation. However, a
consistent treatment of medium effects implies a variation of
the vertex functionals with respect to the baryon field opera-
tors, and this results in additional rearrangement self-
energies in the single-nucleon Dirac equation '26(. In Ref.
'26( the model was applied in the calculation of ground-state
properties of doubly-closed shell nuclei. Density-dependent
# and $ meson couplings were used that were derived from
DB calculations using the Bonn A, B, and C nucleon-nucleon
potentials. It was shown that the inclusion of rearrangement
self-energies is essential for a quantitative description of bulk
properties and single-particle spectra. The model has been
recently extended to hypernuclei '27(, neutron star matter
'28(, and asymmetric nuclear matter and exotic nuclei '29(.
The density-dependent interactions have been derived from
the Groningen and Bonn-A nucleon-nucleon potentials. For
finite nuclei, in particular, the quality of the calculated prop-
erties is comparable with nonlinear RMF models.
In Ref. '30( Typel and Wolter introduced a phenomeno-

logical density dependence for the # , $ and % meson-
nucleon couplings, adjusted to properties of nuclear matter
and some finite nuclei. The parameters of their DDRH model
were also compared with coupling constants derived from
DB calculations of nucleon self-energies. The model was
used to study the equation of state of symmetric and asym-
metric nuclear matter, and the ground state properties of
semi-closed shell nuclei. Even though pairing correlations
were only treated in the BCS approximation, properties at
the proton and neutron drip-lines were calculated. It was,
however, emphasized that a more realistic description of nu-
clei at the drip-lines necessitates the use of the Hartree-
Bogoliubov framework with finite range pairing interactions.
The phenomenological ansatz of Ref. '30( for the functional
form of the density dependence of the meson-nucleon verti-
ces was also used in Ref. '29( to derive the meson-nucleon
coupling parameters from the Groningen and Bonn-A NN
potentials.
In this work we present an extension of the relativistic

Hartree-Bogoliubov !RHB" model that includes density-
dependent meson-nucleon couplings. For the effective RMF
Lagrangian we follow the approach of Typel and Wolter '30(
and use their phenomenological functional forms for the den-
sity dependence of the vertex functions. The parameters of
the effective interaction are, however, adjusted in a different
way. Pairing correlations are described by the pairing part of
the finite range Gogny interaction. The new model is tested
in the analysis of the equation of state for symmetric and
asymmetric nuclear matter, and ground-state properties of
the Sn and Pb isotopic chains. The results are compared with
experimental data and with results previously obtained in the
RHB, as well as DDRH frameworks.
In Sec. II we outline the RHB model with density-

dependent meson-nucleon couplings. The new parametriza-
tion of the vector density dependence of the vertex function-
als is discussed in Sec. III in comparison with the effective
interaction of Typel and Wolter, and we also analyze the
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results for the equation of state for symmetric and asymmet-
ric nuclear matter. In Sec. IV the new density-dependent ef-
fective interaction DD-ME1 is employed in the RHB calcu-
lations of ground-state properties of Sn and Pb nuclei.
Binding energies, charge radii, differences between neutron
and proton radii, spin-orbit splittings, and charge isotope
shifts are compared with available experimental data, and
with the results obtained with the nonlinear interaction NL3.
Section V contains an analysis of parity-violating elastic
electron scattering on 208Pb and on those Sn isotopes for
which there are experimental data on rn!rp . For the elastic
scattering of 850 MeV electrons on these nuclei, the calcu-
lated parity-violating asymmetry parameters are related to
the Fourier transforms of the neutron density distributions. In
Sec. VI we summarize the results of this work and present an
outlook for future applications of the RHB model with
density-dependent meson-nucleon couplings.

II. RELATIVISTIC HARTREE-BOGOLIUBOV MODEL
WITH DENSITY-DEPENDENT MESON-NUCLEON

COUPLINGS

The framework of density-dependent hadron field theory
is described in great detail in Refs. '26,29,30(. In this section
we outline the essential features of the model with vector
density dependence of the meson-nucleon couplings. The
model is defined by the relativistic Lagrangian density

L#)̄! i!•"!m ")"
1
2 !*#"2!

1
2 m#

2#2!
1
4+,-+

,-

"
1
2 m$

2$2!
1
4R

!
,-R!,-"

1
2 m%

2%! 2!
1
4F,-F,-!g#)̄#)

!g$)̄.•$)!g%)̄.•%! /!)!e)̄.•A !1!/3"
2 ) . !1"

Vectors in isospin space are denoted by arrows, and bold-
faced symbols will indicate vectors in ordinary three-
dimensional space. The Dirac spinor ) denotes the nucleon
with mass m. m# , m$ , and m% are the masses of the #-, $-,
and %-mesons, respectively. g# , g$ , and g% are the corre-
sponding coupling constants for the mesons to the nucleon.
e2/40#1/137.036. The coupling constants and unknown
meson masses are parameters, adjusted to reproduce nuclear
matter properties and ground-state properties of finite nuclei.
+,-, R! ,-, and F,- are the field tensors of the vector fields
$ , % , and of the photon:

+,-#*,$-!*-$,, !2"

R! ,-#*,%! -!*-%!,, !3"

F,-#*,A-!*-A,. !4"

g# , g$ , and g% are assumed to be vertex functions of
Lorentz-scalar bilinear forms of the nucleon operators. In
most applications of the density-dependent hadron field
theory the meson-nucleon couplings are functions of the vec-
tor density

%v#!j, j,, with j,#)̄.,) . !5"

Another obvious choice is the dependence on the scalar den-
sity %s#)̄) . It has been shown, however, that the vector
density dependence produces better results for finite nuclei
'26(, and provides a more natural relation between the self-
energies of the density-dependent hadron field theory and the
Dirac-Brueckner microscopic self-energies '29(. In the
following we assume the vector density dependence of the
meson-nucleon couplings. The single-nucleon Dirac equation
is derived by variation of the Lagrangian !1" with respect
to )̄ ,

'.,! i*,!1,"!!m!1"()#0, !6"

with the nucleon self-energies defined by the following rela-
tions:

1#g## , !7"

1,#g$$,"g%/!•%!,"e
!1!/3"
2 A,"1,

R . !8"

The density dependence of the vertex functions g# , g$ , and
g% produces the rearrangement contribution 1R

, to the vector
self-energy

1,
R#

j,
%v

! *g$

*%v
)̄.-)$-"

*g%

*%v
)̄.-/!)•%! -"

*g#

*%v
)̄)# " .

!9"

The inclusion of the rearrangement self-energies is essential
for the energy-momentum conservation and the thermody-
namical consistency of the model '26,30(.
The lowest order of the quantum field theory is the mean-

field approximation: the meson field operators are replaced
by their expectation values. The A nucleons, described by a
Slater determinant #23 of single-particle spinors ) i ,(i
#1,2, . . . ,A), move independently in the classical meson
fields. The sources of the meson fields are defined by the
nucleon densities and currents. The ground state of a nucleus
is described by the stationary self-consistent solution of the
coupled system of Dirac and Klein-Gordon equations. Due to
charge conservation, only the three-component of the isovec-
tor rho meson contributes. For an even-even system the spa-
tial vector components #, $3 , and A vanish, and the self-
energies are determined by the solutions of the Klein-Gordon
and Poisson equations

!!4"m#"#!r"#!g#%s!r", !10"

!!4"m$"$!r"#g$%v!r", !11"

!!4"m%"%3!r"#g%!%n!r…!%p!r…", !12"

!4A0!r"#e2%c!r…. !13"

The source terms on the left-hand side of these equations are
sums of bilinear products of baryon amplitudes. The densi-
ties are calculated in the no-sea approximation, i.e., only
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occupied single-nucleon states with positive energy explic-
itly contribute to the nucleon self-energies.
In addition to the self-consistent mean-field potential,

pairing correlations have to be included in order to describe
ground-state properties of open-shell nuclei. For spherical
and deformed nuclei not too far from the stability line, pair-
ing is often treated phenomenologically in the simple BCS
approximation '2(. In most cases the constant gap approxi-
mation is used, i.e., the densities are calculated using BCS
occupation factors with a gap parameter 4 determined from
empirical mass differences. However, for exotic nuclei far
from the valley of &-stability masses are often not known
and, even more important, the BCS model presents only a
poor approximation. The structure of weakly bound nuclei
necessitates a unified and self-consistent treatment of mean-
field and pairing correlations. In particular, the relativistic
Hartree-Bogoliubov !RHB" model '3,4,6,8( represents a rela-
tivistic extension of the Hartree-Fock-Bogoliubov !HFB"
framework. In the RHB model the ground state of a nucleus
#23 is represented by the product of independent single-
quasiparticle states. These states are eigenvectors of the gen-
eralized single-nucleon Hamiltonian that contains two aver-
age potentials: the self-consistent mean-field 5̂ , which
encloses all the long range particle-hole (ph) correlations,
and a pairing field 4̂ , which sums up the particle-particle
(pp) correlations. In the Hartree approximation for the self-
consistent mean field, the relativistic Hartree-Bogoliubov
equations read

! ĥD!m!6 4̂

!4̂* ! ĥD"m"6
" !Uk!r"

Vk!r"
" #Ek!Uk!r"

Vk!r"
" ,
!14"

where ĥD is the single-nucleon Dirac Hamiltonian, and m is
the nucleon mass. The chemical potential 6 has to be deter-
mined by the particle number subsidiary condition, in order
that the expectation value of the particle number operator in
the ground state equals the number of nucleons. The column
vectors denote the quasiparticle wave functions, and Ek are
the quasiparticle energies. The source terms in Eqs. !10"–
!13" are sums of bilinear products of baryon amplitudes

%s!r"# 7
Ek$0

Vk
†!r".0Vk!r", !15"

%v!r"# 7
Ek$0

Vk
†!r"Vk!r", !16"

%n!r"!%p!r"# 7
Ek$0

Vk
†!r"/3Vk!r", !17"

%c!r"# 7
Ek$0

Vk
†!r"

1!/3
2 Vk!r", !18"

where the sums run over all positive energy states. The pair-
ing potential 4̂ reads

4̂8&!r1,r2"#7
.9

V8&.9!r1 ,r2":.9!r1 ,r2", !19"

where 8 , & , . , 9 are Dirac indices,

:8&!r1 ,r2"# 7
Ek$0

V8k* !r1"U&k!r2" !20"

is the relativistic pairing tensor, and V8&.9(r1 ,r2) are matrix
elements of a general two-body interaction.
The relativistic extension of the HFB theory was intro-

duced in Ref. '31(. The starting point is again the Lagrangian
!1". By performing the quantization of the meson fields, the
relativistic Hartree-Bogoliubov equations are derived using
Green’s function techniques. In the first applications to
nuclear matter '31(, the same meson parameters were used
both in the ph-channel and in the pp-channel. However, it
was found that the standard RMF effective interactions, as
for instance NL1 or NL3, produce pairing correlations that
are much too strong. The reason is that these forces have no
momentum cut-off, and therefore they exhibit a completely
wrong behavior at large momenta or at small distances. This
does not affect ordinary Hartree calculations in the
ph-channel, where momenta above the Fermi momentum do
not contribute. In calculations of pairing correlations, how-
ever, the occupation numbers decrease very slowly in mo-
mentum space and the convergence of the momentum inte-
gral is achieved only by relativistic kinematic factors. On the
other hand, realistic nucleon-nucleon forces which include
cut-off parameters, such as the highly successful Bonn po-
tential '32(, produce very reasonable pairing correlations in
nuclear matter '33(. Due to technical difficulties, however,
these forces have not been used in applications of the RHB
model in finite nuclei. Instead, a phenomenological nonrela-
tivistic pairing interaction has been used in the pp-channel.
This approximation is justified by the following argument.
Taking into account that the quasiparticle wave functions

in the Hartree-Bogoluibov equations !14" contain large and
small components, the pairing field 4̂ can be written in the
form

! 4̂"" 4̂"!

4̂!" 4̂!!
" . !21"

By using relativistic potentials with cut-off parameters, re-
cent calculations of finite nuclei '34( have shown that the
matrix elements of the terms 4̂!" and 4̂"! , which couple
large and small components, are orders of magnitude smaller
than the matrix elements of the corresponding off-diagonal
term % “ of the Dirac hamiltonian hD . Pairing properties
are determined by correlations in an energy window of a few
MeV around the Fermi surface, and therefore also 4̂!! has
no effect on pairing in finite nuclei. Thus a good approxima-
tion is to neglect the fields 4̂!" , 4̂"! , and 4̂!! in the
RHB equations, and to use a nonrelativistic potential in the
calculation of the field 4̂"" . One possibility would be to
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use a 9-force in this channel. This, however, introduces an
additional energy cut-off parameter, and neither this param-
eter nor the strength of the interaction are known. In Ref.
'35( it was therefore suggested that the pairing part of the
well known and very successful Gogny force '36( should be
employed,

Vpp!1,2"# 7
i#1,2

e!((r1!r2)/, i)
2
!Wi"BiP#!HiP/

!MiP#P/", !22"

with the set D1S '36( for the parameters , i , Wi , Bi , Hi ,
and Mi (i#1,2).
This version of the RHB model has been used in most

recent applications '3,4,6,8,37,38(. The RHB equations are
solved self-consistently, with potentials determined in the
mean-field approximation from solutions of Klein-Gordon
equations for the meson fields. The Dirac-Hartree-
Bogoliubov equations and the equations for the meson fields
are solved by expanding the nucleon spinors Uk(r) and
Vk(r), and the meson fields in terms of the eigenfunctions of
a spherical or deformed axially symmetric oscillator poten-
tial. A detailed description of the relativistic Hartree-
Bogoliubov model for spherical and deformed nuclei can be
found in Refs. '4( and '8(, respectively.

III. PARAMETRIZATION OF THE DENSITY
DEPENDENCE OF THE MESON-NUCLEON COUPLINGS

The density dependence of the meson-nucleon couplings
can be obtained from microscopic Dirac-Brueckner !DB"
calculations of nucleon self-energies in symmetric and asym-
metric nuclear matter '26,39(. However, depending on the
choice of the nucleon-nucleon potential and on the approxi-
mations in the DB calculation, rather different results are
obtained for the density dependence of the vertex functions.
At low densities, in particular, DB calculations of nuclear
matter become unreliable, and meson-nucleon couplings de-
termined directly from DB self-energies provide only a
qualitative description of ground-state properties for finite
nuclei. Instead of adjusting the vertex functions directly to
DB self-energies, in Ref. '30( an ansatz was made for the
functional form of the density dependence that encloses dif-
ferent DB results. The parameters of the density dependence
were obtained from a fit to properties of nuclear matter and
finite nuclei. The same functional form was also used in Ref.
'29( to adjust the meson-nucleon couplings to the DB self-
energies derived from the Groningen and Bonn-A nucleon-
nucleon potentials. In this work we adopt for the density
dependence of the meson-nucleon couplings the functionals
of Ref. '30(, and adjust the parameters to properties of sym-
metric and asymmetric nuclear matter, binding energies,
charge radii and neutron radii of spherical nuclei. The cou-
pling of the #- and $-mesons to the nucleon field reads

gi!%"#gi!%sat" f i!x " for i## ,$ , !23"

where

f i!x "#ai
1"bi!x"di"2

1"ci!x"di"2
!24"

is a function of x#%/%sat . The eight real parameters in Eq.
!24" are not independent. The five constraints f i(1)#1,
f #! (1)# f$! (1), and f i!(0)#0 reduce the number of indepen-
dent parameters to three. Two additional parameters in the
isoscalar channel are g#(%sat) and g$(%sat). The functional
form of the density dependence of the %-meson coupling is
suggested by DB calculations of asymmetric nuclear matter
'39(,

g%!%"#g%!%sat"exp'!a%!x!1 "( . !25"

The isovector channel is parametrized by g%(%sat) and a% .
In Ref. '30( the standard free values for the masses of the

$ and % mesons were taken: m$#783 MeV and m%
#763 MeV. The mass of the # meson was fixed to m#
#550 MeV, and the remaining seven independent param-
eters were adjusted to nuclear matter properties !three param-
eters" and to the binding energies of symmetric and neutron-
rich nuclei !four parameters". In this work the density-
dependent meson-nucleon couplings have been determined
using a somewhat different procedure. The parameters have
been adjusted simultaneously to properties of nuclear matter
!see Table I", and to binding energies, charge radii and dif-
ferences between neutron and proton radii of spherical nuclei
!see Table II". In addition to the seven coupling parameters,
the mass of the #-meson has also been included in the fitting
procedure, i.e., we have used one more free parameter with
respect to the model of Ref. '30(. For the open shell nuclei
in Table II, pairing correlations have been treated in the
BCS approximation with empirical pairing gaps !five-point
formula". For nuclear matter the ‘‘empirical’’ input was
E/A#!16 MeV !5%", %0#0.153 fm!3 !10%", K0

TABLE I. The effective interaction DD-ME1. The masses
and meson-nucleon couplings are shown in comparison with the
parameters of the density-dependent mean-field model of Ref. '30(
!TW-99".

DD-ME1 TW-99

m# 549.5255 550.0000
m$ 783.0000 783.0000
m% 763.0000 763.0000
g#(%sat) 10.4434 10.7285
g$(%sat) 12.8939 13.2902
g%(%sat) 3.8053 3.6610
a# 1.3854 1.3655
b# 0.9781 0.2261
c# 1.5342 0.4097
d# 0.4661 0.9020
a$ 1.3879 1.4025
b$ 0.8525 0.1726
c$ 1.3566 0.3443
d$ 0.4957 0.9840
a% 0.5008 0.515
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#250 MeV !10%", and J#33 MeV !10%". The values in
parentheses correspond to the error bars used in the fitting
procedure. The binding energies of finite nuclei and the
charge radii were taken within an accuracy of 0.1% and
0.2%, respectively. Due to large experimental uncertainties,
however, the error bar used for the neutron skin was 5%.
After the solution of the self-consistent equations, we sub-
tract from the total binding energy the microscopic estimate
for the center-of-mass correction

Ec.m.#!
;Pc.m.

2 3
2Am , !26"

where Pc.m. is the total momentum of a nucleus with A nucle-
ons. The resulting parameters of the density-dependent
meson-exchange effective interaction !DD-ME1" are dis-
played in Table I, in comparison to those of Ref. '30( !TW-
99". We note two additional differences between these mod-
els. In the relativistic mean-field model of Ref. '30( the
center-of-mass correction !26" is calculated by using the non-
relativistic approximation for the nucleon wave functions,
and the Coulomb energy is corrected by multiplying the vec-
tor self-energy of the proton with the factor (Z!1)/Z . In
Table I we first note that, even though m# is a free parameter
in our model, the adjustment to nuclear matter and to prop-
erties of finite spherical nuclei produces a value that is very
close to that of the TW-99 parametrization. The two effective
interactions display similar values for the meson-nucleon
coupling parameters at saturation density gi(%sat) (i
## ,$ ,%), as well as the value of the parameter a% , which
determines the density-dependence of the %-meson coupling
!25". The eight parameters, which characterize the density
dependence !24" of the #- and $-meson couplings in DD-
ME1, are very different from those of the TW-99 effective
interaction. The reason is, of course, that only three of these
parameters are independent. In our model b# , d# and d$ are
adjusted to properties of nuclear matter and finite nuclei.
Nevertheless, the overall density dependence of the meson-

nucleon vertex functions is very similar in the two models, as
shown in Fig. 1 for the relevant densities %<0.3 fm!3.
Nuclear matter properties calculated with the DD-ME1

interaction are illustrated in Table III and Figs. 2–4. The
results are shown in comparison with those obtained with the
density-dependent effective interaction TW-99 '30(, and with
two standard nonlinear parameter sets NL3 '10( and NL1
'40(. The later nonlinear effective interactions have been
used extensively in studies of nuclear structure phenomena
over the whole periodic table, from light nuclei to super-
heavy elements. For symmetric nuclear matter all four inter-
actions display similar saturation densities !with NL3 at the
low end" and binding energies per nucleon !with NL1 at the
high end". While three parameters of TW-99 have been spe-
cifically adjusted to the values of %sat , E/A and the incom-
pressibility K0 shown in Table III, the effective interactions
DD-ME1, NL3, and NL1 have been simultaneously adjusted
to properties of nuclear matter and finite nuclei. The incom-

TABLE II. Binding energies, charge radii, and differences be-
tween neutron and proton radii used to adjust the parameters of the
DD-ME1 interaction. The calculated values are compared with ex-
perimental data !in parentheses".

E/A(MeV) rch (fm) rn!rp(fm)
16O !7.974(!7.976) 2.730 !2.730" !0.03
40Ca !8.576(!8.551) 3.464(3.485) !0.05
48Ca !8.631(!8.667) 3.482 !3.484" 0.19
90Zr !8.704(!8.710) 4.294 !4.272" 0.06
112Sn !8.501(!8.514) 4.586 !4.596" 0.11
116Sn !8.516(!8.523) 4.616 !4.626" 0.15 !0.12"
124Sn !8.462(!8.467) 4.671 !4.674" 0.25 !0.19"
132Sn !8.352(!8.355) 4.720 0.27
204Pb !7.885(!7.880) 5.500 !5.486" 0.18
208Pb !7.884(!7.868) 5.518 !5.505" 0.20 !0.20"
214Pb !7.764(!7.772) 5.568 !5.562" 0.27
210Po !7.857(!7.834) 5.553 0.18

TABLE III. Nuclear matter properties calculated with the
density-dependent effective interactions DD-ME1 and TW-99 '30(,
and the nonlinear parameter sets NL3 '10( and NL1 '40(.

DD-ME1 TW-99 NL3 NL1

%sat (fm!3) 0.152 0.153 0.149 0.153
E/A(MeV) !16.20 !16.25 !16.25 !16.42
K0 (MeV) 244.5 240.0 271.8 211.3
m* 0.578 0.556 0.60 0.57
a4 (MeV) 33.1 32.5 37.9 43.7
p0 (MeV/fm3) 3.26 3.22 5.92 7.0
4K0 (MeV) !128.5 !126.5 52.1 67.3

FIG. 1. Density dependence of the couplings of the #-, $-, and
%-mesons. The result of the present analysis !DD-ME1" is shown
in comparison with the parameters of the effective interaction
TW-99 '30(.
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pressibility modulus K0 of the two density-dependent inter-
actions (=240–245 MeV) lies between the values predicted
by the nonlinear interactions NL1 and NL3. Calculations of
the excitation energies of isoscalar giant monopole reso-
nances in spherical nuclei in the time-dependent relativistic
mean-field framework '41(, and in the relativistic random-
phase approximation '42(, suggest that the nuclear matter
incompressibility modulus should be in the range K0
=250–270 MeV. All four effective interactions display low
values of the effective mass m* that are, of course, necessary
in order to reproduce the empirical spin-orbit splittings in
spherical nuclei. The equations of state of symmetric nuclear
matter are compared in Fig. 2. All four binding energy per

particle curves display a very similar dependence on density
below the saturation point %sat . Pronounced differences show
up at higher densities. In particular, the two nonlinear effec-
tive interactions NL1 and NL3 display a much steeper in-
crease of the binding energy, especially with respect to TW-
99. This is due to the fact that the $-meson, which dominates
at higher densities, enters linearly in NL1 and NL3, with
constant coupling. The equation of state calculated with the
DD-ME1 interaction shows an intermediate density depen-
dence in this region, though closer to NL1 and NL3.
The principal difference between the density-dependent

effective interactions DD-ME1 and TW-99 on one hand, and
the nonlinear interactions NL3 and NL1 on the other, are the
properties of asymmetric matter. This is a very important
point, because different isovector properties in nuclear matter
lead to very different predictions for the properties of exotic
nuclei with extreme isospin values. The energy per particle
of asymmetric nuclear matter can be expanded about the
equilibrium density %sat in a Taylor series in % and 8 '43(,

E!% ,8"#E!% ,0""S2!%"82"S4!%"84"••• , !27"

where

8>
N!Z
N"Z , !28"

E!% ,0"#!av"
K0
18%sat

2 !%!%sat"
2" . . . , !29"

and

FIG. 2. Binding energy per nucleon for symmetric nuclear mat-
ter as a function of the baryon density, calculated with the density-
dependent effective interactions DD-ME1 and TW-99 '30(, and the
nonlinear parameter sets NL3 '10( and NL1 '40(.

FIG. 3. S2(%) coefficient !30" of the quadratic term of the
energy per particle of asymmetric nuclear matter, calculated with
the effective interactions DD-ME1, TW-99 '30(, NL3 '10(, and
NL1 '40(.

FIG. 4. Energy per particle of neutron matter as a function of the
neutron density. The results for the four relativistic mean-field in-
teractions DD-ME1, TW-99 '30(, NL3 '10(, and NL1 '40( are
shown in comparison with the neutron matter equation of state of
Friedman and Pandharipande !FP-81" '12(.

RELATIVISTIC HARTREE-BOGOLIUBOV MODEL WITH . . . PHYSICAL REVIEW C 66, 024306 !2002"

024306-7



S2!%"#a4"
p0
%sat
2 !%!%sat""

4K0
18%sat

2 !%!%sat"
2"••• .

!30"

The empirical value at saturation density S2(%sat)#a4
#30%4 MeV. The parameter p0 defines the linear density
dependence of the symmetry energy, and 4K0 is the correc-
tion to the incompressibility. The contribution of the term
S4(%)84 in !27" is very small in ordinary nuclei and the
coefficient is not constrained in the mean-field approxima-
tion. We first note that the nonlinear effective interactions
NL1 and NL3 have a considerably larger value a4 of the
symmetry energy at saturation density. This is also true for
other standard nonlinear parameter sets, and is due to the fact
that the isovector channel of these effective forces is param-
etrized by a single constant, the density-independent
%-meson coupling g% . With a single parameter in the isovec-
tor channel it is not possible to reproduce simultaneously the
empirical value of a4 and the masses of N?Z nuclei. This
only becomes possible if a density dependence is included in
the %-meson coupling, as it is done in TW-99 and DD-ME1.
In a recent analysis of neutron radii in nonrelativistic and
covariant mean-field models '11(, Furnstahl has studied the
linear correlation between the neutron skin and the symmetry
energy. In particular, he has shown that there is a very strong
linear correlation between the neutron skin thickness in
208Pb and the individual parameters that determine the sym-
metry energy S2(%): a4 , p0 and 4K0. The empirical value
of rn!rp in 208Pb (0.20%0.04 fm from proton scattering
data '44(, and 0.19%0.09 fm from the alpha scattering exci-
tation of the isovector giant dipole resonance '45(" places the
following constraints on the values of the parameters of the
symmetry energy: a4=30!34 MeV, 2 Mev/fm3<p0
<4 Mev/fm3, and !200 MeV<4K0<!50 MeV. In
Table III we notice that, while these constraints are satisfied
by the density-dependent interactions DD-ME1 and TW-99,
the parameters of the symmetry energy of the nonlinear in-
teractions are systematically much larger. In particular, p0 is
too large by a factor =2, and the correction to the incom-
pressibility 4K0 has even a wrong sign for the two nonlinear
interactions. The qualitatively different density dependence
of the symmetry energy for the two classes of effective in-
teractions is also illustrated in Fig. 3, where we plot the
coefficient S2 as a function of the baryon density. Due to the
very large value of p0 and the small absolute value of 4K0,
for NL3 and NL1 S2 displays an almost linear density de-
pendence of % . For the two density-dependent interactions,
on the other hand, the quadratic term of S2 dominates, espe-
cially at densities %@0.1 fm!3.
In Fig. 4 we display the energy per particle of neutron

matter as a function of the neutron density. At low densities,
which are relevant for nuclear structure problems, the results
for the four relativistic mean-field interactions DD-ME1,
TW-99, NL3, and NL1 are shown in comparison with the
microscopic many-body neutron matter equation of state of
Friedman and Pandharipande '12(. The later is well repro-
duced by the density-dependent effective interactions, espe-
cially by TW-99, while the two nonlinear interactions NL3

and NL1 display a qualitatively different neutron matter
equation of state, even at very low densities.
The density-dependent effective interaction DD-ME1 has

been simultaneously adjusted to nuclear matter properties
and to ground-state properties of the spherical nuclei shown
in Table II. The calculated binding energies, charge radii and
differences between neutron and proton radii are shown in
comparison with available experimental data. The choice of
the isotopes of Sn and Pb for the fitting procedure was mo-
tivated by the desire to construct an effective interaction that
could be applied in the description of long isotopic chains,
including exotic nuclei which lie very far from the valley of
&-stability. The overall agreement between the calculated
quantities and experimental data in Table II is very good.
In addition to the effective #-, $-, and %-mesons of the

standard RMF framework, the exchange of an effective
isovector-scalar 9-meson could be also included in the
model. In the analysis of asymmetric nuclear matter in the
relativistic Brueckner-Hartree-Fock approach of Ref. '39(,
significant strength was also found in the isovector-scalar
channel, which can be interpreted as an effective 9-meson.
The calculated isovector-scalar and isovector-vector meson-
nucleon couplings at saturation density were shown to be of
comparable strength, and it was argued that this result im-
plies that the 9-meson should be included in effective field
theoretical models for finite nuclei. In the DDRH model of
Typel and Wolter '30(, however, no significant improvement
of the results for nuclear matter and finite nuclei was ob-
tained by including the 9-meson and, in order to reduce the
number of parameters, this degree of freedom was not taken
into account. In the DDRH analysis of asymmetric nuclear
matter and exotic nuclei of Ref. '29( it was noted that the
inclusion of the 9-meson introduces different effective
masses for protons and neutrons and strongly enhances the
isovector spin-orbit potential. However, no systematic effect
was found in the isovector spin-orbit splittings. The role of
the isovector-scalar channel was also recently investigated in
a refined relativistic-point coupling model with higher-order
!nonlinear" interaction terms '20(. Several effective point-
coupling interactions were constructed by adjusting the
model parameters !coupling strengths" to bulk properties of
nuclear matter and to ground-state properties of 17 represen-
tative spherical nuclei. It was shown that, by including the
linear isovector-scalar term, the correlated errors of the is-
ovector coupling constants increase considerably and this ex-
tension is thus not well determined by the set of experimen-
tal data used in the minimization procedure. It was also noted
that the sum of the isovector-scalar and isovector-vector cou-
pling strengths is very close to the value of the isovector-
vector coupling strength in those effective interactions which
did not contain the isovector-scalar channel. It seems that
although the overall isovector strength has a relatively well-
defined value, the distribution between the scalar and vector
channels is not determined by ground-state properties of fi-
nite nuclei. In Ref. '20( the effective interactions of the rela-
tivistic point-coupling model were also tested for ‘‘natural-
ness’’ according to the prescription of ‘‘naive dimensional
analysis’’ !NDA". The idea is that, after the Lagrangian has
been QCD-scaled according to the NDA rules, a set of di-
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mensionless coupling constants is natural if their absolute
values are of the order of unity. The interesting point that
was noted is that, for the interaction which contained the
linear isovector-scalar term, nine out of ten QCD-scaled cou-
pling constants were natural, whereas that of the isovector-
scalar term was very small and therefore unnatural. All these
results indicate that the present data on isovector properties
do not constrain the isovector-scalar channel, and therefore
we choose not to include the 9-meson in our model.
One of the advantages of using the relativistic framework

lies in the fact that the effective single-nucleon spin-orbit
potential arises naturally from the Dirac-Lorentz structure of
the effective Lagrangian. The single-nucleon Hamiltonian
does not contain any adjustable parameter for the spin-orbit
interaction. In Table IV we compare the energy spacings of
spin-orbit partners in the doubly closed-shell nuclei 16O,
40Ca, 48Ca, 132Sn, and 208Pb, with the values calculated
with the DD-ME1 interaction and with the prediction of the
standard NL3 nonlinear interaction. The experimental data
are from Ref. '46(. We notice that, even though the values
calculated with NL3 are already in very good agreement with
experimental data, a further improvement is obtained with
the DD-ME1 interaction, especially for the lighter nuclei
16O, 40Ca, and 48Ca.

IV. GROUND STATES OF THE Sn AND Pb ISOTOPES

In Ref. '6( we have applied the relativistic Hartree-
Bogoliubov !RHB" model in a detailed analysis of ground-
state properties of Ni and Sn isotopes. The NL3 parameter
set '10( was used for the effective mean-field Lagrangian,
and pairing correlations were described by the pairing part of
the finite range Gogny interaction D1S '36(. Fully self-
consistent RHB solutions were calculated for the isotopic
chains of Ni (28<N<50) and Sn (50<N<82). Binding
energies, neutron separation energies, and proton and neutron

rms radii were compared with experimental data. The reduc-
tion of the spin-orbit potential with the increase of the num-
ber of neutrons was studied, and the resulting energy spac-
ings between spin-orbit partners were discussed, as well as
pairing properties calculated with a finite range effective in-
teraction in the pp channel.
In this section we test the new density-dependent meson-

exchange effective force DD-ME1 in comparison with the
nonlinear interaction NL3. The RHB model is used to calcu-
late ground-state properties of Sn and Pb isotopes. Both NL3
and DD-ME1 mean-field Lagrangians are employed for the
ph-channel, and the pairing part of the Gogny interaction
D1S is used in the pp-channel. This pairing interaction is a
sum of two Gaussians with finite range and properly chosen
spin and isospin dependence. The Gogny force has been very
carefully adjusted to the pairing properties of finite nuclei all
over the periodic table. Its basic advantage is the finite range,
which automatically guarantees a proper cut-off in momen-
tum space. By comparing results of fully self-consistent
RHB calculations with experimental data, we will show that
the new effective interaction DD-ME1 provides an excellent
description of ground-state properties and, as compared with
NL3, the isovector channel is considerably improved.
In Fig. 5 we plot the deviations of the theoretical masses

of Sn isotopes, calculated in the RHB model with the DD-
ME1 and NL3 interactions, from the empirical values '47(.
Both interactions display very good results over the entire
major shell 50<N<82. For the new interaction DD-ME1, in
particular, only in few cases the absolute deviation of the
calculated mass exceeds 0.1%.
The isotopic dependence of the difference between the

theoretical and experimental charge radii '48( of Sn nuclei is
displayed in Fig. 6. The charge radii calculated with both
DD-ME1 and NL3 interactions are systematically smaller
than the experimental values. The new density-dependent
force, however, reduces the deviations from the experimental

TABLE IV. Energy separation !in MeV" between spin-orbit
partner states in doubly closed-shell nuclei, calculated with the DD-
ME1 and NL3 interactions, and compared with experimental data
'46(.

DD-ME1 NL3 Exp.
16O -1p 6.316 6.482 6.18

01p 6.249 6.404 6.32
40Ca -1d 6.567 6.716 6.00

01d 6.507 6.630 6.00
48Ca -1 f 7.689 7.542 8.38

-2d 1.723 0.888 2.02
132Sn -2d 1.883 1.573 1.65

01g 6.244 6.230 6.08
02d 1.822 1.584 1.75

208Pb -2 f 2.197 1.860 1.77
-1i 6.839 6.813 5.84
-3p 0.878 0.802 0.90
02d 1.647 1.525 1.33
01h 5.837 5.809 5.56

FIG. 5. The deviations !in percent" of the theoretical masses of
Sn isotopes, calculated in the RHB model with the DD-ME1 and
NL3 interactions, from the empirical values '47(. The pairing part
of the Gogny interaction D1S has been used in the pp channel of
the RHB model.
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radii by a factor =2. The parameters of DD-ME1 have been
adjusted to the charge radii of 112,116,124Sn, and the absolute
deviations for these nuclei can be compared in Table II.
The calculated differences between radii of neutron and

proton ground-state distributions of Sn nuclei are shown in
Fig. 7. The nonlinear interaction NL3 systematically predicts
larger values of rn!rp . This effect is even more pronounced
for the older parameter set NL1 '49(. The difference between
the values calculated with NL3 and DD-ME1 increases with
the number of neutrons to about 0.1 fm at N#82, but then it
remains practically constant for N$82. The calculated val-
ues of rn!rp are compared with experimental data '50( in
Fig. 8. While both interactions reproduce the isotopic trend
of the experimental data, NL3 obviously overestimates the
neutron skin. The values calculated with DD-ME1, on the
other hand, are in excellent agreement with the experimental
data. This result presents a strong indication that the isovec-

tor channel of the effective interaction DD-ME1 is correctly
parametrized.
In Refs. '5,6( it has been shown that the relativistic mean-

field framework predicts a strong reduction of the magnitude
of the spin-orbit term in the effective single nucleon potential
of nuclei with extreme isospin values. Starting from Tz#0
nuclei, and increasing the number of neutrons or protons, the
effective spin-orbit interaction becomes weaker and this re-
sults in a reduction of the energy spacings for spin-orbit part-
ners. The spin-orbit potential originates from the addition of
two large fields: the field of the vector mesons !short range
repulsion" and the scalar field of the sigma meson !interme-
diate attraction". In the first order approximation, and assum-
ing spherical symmetry, the spin orbit term can be written as

Vs .o .#
1
r

*

*r Vls!r ", !31"

where Vls is the spin-orbit potential

Vls#
m
mef f

!V!S ". !32"

V and S denote the repulsive vector and the attractive scalar
potentials, respectively. mef f is the effective mass

mef f#m! 1
2 !V!S ". !33"

On the neutron-rich side the magnitude of the spin-orbit term
Vs .o . decreases as we add more neutrons, i.e., more units of
isospin. This is reflected in the energy spacings between the
neutron spin-orbit partner states

4Els#En ,l , j#l!1/2!En ,l , j#l"1/2 . !34"

In Fig. 9 we plot the energy spacings between neutron spin-
orbit partners in Sn isotopes, calculated in the RHB model
with the DD-ME1 and NL3 effective interactions. The cal-

FIG. 6. The deviations !in percent" of the theoretical charge
radii of Sn isotopes, calculated in the RHB model with the DD-
ME1 and NL3 interactions, from the experimental values '48(.

FIG. 7. Differences between neutron and proton radii of ground-
state distributions of Sn isotopes, calculated with the DD-ME1 and
NL3 effective interactions.

FIG. 8. DD-ME1 and NL3 predictions for the differences be-
tween neutron and proton rms radii of Sn isotopes, compared with
experimental data from Ref. '50(.
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culated isotopic dependence is almost identical. Both inter-
actions predict a reduction of the energy spacings between
spin-orbit partners of =50% in the interval 100<A<150.
In order to test the DD-ME1 effective interaction in the

region of heavy nuclei, we have calculated the Pb isotopes
with 196<A<214. In Fig. 10 we display the deviations of
the RHB theoretical masses of Pb isotopes from the empiri-
cal values '47(. The accuracy of the binding energies calcu-
lated with DD-ME1 is comparable to that obtained with the
NL3 interaction. However, in contrast to the case of Sn iso-
topes, the DD-ME1 interaction systematically gives more
binding as compared with NL3, especially for A&208.

Due to the intrinsic isospin dependence of the effective
single-nucleon spin-orbit potential, the relativistic mean-field
models naturally reproduce the anomalous charge isotope
shifts '51(. The well known example of the anomalous kink
in the isotope shifts of Pb isotopes is shown in Fig. 11. The
results of RHB calculations with the DD-ME1 and NL3 ef-
fective interactions, and with the Gogny D1S interaction in
the pairing channel, are compared with experimental data
from Ref. '52(. Both interactions reproduce the general trend
of isotope shifts and the kink at 208Pb. The effect is, how-
ever, too strong with NL3. The experimental data are better
described by the DD-ME1 interaction.
Finally, in Fig. 12 we display the differences between

radii of neutron and proton ground-state distributions of Pb
isotopes, calculated with the DD-ME1 and NL3 effective

FIG. 9. Energy spacings between neutron spin-orbit partner
states in Sn isotopes, calculated in the RHB model with the DD-
ME1 and NL3 effective interactions.

FIG. 10. The deviations !in percent" of the theoretical masses of
Pb isotopes, calculated in the RHB model with the DD-ME1 and
NL3 interactions, from the empirical values '47(.

FIG. 11. Charge isotope shifts in even-A Pb isotopes. The results
of RHB calculations with the DD-ME1 and NL3 effective interac-
tions, and with the Gogny D1S interaction in the pairing channel,
are compared with experimental data from Ref. '52(.

FIG. 12. Differences between neutron and proton radii of
ground-state distributions of Pb isotopes, calculated with the DD-
ME1 and NL3 effective interactions.
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interactions. Similar to the case of Sn isotopes, DD-ME1
systematically predicts much smaller values for rn!rp , in
better agreement with available experimental data. The ex-
perimental values of rn!rp in 208Pb are 0.20%0.04 fm de-
duced from proton scattering data '44(, and 0.19%0.09 fm
deduced from the alpha scattering excitation of the isovector
giant dipole resonance '45(. In a recent analysis of interme-
diate energy nucleon elastic scattering data, and correlated
with analyses of electron scattering data, a value =0.17 fm
was suggested for the neutron skin thickness in 208Pb '53(.
As it has been emphasized in a recent analysis of neutron
radii in mean-field models '11(, the value of rn!rp in 208Pb
is crucial for constraining the isovector channel of effective
interactions in the mean-field approach, both in nonrelativis-
tic and covariant models.

V. PARITY-VIOLATING ELASTIC ELECTRON
SCATTERING AND NEUTRON DENSITY DISTRIBUTIONS

Data on neutron radii and neutron density distributions
provide not only basic nuclear structure information, but they
also place additional constraints on effective interactions
used in nuclear models. Potentially, a very accurate experi-
mental method for the determination of neutron densities is
the elastic scattering of longitudinally polarized electrons on
nuclei. The parity-violating asymmetry parameter, defined as
the difference between cross sections for the scattering of
right- and left-handed longitudinally polarized electrons, pro-
duces direct information on the Fourier transform of the neu-
tron density '54(. A recent extensive analysis of possible
parity-violating measurements of neutron densities, their the-
oretical interpretation, and applications can be found in Refs.
'55,56(
In Ref. '57( we have studied parity-violating elastic elec-

tron scattering on ground-state densities of neutron-rich nu-
clei that were calculated in the RHB model with the NL3 "
Gogny D1S interaction. For the elastic scattering of 850
MeV electrons on these nuclei, the parity-violating asymme-
try parameters were calculated using a relativistic optical
model with inclusion of Coulomb distortion effects. The
asymmetry parameters for chains of isotopes were compared,
and their relation to the Fourier transforms of neutron densi-
ties was studied. In this work we have shown that the new
density-dependent effective interaction DD-ME1 predicts
ground-state neutron density distributions that are in much
better agreement with experimental data. Thus, in this sec-
tion we include an analysis of parity-violating elastic elec-
tron scattering on 208Pb and on those Sn isotopes for which
there are data on rn!rp values.
We consider elastic electron scattering on a spin-zero

nucleus, i.e., on the potential

V̂!r "#V!r "".5A!r ", !35"

where V(r) is the Coulomb potential, and A(r) results from
the weak neutral current amplitude

A!r "#
GF

23/2
%W!r ". !36"

The weak charge density is defined

%W!r "#$ d3r"GE! #r!r"#"'!%n!r""

"!1!4 sin2AW"%p!r""( , !37"

where %n and %p are point neutron and proton densities and
the electric form factor of the proton is GE(r)
=(B3/80)e!Br with B#4.27 fm!1, and sin2AW#0.23 for
the Weinberg angle.
In the limit of vanishing electron mass, the electron spinor

C defines the helicity states

C%# 1
2 !1%.5"C , !38"

which satisfy the Dirac equation

'&•p"V%!r "(C%#EC% , !39"

with

V%!r "#V!r "%A!r ". !40"

The parity-violating asymmetry Al , or helicity asymmetry, is
defined

Al#
d#" /d+!d#! /d+
d#" /d+"d#! /d+

, !41"

where "(!) refers to the elastic scattering on the potential
V%(r). This difference arises from the interference of one-
photon and Z0 exchange.
Starting from the relativistic Hartree-Bogoliubov solu-

tions for the self-consistent ground states, the charge and
weak densities are calculated by folding the point proton and
neutron densities. These densities define the Coulomb and
weak potentials in the Dirac equation for the massless elec-
tron. The partial wave Dirac equation is solved with the in-
clusion of Coulomb distortion effects, and the cross sections
for positive and negative helicity electron states are calcu-
lated. The parity-violating asymmetry parameters are plotted
as functions of the scattering angle D , or the momentum
transfer q, and they are compared with the Fourier transforms
of the neutron density distributions.
In Fig. 13 we plot the parity-violating asymmetry param-

eters Al for elastic electron scattering from 208Pb at 850
MeV, as functions of the momentum transfer q#2E sin D/2,
and compare them with the squares of the Fourier transforms
of the neutron densities

F!q "#
40
q $ dr r2 j0!qr "%n!r ". !42"

The solid and dotted curves correspond to RHB neutron
ground state densities calculated with the NL3 and DD-ME1
effective Lagrangians, respectively. The asymmetries Al are
of order of <10!5 and increase with the momentum transfer
q. We notice that, even though the values of rn!rp calcu-
lated with the two interactions differ by =0.07 fm, the dif-
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ferences between the calculated asymmetry parameters Al
become more pronounced only for q$1 fm!1.
The parity-violating asymmetry parameters Al for elastic

scattering from even-A isotopes 116!124Sn at 850 MeV, as
functions of the scattering angle D , are shown in Fig. 14.
They correspond to the ground-state densities calculated with
the DD-ME1 interaction. In Ref. '57( we have discussed the
sensitivity of the asymmetry parameters to the formation of
the neutron skin. For the Sn isotopes this effect is illustrated
in Fig. 7, where the calculated differences between neutron
and proton radii of ground-state distributions are shown in
comparison with experimental data. The corresponding
asymmetry parameters <10!5 in Fig. 14 display somewhat

more pronounced differences between neighboring isotopes
only for D$15°. Finally, in Fig. 15 the calculated asymmetry
parameters, as functions of the momentum transfer, are com-
pared with the squares of the Fourier transforms of the neu-
tron densities for 116!124Sn. Obviously a resolution better
than <10!6 for the asymmetry parameters is necessary in
order to obtain useful informations on neutron density distri-
butions from parity-violating elastic electron scattering. This
resolution might be already available at existing experimen-
tal facilities '56(. For the Sn isotopes, in particular, the dif-
ferences between neighboring isotopes are only seen for q
@1.5 fm!1. We should also mention that the magnitude of
the calculated asymmetry parameters depends, of course, on
the electron energy. For electron energies below 500 MeV
the asymmetry parameters are small '57(, while above 1 GeV
the approximation of elastic scattering on continuous charge
and weak densities is not valid any more, and the structure of
individual nucleons becomes important.

VI. SUMMARY AND CONCLUSIONS

In the last couple of years the relativistic Hartree-
Bogoliubov !RHB" model has been very successfully applied
in the description of a variety of nuclear structure phenom-
ena. With the standard nonlinear meson-exchange relativistic
mean-field effective interactions in the ph-channel, however,
the predictive power of the RHB model is somewhat limited,
especially for isovector properties of exotic nuclei far from
&-stability. We have tried to overcome these limitations by
extending the RHB model to include density-dependent
meson-nucleon couplings. The particular implementation of
the model presented in this work is based on the density-
dependent relativistic hadron field !DDRH" theory '25,26(.
The effective Lagrangian in the ph-channel is characterized

FIG. 13. Parity-violating asymmetry parameters Al !upper
panel" and squares of normalized Fourier transforms of neutron
densities !lower panel", as functions of the momentum transfer q,
for elastic scattering from 208Pb at 850 MeV.

FIG. 14. Parity-violating asymmetry parameters Al for elastic
scattering from 116!124Sn at 850 MeV, as functions of the scattering
angle D .

FIG. 15. Parity-violating asymmetry parameters Al !upper
panel" and squares of normalized Fourier transforms of neutron
densities !lower panel", as functions of the momentum transfer q,
for elastic scattering from 116!124Sn at 850 MeV.
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by a density dependence of the # , $ and % meson-nucleon
vertex functions. The single-nucleon Dirac equation includes
the additional rearrangement self-energies that result from
the variation of the vertex functionals with respect to the
baryon field operators, and which are essential for the
energy-momentum conservation and the thermodynamical
consistency of the model. In this work we have used the
phenomenological density functional forms of the meson-
nucleon coupling vertices introduced in the DDRH frame-
work by Typel and Wolter '30(. The parameters of the new
effective interaction DD-ME1 have been determined by a
multiparameter fit constrained by properties of nuclear mat-
ter and by a set of experimental data on ground-state prop-
erties of spherical nuclei. Pairing correlations in the
pp-channel of the RHB model are described by the pairing
part of the finite range Gogny interaction.
Properties of symmetric and asymmetric nuclear matter

calculated with the new density-dependent effective interac-
tion DD-ME1 have been compared to those obtained with
the effective interaction of Typel and Wolter '30(, and with
two standard nonlinear parameter sets sets NL3 '10( and
NL1 '40(. It has been shown that the density-dependent
meson-nucleon couplings improve the behavior of the
nuclear matter equation of state at higher densities and re-
produce the empirical value of the asymmetry energy at satu-
ration density. The properties of asymmetric nuclear matter
are much better described by the two density-dependent in-
teractions and, in contrast to the nonlinear NL3 and NL1
forces, these interactions reproduce the microscopic many-
body neutron matter equation of state of Friedman and Pan-
dharipande.
The RHB model with the density-dependent interaction

DD-ME1 in the ph-channel, and with the finite range Gogny
interaction D1S in the pp-channel, has been tested in the
calculation of ground-state properties of Sn and Pb isotopes.
Results of fully self-consistent RHB calculations of binding
energies, charge radii, differences between neutron and pro-
ton radii, spin-orbit splittings, performed with the interaction
DD-ME1 and with the nonlinear interaction and NL3, have
been compared with available experimental data. While both
interactions predict nuclear masses with the same level of
accuracy !absolute deviations = 0.1–0.2%", the improved
isovector properties of DD-ME1 result in a better description
of charge radii, and especially the calculated values of rn
!rp are in much better agreement with experimental data.
The correct description of the data on differences of the radii
of neutron and proton ground-state distributions, on neutron

radii and neutron density distributions, is very important for
studies of new phenomena in exotic nuclei far from
&-stability !neutron skin, neutron halo, pygmy isovector di-
pole resonances", for astrophysical applications !properties
of neutron stars, neutron capture rates", and for a theoretical
interpretation of measurements of parity nonconservation ef-
fects in atomic systems !tests of the Standard model of elec-
troweak interactions" '58(. In principle, very accurate data on
neutron density distributions could be obtained from the
elastic scattering of longitudinally polarized electrons on nu-
clei. Using the ground-state densities calculated with the
DD-ME1 interaction in the RHB model, we have performed
an analysis of parity-violating elastic electron scattering on
208Pb and on those Sn isotopes for which there are experi-
mental data on rn!rp . For the elastic scattering of 850 MeV
electrons on these nuclei, the parity-violating asymmetry pa-
rameters have been calculated using a relativistic optical
model with inclusion of Coulomb distortion effects, and re-
lated to the Fourier transforms of the neutron density distri-
butions.
The RHB model with density-dependent meson-nucleon

couplings represents a significant improvement in the relativ-
istic mean-field description of the nuclear many-body prob-
lem and, in particular, of exotic nuclei far from &-stability.
The improved isovector properties of the effective interac-
tion in the ph-channel on one hand, and the unified descrip-
tion of mean-field and pairing correlations in the Hartree-
Bogoliubov framework on the other, offer a unique
possibility for accurate studies of nuclei with extreme
ground-state isospin values and with Fermi levels close to
the particle continuum. Particularly interesting will be stud-
ies of deformed nuclei for which unusual shape coexistence
phenomena, and even very different proton and neutron
ground-state deformations, are expected far from stability
and close to the drip-lines. Isovector ground-state deforma-
tions could also give rise to exotic modes of low-energy
isovector collective excitations. We have already started with
density-dependent RHB calculations of deformed nuclei, and
work is also in progress on the description of collective ex-
citations in the framework of relativistic RPA/QRPA with
density-dependent interactions.
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