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We describe the new version 4.0 of the code hfbtho that solves the nuclear Hartree-Fock-Bogoliubov 
problem by using the deformed harmonic oscillator basis in cylindrical coordinates. In the new version, 
we have implemented the restoration of rotational, particle number, and reflection symmetry for even-
even nuclei. The restoration of rotational symmetry does not require using bases closed under rotation. 
Furthermore, we added the SeaLL1 functional and improved the calculation of the Coulomb potential. 
Finally, we refactored the code to facilitate maintenance and future developments.

New version program summary
Program title: hfbtho v4.0
CPC Library link to program files: https://doi .org /10 .17632 /c5g2f92by3 .2
Code Ocean capsule: https://codeocean .com /capsule /5389629
Licensing provisions: GPLv3
Programming language: Fortran 2003
Journal reference of previous version: R.N. Pérez, N. Schunck, R.-D. Lasseri, C. Zhang and J. Sarich, Comput. 
Phys. Commun. 220 (2017) 363
Does the new version supersede the previous version: Yes
Reasons for the new version: This version adds new capabilities to restore broken symmetries and 
determine corresponding quantum numbers of even-even nuclei
Summary of revisions:

1. Angular momentum projection for even-even nuclei in a deformed basis;
2. Particle number projection for even-even nuclei in the quasiparticle basis;
3. Implementation of the SeaLL1 functional;
4. Expansion of the Coulomb potential onto Gaussians;
5. MPI-parallelization of a single hfbtho execution;
6. Code refactoring.

Nature of problem: hfbtho is a physics computer code that is used to model the structure of the nucleus. 
It is an implementation of the energy density functional (EDF) approach to atomic nuclei, where the 
energy of the nucleus is obtained by integration over space of some phenomenological energy density, 
which is itself a functional of the neutron and proton intrinsic densities. In the present version of hfbtho, 
the energy density is derived either from the zero-range Skyrme or the finite-range Gogny effective 
two-body interaction between nucleons. Nuclear superfluidity is treated at the Hartree-Fock-Bogoliubov 
(HFB) approximation. Constraints on the nuclear shape allow probing the potential energy surface of the 
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nucleus as needed, e.g., for the description of shape isomers or fission. A local scale transformation of the 
single-particle basis in which the HFB solutions are expanded provides a tool to properly compute the 
structure of weakly-bound nuclei. Restoration of the rotational, particle number, and reflection symmetry 
for even-even nuclei enables recovering the quantum numbers that are lost at the HFB approximation.
Solution method: The program uses the axial harmonic oscillator (HO) or the transformed harmonic 
oscillator (THO) single-particle basis to expand quasiparticle wave functions. It iteratively diagonalizes the 
HFB Hamiltonian based on generalized Skyrme-like energy densities and zero-range pairing interactions 
or the finite-range Gogny force until a self-consistent solution is found. Lagrange parameters are used to 
impose constraints on HFB solutions, and their value is updated at each iteration from an approximation 
of the quasiparticle random phase approximation (QRPA) matrix. Symmetry restoration is implemented 
through standard projection techniques. Previous versions of the program were presented in [1-3].
Additional comments including restrictions and unusual features: Axial and time-reversal symmetries are 
assumed in HFB calculations; y-simplex symmetry and even particle numbers are assumed in angular 
momentum projection.

References
[1] M. V. Stoitsov, J. Dobaczewski, W. Nazarewicz, P. Ring, Axially deformed solution of the Skyrme-

Hartree-Fock-Bogolyubov equations using the transformed harmonic oscillator basis. The program
hfbtho (v1.66p), Comput. Phys. Commun. 167 (1) (2005) 43.

[2] M. Stoitsov, N. Schunck, M. Kortelainen, N. Michel, H. Nam, E. Olsen, J. Sarich, S. Wild, Axially 
deformed solution of the Skyrme-Hartree-Fock-Bogolyubov equations using the transformed harmonic 
oscillator basis (II) hfbtho v2.00d: A new version of the program, Comput. Phys. Commun. 184 (6) 
(2013) 1592.

[3] R. N. Perez, N. Schunck, R.-D. Lasseri, C. Zhang, J. Sarich, Axially deformed solution of the Skyrme–
Hartree–Fock–Bogolyubov equations using the transformed harmonic oscillator basis (III) hfbtho

(v3.00): A new version of the program, Comput. Phys. Commun. 220 (2017) 363.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Over the past decades, the nuclear energy density functional 
(EDF) framework has become a tool of choice for describing the 
properties of nuclear structure and reactions across the entire nu-
clide chart [1–4]. It closely resembles density functional theory 
(DFT), a method widely used in condensed matter physics and 
quantum chemistry, insofar that it employs the mean-field approx-
imation to map a complex many-body problem onto a compu-
tationally feasible one-body problem. In nuclear physics, the EDF 
framework is typically realized at two distinct levels. The single-
reference energy density functional (SR-EDF) method introduces 
relatively simple functionals of nucleon densities and currents, de-
scribing the nuclear ground states in terms of symmetry-breaking 
mean-field wave functions. Most of the EDF-based computer pro-
grams available on the market correspond to different flavors of 
the SR-EDF method; see, e.g., [5–10] for some selected examples. 
However, a more advanced description requires the inclusion of 
collective correlations related to the restoration of broken symme-
tries and quantum shape fluctuations. This is the basic tenet of the 
multi-reference energy density functional (MR-EDF) method.

The previous versions of the hfbtho program are largely imple-
mentations of the SR-EDF formalism in the axial harmonic oscilla-
tor (HO) basis or the transformed harmonic oscillator (THO) basis 
[11,12,5]. The core of the program is a solver for the self-consistent 
Hartree-Fock-Bogoliubov (HFB) equation. While the initial release 
[11] was restricted to even-even nuclei with Skyrme EDFs and con-
tact pairing interactions, more recent versions expanded the theo-
retical framework significantly: to describe parity-breaking shapes, 
nuclei with odd number of particles, and nuclei at finite temper-
ature [12]; to solve the HFB equation for the finite-range Gogny 
potentials, compute the collective mass tensor and zero-point en-
ergy corrections, regularize the pairing interaction, and compute 
properties of fission fragments [5].

Among the publicly available codes, MR-EDF capabilities in-
clude the restoration of particle number symmetry in the canonical 
basis in hfbtho (all versions) and the restoration of rotational, 
isospin, particle-number, and reflection symmetries of HFB states 
2

in hfodd 3.06h [13]. Note that hfodd projects either on total par-
ticle number A or total isospin projection T z but not separately on 
the number of protons Z and neutrons N . Compared to previous 
versions of hfbtho, the present release contains a much more ex-
panded MR-EDF toolkit for symmetry restoration that is tailored 
for large-scale applications of the MR-EDF framework. Specifically, 
the version 4.0 of hfbtho implements the restoration of rotational, 
particle number, and reflection symmetry for even-even nuclei. 
These restorations can be performed either independently (e.g., ei-
ther the rotational and reflection symmetries only or the particle 
number symmetry only), or they can be combined in the joint 
restoration of all three types of quantum numbers (angular mo-
mentum, particle number, and parity). In addition, our implemen-
tation of the angular momentum restoration bypasses the need to 
use rotationally-invariant, closed bases. Symmetry restoration can 
now be performed in the deformed (stretched) HO basis typically 
employed in large-scale calculations of potential energy surfaces.

In Section 2, we review the modifications introduced in this 
version of the program. In Section 3, we give several numerical 
benchmarks for the new capabilities. Finally, in Section 4, we dis-
cuss the new options available in the input file and explain how to 
run the code.

2. Modifications introduced in version 4.0

In this section, we present the new features added to the code 
between version 3.00 and 4.0.

2.1. Restoration of broken symmetries

A module for restoration of broken symmetries is the main new 
feature of version 4.0. In the following, we describe the underlying 
theoretical framework in detail.

2.1.1. General framework
The HFB states break several symmetries of the nuclear Hamil-

tonian and consequently do not carry the associated good quantum 
numbers. Since its first published version, the hfbtho program has 
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implemented the particle number restoration in the canonical ba-
sis for even-even nuclei. The current version includes a new mod-
ule for the simultaneous restoration of rotational, particle number, 
and reflection symmetry of the HFB states for even-even nuclei 
[1,14,15].

The main ingredient of symmetry-restoring calculations are 
kernels of the form

O J M K ;N Z;p
qq = 〈�q|Ô P̂ J

M K P̂ N P̂ Z P̂ p|�q〉 . (1)

Here, |�q〉 is an HFB state at point q in the collective space 
defined by the set of active constraints on the HFB solution, 
while Ô is either the identity operator for the norm overlap ker-
nel, O J M K ;N Z;p

qq ≡N J M K ;N Z;p
qq , or the Hamiltonian operator for the 

Hamiltonian kernel, O J M K ;N Z;p
qq ≡H J M K ;N Z;p

qq .
The operator that projects an HFB state onto a state with good 

values of angular momentum J reads

P̂ J
M K = 2 J + 1

16π2

∫
d� D J∗

M K (α,β,γ )R̂(α,β,γ ), (2)

where α, β , and γ are the usual Euler angles, 
∫

d� ≡ ∫ 2π
0 dα ×∫ π

0 dβ sin β
∫ 4π

0 dγ , and D J
M K (α, β, γ ) is the Wigner D-matrix 

[16]. The coordinate-space rotation operator reads

R̂(α,β,γ ) = e−iα Ĵ z e−iβ Ĵ y e−iγ Ĵ z . (3)

Note that the conservation of number parity [17] allows reduc-
ing the integration interval over γ to [0, 2π ]. This has no practical 
consequence in hfbtho since integrals over Euler angles α and γ
are trivial and can be carried out analytically due to the axial sym-
metry. In addition, the current version of hfbtho computes kernels 
(1) for the identity and the Hamiltonian operator only. For such 
scalar operators, only the M = K = 0 components of the total an-
gular momentum do not vanish identically.

Furthermore, the operator that projects an HFB state onto a 
state with a good number of particles reads

P̂ X = 1

2π

2π∫
0

dϕ ei( X̂−X0)ϕ, (4)

where X = N (Z) is a label referring to neutrons (protons), X0 =
N0 (Z0) is the desired number of neutrons (protons), and X̂ =
N̂ ( Ẑ) is the neutron (proton) number operator. In practice, the in-
tegration interval over the gauge angle ϕ can be reduced to [0, π ]
using the property of a good number parity of an HFB state. The 
resulting integral is further discretized and particle number pro-
jection is performed using the Fomenko expansion [18]

P̂ X = 1

Nϕ

Nϕ∑
lτ =1

ei( X̂−X0)ϕlτ , ϕlτ = π

Nϕ
lτ , (5)

where τ = n (p) for neutrons (protons) and Nϕ is the correspond-
ing number of gauge angle points which may in principle be dif-
ferent for neutrons and protons.

Finally, the operator that projects an HFB state onto a state with 
good parity reads

P̂ p = 1

2

(
1 + p
̂

)
, (6)

where p = +1 (−1) for positive (negative) parity and 
̂ is the 
standard parity operator [19].

Combining the expressions for projection operators and assum-
ing the same number of gauge angle points for neutrons and pro-
tons, the kernels (1) can be written as
3

O J ;N Z;p
qq = 2 J + 1

2

π∫
0

dβ sinβ d J∗
00(β)

× 1

N2
ϕ

Nϕ∑
ln=1

Nϕ∑
lp=1

e−iN0ϕln e−i Z0ϕlp

× 1

2

[
Oqq(β,ϕln ,ϕlp ) + pOπ

qq(β,ϕln ,ϕlp )
]
,

(7)

with the rotated kernels

Oqq(β,ϕln ,ϕlp ) ≡ 〈�q|Ô e−iβ Ĵ y eiϕln N̂ eiϕlp Ẑ |�q〉 , (8a)

O

qq(β,ϕln ,ϕlp ) ≡ 〈�q|Ô e−iβ Ĵ y eiϕln N̂ eiϕlp Ẑ


̂|�q〉 . (8b)

The expression for kernels can be further simplified by using the 
symmetries of an HFB state. In particular, the anti-linear y-time-
simplex operator Ŝ T

y = 
̂T̂ e−iπ Ĵ y fixes a phase through a symme-
try transformation [20,21,15]

Ŝ T
y |�q〉 = |�q〉 . (9)

Using the time-reversal symmetry, we then obtain the following 
relation for the rotated kernels

O

qq(β,ϕln ,ϕlp ) =Oqq(π − β,ϕln ,ϕlp ). (10)

This greatly facilitates calculations because only the rotated kernels 
Oqq(β, ϕln , ϕlp ) need to be evaluated explicitly. Moreover, since 
only diagonal kernels are considered in this version of the code, 
the second subscript q can be dropped. Therefore, the rotated ker-
nels will simply be denoted as Oq(β, ϕln , ϕlp ).

The symmetry-restoring framework enables us to expand an 
HFB state |�q〉 into a basis of states with good quantum numbers 
(angular momentum, particle number, parity) and to extract their 
respective coefficients [17]. For example, in the case of the particle 
number decomposition, we can write

|�q〉 =
∑

N

∑
Z

cN Z
q |N Z〉 , (11)

and the coefficients satisfy

∣∣cN Z
q

∣∣2 = 1

N2
ϕ

Nϕ∑
ln=1

Nϕ∑
lp=1

e−iN0ϕln e−i Z0ϕlpOq(0,ϕln ,ϕlp ), (12)

with 
∑

N

∑
Z |cN Z

q |2 = 1. Similarly, a decomposition onto states 
with good angular momenta and parity implies that the coeffi-
cients satisfy

∣∣c J ;p
q

∣∣2 = 2 J + 1

2

π∫
0

dβ sinβ d J∗
00(β)

× 1

2

[
Oq(β,0,0) + pOq(π − β,0,0)

]
,

(13)

with 
∑

J

∑
p |c J ;p

q |2 = 1. Note that only collective states obeying 
the natural spin-parity selection rule, p = (−1) J , are accessible 
within the present model. The coefficients of the simultaneous ex-
pansion onto states with good angular momentum, particle num-
ber, and parity are given by Eq. (7), i.e., |c J ;N Z;p

q |2 = O J ;N Z;p
qq . They 

satisfy the sum rule 
∑

J

∑
p

∑
N,Z |c J ;N Z;p

q |2 = 1. Finally, the en-
ergy of a symmetry-restored state is calculated as

E J ;N Z;p
q = H

J ;N Z;p
q

N J ;N Z;p
. (14)
q
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2.1.2. Bases not closed under rotation
Numerous implementations of the symmetry-restoring frame-

work (see Refs. [3,4,22] and references therein for some recent 
results) relied on the expansion of HFB states in spherical HO 
bases that are closed under rotation. However, such an approach 
becomes computationally intractable when describing extremely 
heavy or deformed configurations like those appearing in studies 
of nuclear fission or the structure of superheavy nuclei. In these 
cases, numerical convergence can typically be achieved only by 
expanding HFB states in deformed HO bases with incomplete oscil-
lator shells. However, such bases are not closed under rotation and 
the conventional symmetry-restoring framework is consequently 
inapplicable.1

The elegant solution to this hurdle was proposed almost three 
decades ago by L. Robledo [26], who reformulated Wick’s theorem 
[27,28] to encompass bases not closed under rotation. The first 
implementations of the modified symmetry-restoring framework 
were reported only very recently [29,30]. Version 4.0 of hfbtho

is the first one to contain this capability. In particular, for the case 
of bases not closed under rotation, the rotated norm overlap kernel 
for particle type τ = n, p reads

N (τ )
q (x(τ )) =

√
det

[
A(τ )

q (x(τ ))
]

det
[

R(x(τ ))
]
, (15)

where x(τ ) ≡ {β, ϕlτ }, R(x(τ )) is the total rotation matrix, and the 
A(τ )

q (x(τ )) matrix reads

A(τ )
q (x(τ )) = U (τ )T

q
[

RT (x(τ ))
]−1

U (τ )∗
q + V (τ )T

q R(x(τ ))V (τ )∗
q . (16)

Here, the Bogoliubov matrices U (τ )
q , V (τ )

q correspond to the HFB 
solution |�q〉 for particle τ . Without breaking the isospin symme-
try, the full rotated norm overlap kernel is separable in isospin

Nq(β,ϕln ,ϕlp ) =N (τ=n)
q (β,ϕln ) ×N (τ=p)

q (β,ϕlp ). (17)

Moreover, in the case of a basis closed under rotation we have 
| det[R(x(τ ))]| = 1, and the expression (15) reduces to the conven-
tional Onishi formula [31].

Furthermore, the rotated density and pairing tensors for particle 
type τ read

ρ
(τ)
q (xτ ) = R(x(τ ))V (τ )∗

q

[
A(τ )

q (x(τ ))
]−1

V (τ )T
q , (18a)

κ
(τ )
q (x(τ )) = R(x(τ ))V (τ )∗

q

[
A(τ )

q (x(τ ))
]−1

U (τ )T
q , (18b)

κ
∗(τ )
q (x(τ )) = −R∗(x(τ ))U (τ )∗

q

[
A(τ )

q (x(τ ))
]−1

V (τ )T
q . (18c)

The rotated Hamiltonian kernel Hq(β, ϕln , ϕlp ) is a functional of 
the rotated density and pairing tensors; see Section 2.1.6 and 
Refs. [1,2] for more details.

2.1.3. Structure of matrices in the y-simplex basis
The rotation by an angle β about the y-axis of the refer-

ence frame breaks the axial symmetry of HFB solutions. Compu-
tations can thus be facilitated by using a non-axially-symmetric, 
computationally-efficient representation of the Bogoliubov matri-
ces U (τ )

q and V (τ )
q . This is achieved by introducing the y-simplex 

basis.

1 Alternatively, symmetry restoration can also be performed with HFB states ob-
tained in a coordinate-space representation [2]. To avoid the large computational 
cost associated to spatial rotations of HFB states during the angular momentum 
projection, the relevant kernels are often computed in the canonical basis. This can 
lead to similar difficulties as using incomplete HO bases; see [23–25] for a discus-
sion.
4

The y-simplex basis. The HO basis states |α〉 are characterized by 
the set of quantum numbers {α} = {nα

z , nα⊥, 
α, �α}, where nα
z

and nα⊥ represent the number of quanta (nodes) in the z− and 
the r⊥− direction, respectively, while 
α and �α(≡ |↑〉 , |↓〉) de-
note the components of the orbital angular momentum and of the 
spin along the z-axis. Starting from these initial basis states, it is 
straightforward to show that the linear combinations

|nα
z nα⊥
α;+〉 = 1√

2

[
i |nα

z nα⊥
α ↑〉 + |nα
z nα⊥−
α ↓〉

]
,

|nα
z nα⊥
α;−〉 = 1√

2

[
|nα

z nα⊥
α ↑〉 + i |nα
z nα⊥−
α ↓〉

]
,

(19)

are eigenstates of the y-simplex operator R̂ y with eigenvalues of 
+i and −i, respectively. The y-simplex operator R̂ y is defined as a 
rotation around the y-axis by an angle π , followed by the parity 
transformation 
̂

R̂ y = 
̂exp(−iπ Ĵ y). (20)

The y-simplex basis can be used to reduce the computational cost 
by exploiting symmetries of the problem at hand.

Bogoliubov matrices. In the y-simplex basis, the Bogoliubov matri-
ces acquire the block structure

U (τ )
q =

(
u(τ )

q 0

0 u(τ )∗
q

)
, V (τ )

q =
(

0 −v(τ )∗
q

v(τ )
q 0

)
. (21)

In this expression, the basis states are organized in two blocks: 
the first block comprises all states with an eigenvalue +i, while 
the second block comprises all states with an eigenvalue −i. The 
transformation between the components k of Bogoliubov matrices 
in the y-simplex basis and the HO basis reads

u
(τ )[nα

z ,nα⊥,�α− 1
2 ]

q,k = (+1)U
(τ )[nα

z ,nα⊥,�α− 1
2 ,�α=+ 1

2 ]
q,k , (22a)

u
(τ )[nα

z ,nα⊥,−�α− 1
2 ]

q,k = (+i)U
(τ )[nα

z ,nα⊥,�α+ 1
2 ,�α=− 1

2 ]
q,k , (22b)

v
(τ )[nα

z ,nα⊥,�α− 1
2 ]

q,k = (−1)V
(τ )[nα

z ,nα⊥,�α− 1
2 ,�α=+ 1

2 ]
q,k , (22c)

v
(τ )[nα

z ,nα⊥,−�α− 1
2 ]

q,k = (−i)V
(τ )[nα

z ,nα⊥,�α+ 1
2 ,�α=− 1

2 ]
q,k . (22d)

Using these expressions, one can construct U (τ )
q and V (τ )

q matrices 
in the y-simplex basis from the HFB solutions expressed in the HO 
basis.

Rotation matrix. The total rotation operator corresponds to the 
combination of a spatial rotation for an angle β and a gauge space 
rotation for an angle ϕlτ . In the y-simplex basis, the rotation ma-
trix acquires the following block structure

R(x(τ )) = eiϕlτ

(
r(β) 0

0 r∗(β)

)
, (23)

where the matrix elements rαγ (β) of the r(β) matrix read

rαγ (β) = 1

2
cos

(β

2

)
〈nα

z nα⊥
α |e−iβ L̂ y |nγ
z nγ

⊥
γ 〉

+ 1

2
cos

(β

2

)
〈nα

z nα⊥−
α |e−iβ L̂ y |nγ
z nγ

⊥−
γ 〉

+ i

2
sin

(β

2

)
〈nα

z nα⊥
α |e−iβ L̂ y |nγ
z nγ

⊥−
γ 〉

+ i

2
sin

(β

2

)
〈nα

z nα⊥−
α |e−iβ L̂ y |nγ
z nγ

⊥
γ 〉 .

(24)
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Matrix elements of the e−iβ L̂ y operator are evaluated using the 
prescription of Ref. [32].

Calculation of overlaps. Using the block structure of the Bogoli-
ubov matrices and of the total rotation matrix, we can recast the 
A(τ )

q (x(τ )) matrix in the y-simplex basis as

A(τ )
q (x(τ )) =

(
a(τ )++

q (x(τ )) 0
0 a(τ )−−

q (x(τ ))

)
, (25)

where

a(τ )++
q (x(τ )) = e−iϕlτ a(τ )

Uq
(β) + eiϕlτ a(τ )

Vq
(β), (26a)

a(τ )−−
q (x(τ )) = e−iϕlτ

[
a(τ )

Uq
(β)

]∗ + eiϕlτ

[
a(τ )

Vq
(β)

]∗
, (26b)

and

a(τ )
Uq

(β) = [
u(τ )

q
]T [

rT (β)
]−1

u(τ )∗
q , (27a)

a(τ )
Vq

(β) = [
v(τ )

q
]T

r∗(β)v(τ )∗
q . (27b)

The rotated norm overlap kernel then reads

N (τ )
q (x(τ )) =

√√√√det

[(
n(τ )++

q (x(τ )) 0
0 n(τ )−−

q (x(τ ))

)]
, (28)

with

n(τ )++
q (x(τ )) = eiϕlτ a(τ )++

q (x(τ ))r(β), (29a)

n(τ )−−
q (x(τ )) = eiϕlτ a(τ )−−

q (x(τ ))r∗(β). (29b)

Since the two y-simplex blocks yield identical overlaps, the sign of 
the total overlap is fixed by the sign of any of them.

Rotated density and pairing tensors. In the y-simplex basis, the den-
sity matrix acquires a diagonal block structure

ρ
(τ)
q (x(τ )) =

(
ρ

(τ)++
q (x(τ )) 0

0 ρ
(τ)−−
q (x(τ ))

)
, (30)

where

ρ
(τ)++
q (x(τ )) = eiϕlτ r(β)v(τ )

q

[
a(τ )−−

q (x(τ ))
]−1

v(τ )†
q , (31a)

ρ
(τ)−−
q (x(τ )) = eiϕlτ r∗(β)v(τ )∗

q

[
a(τ )++

q (x(τ ))
]−1

v(τ )T
q . (31b)

On the other hand, the pairing tensor acquires an off-diagonal 
block structure

κ
(τ )
q (x(τ )) =

(
0 κ

(τ )+−
q (x(τ ))

κ
(τ )−+
q (x(τ )) 0

)
, (32)

where

κ
(τ )+−
q (x(τ )) = −eiϕlτ r(β)v(τ )

q

[
a(τ )−−

q (x(τ ))
]−1

u(τ )†
q , (33a)

κ
(τ )−+
q (x(τ )) = eiϕlτ r∗(β)v(τ )∗

q

[
a(τ )++

q (x(τ ))
]−1

u(τ )T
q . (33b)

Similarly,

κ
∗(τ )
q (x(τ )) =

(
0 κ

∗(τ )+−
q (x(τ ))

κ
∗(τ )−+
q (x(τ )) 0

)
, (34)

with

κ
∗(τ )+−
q (x(τ )) = −e−iϕlτ r∗(β)u(τ )∗

q

[
a(τ )++

q (x(τ ))
]−1

v(τ )T
q , (35a)

κ
∗(τ )−+
q (x(τ )) = e−iϕlτ r(β)u(τ )

q

[
a(τ )−−

q (x(τ ))
]−1

v(τ )†
q . (35b)
5

2.1.4. Making use of the symmetries
The expansion in the y-simplex basis enables us to reduce 

the computational cost by making all matrices block-diagonal. The 
computational cost can further be reduced by exploiting the sym-
metries in rotational angle β and gauge angle ϕlτ :

• For reflection-symmetric configurations (q30 = 0), all quanti-
ties are symmetric around β = π/2. Consequently, the pro-
jection interval can be reduced to β∈[0, π/2]. This feature is 
automatically implemented for all reflection-symmetric config-
urations.

• The projection interval in gauge angle ϕlτ can always be re-
duced to ϕlτ ∈[0, π ] due to the number-parity symmetry of 
an HFB state. In addition, using symmetries of the two sim-
plex blocks, we have

N (τ )
q (β,π − ϕlτ ) =

[
N (τ )

q (β,ϕlτ )
]∗

, (36a)

ρ
(τ)++
q (β,π − ϕlτ ) =

[
ρ

(τ)−−
q (β,ϕlτ )

]∗
, (36b)

ρ
(τ)−−
q (β,π − ϕlτ ) =

[
ρ

(τ)++
q (β,ϕlτ )

]∗
, (36c)

κ
(τ )+−
q (β,π − ϕlτ ) = −[κ(τ )−+

q (β,ϕlτ )]∗, (36d)

κ
(τ )−+
q (β,π − ϕlτ ) = −

[
κ

(τ )+−
q (β,ϕlτ )

]∗
, (36e)

κ
∗(τ )+−
q (β,π − ϕlτ ) = −[κ∗(τ )−+

q (β,ϕlτ )]∗, (36f)

κ
∗(τ )−+
q (β,π − ϕlτ ) = −

[
κ

∗(τ )+−
q (β,ϕlτ )

]∗
. (36g)

Consequently, only quantities within the interval ϕlτ ∈ [0, π/2]
are explicitly calculated.

2.1.5. Densities in the coordinate-space representation
The expressions (18a) - (18c) for the rotated (transition) density 

and pairing tensors are written in the configuration space, that is, 
the quantities U (τ )

q , V (τ )
q , etc., are matrices. When using Skyrme 

EDFs, the coordinate-space representation is also especially useful.

General expressions. In the coordinate-space representation, the 
full one-body density matrix for particle type τ can be written 
as

ρ
(τ)
q (rσ , r′σ ′) = 1

2
ρ

(τ)
q (r, r′)δσσ ′

+ 1

2

∑
μ

〈σ |σ̂μ|σ ′〉 s(τ )
q,μ(r, r′),

(37)

where ρ(τ)
q (r, r′) is the non-local one-body particle density

ρ
(τ)
q (r, r′) =

∑
σ

ρ
(τ )
q (rσ , r′σ) (38)

and s(τ )
q,μ(r, r′) is the μ component of the non-local one-body spin 

density

s(τ )
q,μ(r, r′) =

∑
σσ ′

ρ
(τ)
q (rσ , r′σ ′) 〈σ ′|σμ|σ 〉 . (39)

These non-local densities can be used to generate an auxiliary set 
of local densities that will appear in the expression for the energy 
density functional. In particular, the local particle density ρ(τ)

q (r), 
the local spin density s(τ )

q (r), the kinetic energy density τ (τ )
q (r), 

the spin kinetic energy density T (τ )
q (r), the current density j(τ )

q (r), 
and the spin current density J(τ )

q (r) read
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ρ
(τ)
q (r) = ρ

(τ)
q (r, r), (40a)

s(τ )
q (r) = s(τ )

q (r, r), (40b)

τ
(τ )
q (r) = ∇ · ∇′ρ(τ)

q (r, r′)|r′=r, (40c)

T (τ )
q,μ(r) = ∇ · ∇′s(τ )

q,μ(r, r′)|r′=r, (40d)

j(τ )
q (r) = 1

2i
(∇ − ∇′)ρ(τ )

q (r, r′)|r′=r, (40e)

J (τ )
q,μν(r) = 1

2i
(∇μ − ∇′

μ)s(τ )
q,ν (r, r′)|r′=r, . (40f)

Furthermore, the non-local pairing densities for particle type τ are 
defined through the corresponding pairing tensors as

ρ̃
(τ )
q (rσ , r′σ ′) = (−2σ ′)κ(τ )

q (rσ , r′−σ ′), (41a)

ρ̃
∗(τ )
q (rσ , r′σ ′) = (−2σ ′)κ∗(τ )

q (rσ , r′−σ ′). (41b)

They can be equivalently expanded as

ρ̃
(τ )
q (rσ , r′σ ′) = 1

2
ρ̃

(τ )
q (r, r′)δσσ ′

+ 1

2

∑
μ

〈σ |σ̂μ|σ ′〉 s̃(τ )
q,μ(r, r′).

(42)

However, only local pairing densities will be considered in the 
pairing term of the energy density functional

ρ̃
(τ )
q (r) = ρ̃

(τ )
q (r, r), (43a)

ρ̃
∗(τ )
q (r) = ρ̃

∗(τ )
q (r, r). (43b)

Formally, equations (40a) - (40f) and (43a) - (43b) look identi-
cal regardless of whether ρ(τ)

q (rσ , r′σ ′) is the diagonal one-body 
density matrix,

ρ
(τ)
q (rσ , r′σ ′) ≡ 〈�q|c†(r′σ ′τ )c(rστ)|�q〉

〈�q|�q〉 (44)

or the rotated (transition) one-body density,

ρ
(τ)
q (rσ , r′σ ′;η) ≡ 〈�q|c†(r′σ ′τ )c(rστ)R[η]|�q〉

〈�q|R[η]|�q〉 , (45)

where c†(r′σ ′τ ) and c(rστ) are the creation and the annihila-
tion operator for particle τ corresponding to the single-particle 
basis of choice, R is the transformation (rotation) operator re-
lated to the symmetry being restored, and η denotes a set of real 
numbers parametrizing the elements of the symmetry group(s) re-
lated to the transformation R (that is, in our case, η ≡ x(τ )). The 
main difference is that for diagonal one-body density matrix all 
local densities are real-valued if axial-symmetry is enforced. On 
the other hand, the densities stemming from the latter matrix are 
generally complex-valued [33]. For completeness, we give the ex-
plicit expressions for the densities and currents (40a) - (40f) and 
(43a) - (43b) in Appendix A.

Time-odd densities and symmetry restoration. Within the HFB the-
ory, the local densities ρ(τ)

q , τ (τ )
q , and J(τ )

q are even, while s(τ )
q , 

T (τ )
q , and j(τ )

q are odd under the time-reversal transformation [34]. 
When the HFB state |�q〉 in (44) is time-even, as is the case for 
even-even nuclei at the SR-EDF level, the ρ(τ)

q (rσ , r′σ ′) matrix is 
time-even as well. Consequently, one can show that in such cases 
s(τ )

q (r) = T (τ )
q (r) = j(τ )

q (r) = 0 and the corresponding energy con-
tributions vanish identically. Furthermore, blocking calculations for 
odd nuclei in hfbtho are implemented in the equal filling ap-
proximation [35], which enforces the conservation of time-reversal 
6

symmetry. Therefore, the time-odd densities do not contribute in 
this case either.

However, the situation is generally different for transition den-
sities of Eq. (45), such as the gauge- and Euler-rotated densities 
appearing at the MR-EDF level [33]. Most importantly, the tran-
sition densities are generally not Hermitian. Consequently, even if 
the HFB state is time-even, the time-odd densities and the corre-
sponding energy contributions may not vanish identically. In the 
particular case of particle number projection (PNP), one can show 
that the one-body density matrix is symmetric in the oscillator 
basis and that, as a result, the spin density transforms under the 
time-reversal as T̂ s(τ )

q,μ(r, r′) =−s(τ )
q,μ(r, r′). This property ensures 

that the spin density vanishes identically when the reference state 
is time-even. However, this result is specific to the case of PNP 
alone. For the angular momentum projection (AMP) or the com-
bined PNP and AMP, all time-odd densities are generally non-zero 
and contribute to the projected energy (or any other observable).

2.1.6. Rotated energy density functional
Rotated Hamiltonian kernel. The rotated Hamiltonian kernel is a 
functional of the rotated density and rotated pairing tensors. It cor-
responds to a spatial integral of the rotated energy density func-
tional

Hq(x)[ρ,κ,κ∗] =
∫

d3r Eq(r; x)[ρ,κ,κ∗], (46)

where x ≡ {x(τ=n), x(τ=p)}. Version 4.0 of hfbtho implements the 
restoration of symmetries for Skyrme-based EDFs only.

The total EDF can be decomposed into the particle-hole (Skyrme)
part and the particle-particle (pairing) part

Eq(r; x) = ESky
q (r; x) + Epair

q (r; x), (47)

where

ESky
q (r; x) = Ekin

q (r; x) + ECou
q (r; x) + Epot

q (r; x). (48)

Note that functional dependencies on the rotated density and pair-
ing tensors were dropped for compactness on each side of Eqs. (47)
and (48). The kinetic term simply reads

Ekin
q (r; x) =

∑
τ=n,p

h̄2

2m
τ

(τ )
q (r; x). (49a)

The Coulomb term can be decomposed into the direct and the ex-
change part, ECou

q (r; x) = ECou,dir
q (r; x) + ECou,exc

q (r; x). The direct 
contribution is calculated as

ECou,dir
q (r; x) = 1

2

∫
d3r′ ρ

(p)
q (r; x)ρ

(p)
q (r′)

|r − r′| , (50)

while the exchange contribution is calculated in the local Slater 
approximation and the Coulomb potential is computed with the 
non-rotated density to save computational time. The resulting er-
ror is less than 100 keV on the J = 10 state of Table 2.

ECou,exc
q (r; x) = −3e2

4

(
3

π

)1/3 [
ρ

(p)
q (r; x)

]4/3
. (51)

Note that the pairing contribution of the Coulomb interaction has 
been omitted.

Furthermore, the Skyrme pseudopotential term can also be de-
composed into two contributions

Epot
q (r; x) =

∑ [
Epot,even

q,t (r; x) + Epot,odd
q,t (r; x)

]
, (52)
t=0,1
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where the former is built from time-even densities and currents 
only, while the latter is built from time-odd densities and currents 
only. Of course, both contributions are themselves time-even by 
construction. Furthermore, the summation over t in Eq. (52) re-
flects the coupling of neutron and proton densities and currents 
into the isoscalar (t = 0) and the isovector (t = 1) channel, i.e.

ρq,0(r; x) = ρ
(n)
q (r; x) + ρ

(p)
q (r; x),

ρq,1(r; x) = ρ
(n)
q (r; x) − ρ

(p)
q (r; x),

(53)

and equivalently for other densities and currents. The time-even 
contribution to the EDF then reads

Epot,even
q,t (r; x) = Cρρ

q,t (r; x)ρ2
q,t(r; x)

+ Cρ�ρ
t ρq,t(r; x)�ρq,t(r; x)

+ Cρτ
t ρq,t(r; x)τq,t(r; x)

+ Cρ∇ J
t ρq,t(r; x)∇ · J q,t(r; x)

+ C J J
t

∑
μν

Jq,t,μν(r; x) Jq,t,μν(r; x),

(54)

and the time-odd contribution reads

Epot,odd
q,t (r; x) = C ss

q,t(r; x)s2
q,t(r; x)

+ C s�s
t sq,t(r; x)�sq,t(r; x)

+ C sj
t j2

q,t(r; x)

+ C s∇ j
t sq,t(r; x) ·

(
∇ × jq,t(r; x)

)
+ C sT

t sq,t(r; x) · T q,t(r; x).

(55)

Note that the coupling constants Cρρ
q,t (r; x) and C ss

q,t(r; x) are 
density-dependent. Furthermore, the last terms in Eqs. (54) and 
(55) represent tensor contributions and are set to zero by construc-
tion in a number of Skyrme EDFs. The full expressions for coupling 
constants Ct in terms of the (t, x) parameters of the Skyrme EDF 
are given in Appendix B.

Finally, the pairing term reads

Epair
q (r; x) =

∑
τ=n,p

Cpair(τ )
q (r, x)ρ̃

(τ )
q (r; x)ρ̃

∗(τ )
q (r; x), (56)

with

Cpair(τ )
q (r, x) = V (τ )

0

4

[
1 − V (τ )

1

(
ρq(r; x)

ρc

)]
, (57)

where V (τ )
0 is the pairing strength for particle τ , V (τ )

1 controls the 
nature of pairing between the pure volume (V (τ )

1 = 0) and the pure 
surface (V (τ )

1 = 1) interaction, and ρc = 0.16 fm−3 is the saturation 
density of nuclear matter.

Rotated Hamiltonian kernel of density-dependent terms. Nearly all 
parameterizations of Skyrme and Gogny EDFs include a density-
dependent two-body term. This term has a strongly repulsive char-
acter and was originally introduced to reproduce the saturation 
property of the nuclear interaction. However, since it is not linked 
to a genuine Hamiltonian operator, its contribution to the rotated 
Hamiltonian kernel is ambiguous. In fact, this contribution can be 
determined only by introducing an additional prescription [36,37]. 
The choice of prescription will influence the calculated projected 
energies and can therefore be considered as yet another parameter 
of a density-dependent EDF.

A common choice is the mixed density prescription

ρ
(τ)

q,mix(r;β,ϕlτ ) = 〈�q|ρ̂(τ )(r)e−iβ Ĵ y eiϕlτ τ̂ |�q〉
〈� |� 〉 , (58)
q q

7

where ρ̂(τ )(r) is the one-body density operator for particle type 
τ at point r. This prescription is motivated by the expression for 
the Hamiltonian kernel of density-independent interactions based 
on the generalized Wick theorem. Moreover, it is the only pre-
scription on the market satisfying all the consistency requirements 
[36]. Most importantly, even though the mixed density (58) is gen-
erally complex, the resulting projected energies are always real 
and invariant under symmetry transformations. Nevertheless, if a 
density-dependent term contains a non-integer power of density, 
the corresponding energy contribution is generally ill-defined. This 
issue is essentially insurmountable and can be circumvented only 
by using density-dependent terms with integer powers of density 
or a different density prescription. A possible alternative is the pro-
jected density prescription

ρ
(τ)

q,proj(r;β) = 〈�q|ρ̂(τ )(r)e−iβ Ĵ y P̂ X |�q〉
〈�q|e−iβ Ĵ y P̂ X |�q〉

, (59)

which is real by construction. Unfortunately, it yields non-physical 
results when used in restoration of spatial symmetries, such as the 
rotational or reflection symmetry [37]. Nevertheless, a hybrid ap-
proach is possible in which the mixed density prescription is used 
when restoring spatial symmetries, while the projected density 
prescription is used when restoring the particle number symmetry. 
Such an approach has been routinely employed in MR-EDF calcu-
lations with Gogny EDFs by the Madrid group [4].

The Skyrme EDFs included in the current implementation con-
tain two density-dependent terms: (i) the volume term propor-
tional to ρα(r), where α can be either integer or non-integer 
depending on the EDF, and (ii) the Coulomb exchange term pro-
portional to [ρ(p)(r)]4/3. In addition, the pairing interaction is pro-
portional to ρ(r), except in the case of the pure volume pairing. 
The version 4.0 of hfbtho implements the mixed density prescrip-
tion in restoration of the rotational, reflection, and particle number 
symmetry. However, the code enables choosing the projected den-
sity prescription in particle number projection for the volume term 
with non-integer α and the Coulomb exchange term.

2.2. HFBTHO library

The code source has been largely refactored to facilitate main-
tenance and future developments. This refactoring included mod-
ularizing the code base, removing obsolescent Fortran statements, 
and generalizing Fortran 2003 constructs. In each module, module 
variables, functions, and subroutines are thus explicitly declared as
private and public. Furthermore, arguments passed to each 
function and subroutine have the intent(in/out/inout) at-
tribute. The internal structure of the code has also been reorga-
nized in order to produce an hfbtho library.

Compiling the program generates the following three objects:

• A Fortran executable called hfbtho_main. The call sequence 
of the program has been modified to provide more flexibility 
while maintaining backward compatibility; refer to Sec. 5.2 for 
a short description.

• A static library libhfbtho.a. This library provides, among 
others, the routine Main_Program() with the following call 
sequence

Subroutine Main_Program(
filename_hfbtho,filename_unedf, &
my_comm_world,my_comm_team, &
my_n_teams,my_team_color, &
toggle_output,filename_output, &
filename_dat,filename_binary)
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This routine will execute a full hfbtho calculation, possibly 
across different MPI ranks. Its arguments are the following:
– filename_hfbtho: the name of the input data file con-

taining the Namelists.
Default: hfbtho_NAMELIST.dat;

– filename_unedf: the name of the input data file con-
taining the parameters of the EDF.
Default: hfbtho_UNEDF.dat;

– my_comm_world: the MPI world communicator, typically
MPI_COMM_WORLD. When compiling the code without MPI 
support (USE_MPI = 0), this argument is inactive;

– my_comm_team: the MPI communicator used to break the 
MPI processes into teams, each of which handles a given hf-

btho calculation. Currently, distributed parallelism through 
MPI is only used when restoring broken symmetries. With-
out MPI support, this argument is inactive;

– my_n_teams: the number of teams in the calculation. 
Without MPI support, this argument is inactive;

– my_team_color: the team “color” of the MPI process, i.e., 
the unique ID number of the team to which the process has 
been assigned. Without MPI support, this argument is inac-
tive;

– toggle_output: if equal to 0, then no ASCII output 
is recorded on file; if equal to 1, the two files file-
name_output and filename_dat described below are 
written on disk;

– filename_output: the name of the ASCII output file 
where the results of the calculation are written.
Default: hfbtho.out;

– filename_dat: the name of the ASCII output file where 
extended results of the calculations are written. Extended 
results include the self-consistent loop, observables, quasi-
particle energies, equivalent single-particle energies, and 
Nilsson labels.
Default: thoout.dat;

– filename_binary: the name of the binary file where the 
code will store the data needed to restart the iterations.
Default: hfbtho_output.hel.

• A Python3 binding. The precise name of the binding will de-
pend on the user’s system, the Python version, and the Fortran 
compiler. Assuming the binding is (re)named hfbtho_li-
brary.so, it can be used directly from a Python environment 
and provides access to the Main_Program() routine. For ex-
ample:

from hfbtho_library import Main_Program

or

import hfbtho_library

2.3. Other changes

SeaLL1 functional. The SeaLL1 EDF [38] is now available in the 
code. As a reminder, this functional reads

ESeaLL1(r) = h̄2

2m

(
τ (n)(r) + τ (p)(r)

)

+
2∑

j=0

(
a jρ

5/3
0 (r) + b jρ

2
0 (r) + c jρ

7/3
0 (r)

)
β2 j

+ ηs

∑ h̄2

2m
|∇ρ(τ)(r)|2 + W0 J 0(r)·∇ρ0(r) (60)
τ=n,p

8

+ e2

2

∫
d3r′ ρ(p)(r)ρ(p)(r′)

|r − r′| − 3e2

4

(
ρ(p)(r)

3π

)4/3

+
∑

τ=n,p

g(τ )

eff (r)|ρ̃(τ )(r)|2.

The quantity g(τ )

eff (r) is the renormalized pairing strength which 
is obtained after regularizing a volume pairing interaction of the 
form g(τ )(r) = g(τ ) [39,40]; see [5] for details about the imple-
mentation of the regularization procedure. The SeaLL1 EDF is fully 
characterized by 11 parameters ({a j, b j, c j} j=0,1,2, ηs, W0) in the 
pairing channel and 2 parameters in the particle-particle channel 
(g(n) and g(p) , with g(n) = g(p) = g0 for SeaLL1). Note that, like the 
UNEDFn functionals, SeaLL1 specifies both the particle-hole and 
the pairing channel.

Exact Coulomb. In previous versions of hfbtho, the direct (Hartree) 
term of the Coulomb potential is calculated using the substitution 
method [41], the exchange (Fock) term is calculated at the Slater 
approximation, while the pairing term is neglected. As discussed 
extensively in [12], the substitution method can be numerically 
unstable because of aliasing errors. In the current version, we have 
leveraged the capability to compute mean-field and pairing en-
ergies from finite-range two-body Gaussian potentials introduced 
in version 3.00 to implement an “exact” calculation of the direct, 
exchange, and pairing term of the Coulomb potential. In particu-
lar, we follow the technique implemented in [42] and discussed in 
[43] and by exploiting the identity

1

r
= 2√

π

+∞∫
0

dα e−α2r2

= 2

L
√

π

1∫
0

dξ (1 − ξ2)−3/2 exp

(
− ξ2r2

L2(1 − ξ2)

)
,

(61)

where we used the change of variable α = ξ
L (1 − ξ2)−1/2 and L

stands for the larger of the two oscillator lengths, L = max(bz, b⊥). 
The second integral can be efficiently computed with Gauss-
Legendre quadrature. If ωi and ξi are the weights and the nodes of 
Gauss-Legendre quadrature, then we can write

1

r
=

Nc∑
i=1

Aie
−air

2
, (62)

with Ai = 2ωi
L
√

π
(1 − ξ2

i )−3/2 and ai = ξ2
i

L2(1−ξ2
i )

.

Overwrite mode. The new version of the code provides an option 
to use the information contained in the binary hfbtho_out-
put.hel file to overwrite some of the user-defined inputs. This 
option is activated by setting the energy functional to READ (in-
stead of the usual SLY4, SKM*, etc.). In this case, the code will 
overwrite (i) all the parameters of the EDF, (ii) the pairing cut-
off, (iii) the activation/deactivation of non-standard terms such as 
the center-of-mass correction, tensor terms, or pairing regulariza-
tion, (iv) the parameters of the oscillator basis such as the maximal 
number of shells and oscillator lengths. The code will then rede-
fine the full HO basis to be consistent with the one on file.

Bugfix of blocking calculations. In all versions of hfbtho since 2.00d 
[12], there is a bug in the calculations of blocked states when the 
“automatic” mode is activated. In this mode, the code determines 
and computes all possible blocking configurations within a 2 MeV 
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Fig. 1. Particle number projection in the quasiparticle basis for the 〈Q̂ 20〉 = 1 b configuration in 50Cr. (a): The PNP energy as a function of the number of gauge angles 
Nϕ . The dashed horizontal line denotes the fully converged solution (Nϕ = 99). (b): The decomposition of an HFB state onto different numbers of neutrons and protons for 
Nϕ = 15. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
energy window around the Fermi level; see Section 4.2 of [12] for 
details. In practice, the code loops over all N candidate configu-
rations. Occasionally, one of these configurations may diverge, e.g., 
the particle number condition cannot be enforced. When this hap-
pened to a configuration 1 ≤ k < N , the code would simply exit 
the loop without trying to compute the remaining configurations 
k < k′ ≤ N . Consequently, the results of the converged calculations 
were correct but some potentially valid configurations were not 
computed. In calculations near the ground state of stable nuclei, 
this situation occurs very rarely; in calculations of very neutron-
rich or very deformed nuclei, it may happen more frequently. This 
bug is fixed in the current version of the code.

3. Benchmarks and accuracy

3.1. Particle number projection

As the first illustrative example, we perform the particle num-
ber projection for a range of quadrupole-deformed configurations 
in 50Cr. Well-converged solutions are obtained by expanding the 
HFB states in a spherical HO basis with N0 = 8 shells and the os-
cillator length b0 = 1.7621858 fm. The SIII parametrization of the 
Skyrme EDF [44] is used, alongside a volume (V (τ )

1 = 0.0) contact 
pairing interaction [39] with a 60 MeV quasiparticle cutoff and 
pairing strengths V (n)

0 = V (p)
0 =−190.0 MeV. In addition, we em-

ploy the mixed density prescription.

3.1.1. Convergence and particle number decomposition
We start by testing the convergence of PNP energies [EPNP

q ≡
E N Z

q , Eq. (14)] and decomposing an HFB state onto different num-

bers of neutrons and protons [|cN Z
q |2, Eq. (12)]. The quadrupole 

moment of the reference HFB state is constrained to 〈Q̂ 20〉= 1
b, the dipole and the octupole moment are constrained to zero, 
while higher multipole moments are determined self-consistently. 
Fig. 1(a) shows the corresponding PNP energy as a function of the 
number of gauge angles Nϕ . An excellent agreement with the fully 
converged solution (represented by the dashed horizontal line and 
computed for Nϕ = 99) is obtained for Nϕ = 15. The convergence 
pattern will generally vary for different HFB states, but at most 
Nϕ =15 gauge angles should be sufficient for most practical pur-
poses.

Furthermore, Fig. 1(b) shows the decomposition of the same 
HFB state onto different numbers of neutrons and protons. A pro-
nounced maximum is found at the correct number of particles, 
|cN=26,Z=24

q |2 = 0.2278. Around this point, the distribution drops 
sharply in all directions. For example, the configuration with two 
protons less has about twice smaller coefficient, |cN=26,Z=22

q |2 =
0.1197, while the configuration with four protons less has only 
9

Fig. 2. The difference between the PNP energies obtained in the quasiparticle and 
in the canonical basis, �EPNP

q = EPNP
q,qps − EPNP

q,can, for three different values of a quasi-
particle cutoff: 40 MeV, 60 MeV, and 6000 MeV (an infinite cutoff). The difference 
in the corresponding HFB energies, �EHFB

q = EHFB
q,qps − EHFB

q,can, is also shown.

|cN=26,Z=20
q |2 = 0.0201. Note that, for this particular configuration, 

the pairing gaps are �n = 1.0901 MeV and �p = 1.1773 MeV for 
neutrons and protons, respectively.

3.1.2. PNP in canonical and quasiparticle bases
The particle number projection in the canonical basis had been 

incorporated to the hfbtho program since its initial release. On 
the other hand, the new version of the program contains the par-
ticle number projection performed in the quasiparticle basis. The 
two PNP methods are distinct and can under certain circumstances 
yield different results. Most notably, a difference will arise if the 
underlying HFB calculations enforce a cutoff in the quasiparticle 
space. The introduction of such a cutoff is a common way to ren-
der the energies convergent for zero-range pairing interactions and 
is therefore an integral part of Skyrme-EDF calculations with hf-

btho [11].
To compare the two methods, Fig. 2 shows the difference be-

tween the PNP energies obtained in the quasiparticle and in the 
canonical basis, �EPNP

q = EPNP
q,qps − EPNP

q,can, for three different val-
ues of a quasiparticle cutoff. We consider a range of quadrupole 
deformations in 50Cr, 〈Q̂ 20〉 ∈ [−2.0 b, 4.0 b], and keep the other 
parameters fixed. For a relatively low cutoff (Ecut = 40 MeV), the 
difference is �EPNP

q ≤ 0.5 MeV. For a cutoff value typically used 
in realistic calculations (Ecut = 60 MeV), the difference reduces 
to �EPNP

q ≤ 0.2 MeV. Finally, in the limit of an infinite cutoff 
(Ecut = 6000 MeV) the difference between the two methods van-
ishes.

In addition, Fig. 2 shows the difference between the HFB en-
ergies obtained in the quasiparticle and in the canonical basis, 
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Fig. 3. The difference between the PNP energies obtained with the mixed and the 
projected density prescription. We consider three Skyrme EDFs whose volume terms 
depend on different powers of density α.

�EHFB
q = EHFB

q,qps − EHFB
q,can, for the three cutoff values. The HFB curves 

largely follow the corresponding PNP curves, corroborating the fact 
that the discrepancy in projected energies stems from the initial 
difference in HFB states. Finally, an instructive limit to consider 
is the case of a collapsing pairing interaction, which is a com-
mon feature of PNP models that perform variation before pro-
jection [14]. Note that the collapse of pairing happens around 
〈Q̂ 20〉 = 2.5 b in our calculation. Regardless of the cutoff, the two 
PNP methods then yield the same energy that also coincides with 
the HFB energy.

3.1.3. The choice of density prescription
As discussed in Sec. 2.1.6, the new implementation of PNP en-

ables the choice of density prescription for the parts of an EDF that 
depend on non-integer powers of density. In order to quantify the 
consequences of this choice, Fig. 3 shows the difference between 
the PNP energies obtained with the mixed and the projected den-
sity prescription. We consider three Skyrme EDFs whose volume 
terms depend on different powers of density α: SIII (α = 1) [44], 
Sly4 (α = 1

6 ) [45], and SkO (α = 1
4 ) [46]. For all three EDFs, the 

Coulomb exchange term depends on the 4/3-th power of the pro-
ton density.

For SIII, the entire difference between the two prescriptions lies 
in the Coulomb exchange term. In 50Cr, this difference amounts to 
about 0.1% of the term, or about 0.01 MeV, and is therefore not 
visible in Fig. 3. On the other hand, for Sly4 and SkO an additional 
difference in the volume term comes into play. The difference in 
this term amounts to about 0.1% as well, but it translates to a size-
able absolute difference of 2 − 3 MeV. Again, the two prescriptions 
yield the same result in the limit of a collapsing pairing interaction 
(around 〈Q̂ 20〉 = 2.5 b). We note that the difference from density 
prescriptions does not scale with nuclear mass and that it remains 
of comparable magnitude even in the heaviest nuclei.

Unfortunately, to the best of our knowledge, there are no pub-
lished comparisons of PNP energies obtained with different density 
prescriptions. However, Ref. [47] contains the comparison between 
the PNP dynamic moments of inertia obtained with the mixed 
and the projected density prescription, using a Gogny EDF and the 
Lipkin-Nogami approximation. The reported difference is sizeable 
and generally of the order of a few percent.

3.1.4. Benchmarking against HFODD
To further verify our implementation, we tested the PNP results 

of hfbtho against results obtained with hfodd. Since the latest 
release of the code [13] cannot project on both protons and neu-
trons and does not give a full breakdown of the projected energy, 
we use for our benchmark a recent, still unpublished, modifica-
10
Table 1
The breakdown of the PNP energy (in MeV) of 
the 〈Q̂ 20〉 = 1 b configuration in 50Cr, obtained 
with the hfbtho and hfodd solvers. A spher-
ical HO basis with N0 = 12 shells and the SIII 
EDF were used; see text for more details on 
the parameters of the calculation.

hfbtho hfodd

E(n)

kin 466.236124 466.236123

E(p)

kin 415.937244 415.937243

Eρρ -1701.776220 -1701.776217

Eρτ 201.410935 201.410934

Eρ�ρ 126.141959 126.141958

Eρ∇ J -39.203075 -39.203075

E(n)
pair -0.333798 -0.333798

E(p)

pair -0.981203 -0.981203

EPNP -532.568034 -532.568034

tion of the hfodd solver based on version 2.73 [6]. In this version, 
PNP is implemented in the canonical basis and the results must 
thus be tested against the original hfbtho implementation [11]. As 
demonstrated in Section 3.1.2, this implementation of PNP (in the 
canonical basis) gives the same results as the new implementation 
(in the quasiparticle basis) for infinite cutoffs.

Table 1 contains a breakdown of the PNP energy of the 〈Q̂ 20〉=
1 b configuration in 50Cr, obtained with the hfbtho and hfodd

solvers. The calculation parameters are the same as those de-
scribed at the beginning of this section, except that (i) N0 =
12 HO shells are used, (ii) a surface-volume pairing interaction 
is used, and (iii) the Coulomb interaction is entirely neglected. 
In both hfbtho and hfodd calculations, Nϕ = 15 gauge angles 
were used for both neutrons and protons. The hfodd results 
correspond to a Gauss quadrature characterized by NXHERM =
NYHERM = NZHERM = 30 points. The largest difference, for the 
density-dependent volume term, does not exceed 3 eV.

3.2. Angular momentum projection

Next, we perform the illustrative angular momentum projection 
calculations, using the same parameters as described at the begin-
ning of Section 3.1.

3.2.1. Convergence of angular momentum decomposition
To start with, we test the convergence of AMP energies [EAMP

q ≡
E J ;p

q , Eq. (14)] and decompose an HFB state onto different values 
of angular momenta [|c J ;p

q |2, Eq. (13)]. As before, the quadrupole 
moment of the reference HFB state is constrained to 〈Q̂ 20〉= 1
b, the dipole and the octupole moment are constrained to zero, 
while higher multipole moments are determined self-consistently. 
Fig. 4(a) shows the AMP energies for J p = 0+, 2+, 4+ , and 6+
as a function of the number of rotational angles Nβ . Note that 
the considered configuration is reflection-symmetric and thus only 
positive-parity states can be obtained. In turn, the projection in-
terval is reduced to β ∈[0, π/2]. As expected, the convergence is 
faster for lower values of J . For all J , an excellent agreement with 
the fully converged solution (represented by the dashed horizontal 
lines and computed for Nβ =100) is obtained already for Nβ =10. 
The convergence pattern will generally depend on the properties 
of the HFB state (e.g., the magnitude of the quadrupole deforma-
tion or whether the parity is broken), as well as on the value of J . 
Consequently, in practical applications, one should verify the con-
vergence of AMP with respect to Nβ .

Furthermore, Fig. 4(b) shows the decomposition of the same 
HFB state onto different values of angular momentum. The maxi-
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Fig. 4. Angular momentum projection in the spherical HO basis for the 〈Q̂ 20〉 = 1 b configuration in 50Cr. (a): The AMP energy of the J p = 0+, 2+, 4+ , and 6+ state as a 
function of the number of rotational angles Nβ . The dashed horizontal line denotes the fully converged solution (Nβ = 100). (b): The decomposition of an HFB state onto 
different angular momenta for Nβ = 10. The inset shows the corresponding overlaps for neutrons and protons.
mum is found for J = 2, |c J ;+
q |2 = 0.4649, while the coefficients for 

J ≥ 8 components are negligible. The inset shows the correspond-
ing overlaps for both neutrons and protons [N (τ )

q (β, 0), Eq. (15)]. 
The overlaps for the two types of particles are very similar: they 
are real and monotonously decrease from N (τ )

q (0, 0) = 1 to their 
respective minimal values at β = π/2. Since the quadrupole de-
formation is rather moderate, the overlaps at β = π/2 are still 
sizeable. Note that the overlaps for β ∈ [π/2, π ] can be obtained 
by a reflection around the β = π/2 vertical axis; see Section 2.1.4.

3.2.2. Benchmarking against HFODD
In full analogy with the case of PNP discussed in Section 3.1.4, 

we can benchmark the AMP results obtained with hfbtho against 
the results obtained with hfodd. The main restriction in this case 
is that hfodd requires the usage of a spherical HO basis. Once 
again, we consider the 〈Q̂ 20〉=1 b configuration in 50Cr. The calcu-
lation parameters are the same as those described at the beginning 
of Section 3.1, except that (i) the Coulomb interaction is entirely 
neglected, (ii) all the higher multipole moments up to the eighth 
order are constrained to zero, and (iii) in order to additionally 
probe the contribution from the tensor term of the functional, we 
used the SLy5 parametrization of the Skyrme EDF [45]. In this case, 
the parameterizations of the pairing interaction yields pairing gaps 
that are much smaller than the experimental ones. However, since 
our goal is simply to compare the two codes against one another, 
this discrepancy is irrelevant. All the AMP calculations were per-
formed with Nβ = 30 rotational angles β∈[0, π ].

We compared our results to those generated with the latest 
release of hfodd, where the AMP is implemented in the Hartree-
Fock basis [13]. Because the two codes employ different bases, the 
obtained HFB energies slightly differ and agree within 2.2 keV. For 
the projected energies, the difference does not exceed 12 keV for 
the range of angular momentum J ∈ [0, 10]. Although this test is 
already very encouraging, we can go one step further and test sep-
arately each contribution to the projected energy. To this end, we 
use the same unpublished version of hfodd built on top of the 
version 2.73 that was employed for the PNP benchmark. In that 
version of the code, the AMP is implemented in the HO basis so 
a closer comparison is possible. As expected, we find that the HFB 
energies agree within 1 eV: EHFB = −531.370615 MeV.

Table 2 contains the breakdown of the AMP energy for angular 
momentum J = 0 and J = 8; see Eqs. (54) - (55) for the definition 
of each term. For the J = 0 state, the differences between the two 
codes do not exceed 10 eV, with most terms agreeing within 2 eV. 
Not surprisingly, the differences increase a little for the J = 8 case. 
However, they are still of the order of a few dozens or hundreds 
of eV, and overall less than 1 keV. Considering the remaining dif-
11
ferences between the two codes – hfodd works with the Cartesian 
basis and implements the full 3D rotation of wave functions while
hfbtho works with the cylindrical basis and implements only the 
rotation in the Euler angle β – this benchmark is quite conclusive.

3.2.3. AMP in a deformed basis
One of the main advantages of the present implementation of 

AMP is that it can be performed in bases that are not closed un-
der rotation. Such deformed (or stretched) bases are often used 
in calculations of potential energy surfaces because they provide a 
computationally efficient way to obtain precise representations of 
arbitrarily deformed HFB configurations. The main downside of us-
ing a deformed basis is the need to carefully study the convergence 
of calculations as a function of the basis deformation; see [48] for 
a discussion of the impact of basis truncation on HFB observables. 
In this section, we demonstrate that the convergence pattern of 
AMP calculations is generally different from the one of the under-
lying HFB calculations.

Fig. 5 shows the HFB energy and the AMP ( J p = 0+) energy 
in 50Cr as a function of the axial quadrupole moment 〈Q̂ 20〉 and 
obtained with three different HO bases: the spherical (β2 =0.0) ba-
sis, the prolate-deformed (β2 = 0.1) basis, and the oblate-deformed 
(β2=−0.1) basis. N0 =8 HO shells were used in all three cases. For 
configurations with moderate prolate deformation, the 0+ energies 
obey E J=0(β2 =−0.1) < E J=0(β2 = 0.0) < E J=0(β2 = 0.1). The dif-
ferences in HFB energies are much smaller, but they obey the exact 
opposite rule: EHFB(β2 =−0.1) >EHFB(β2 =0.0) >EHFB(β2 =0.1). In-
terestingly, the pattern is reversed for configurations with moder-
ate oblate deformation. For them, the prolate-deformed basis gives 
the lowest 0+ energy and the oblate-deformed basis gives the 
highest 0+ energy. In addition, the pattern is further modified as 
the deformation increases: for configurations with 〈Q̂ 20〉 � 5.4 b 
the HFB and the 0+ energy follow the same ordering and the low-
est energies are obtained with the prolate-deformed basis.

The observed difference in patterns may have two main origins:

• Numerical Precision. For a prolate-deformed basis, the num-
ber of basis states along the z-axis of the reference frame, 
which coincides with the elongation axis of the HFB config-
uration, is larger than the number of states along the perpen-
dicular axis. Consequently, the prolate-deformed HFB configu-
ration is numerically well described. However, the elongation 
axis of the rotated HFB configuration is not anymore aligned 
with the z-axis of the reference frame. In fact, for β=π/2 it is 
aligned with the axis perpendicular to it – where the number 
of basis states is lower. Rotated prolate-deformed configura-
tions are thus described less precisely in a prolate-deformed 
basis. Moreover, the weight of each rotated configuration is 



P. Marević, N. Schunck, E.M. Ney et al. Computer Physics Communications 276 (2022) 108367
Table 2
The breakdown of the AMP energy (in MeV) of 
the 〈Q̂ 20〉 = 1 b configuration in 50Cr, obtained 
with the hfbtho and hfodd solvers. Energies 
for J = 0 (top) and J = 8 (bottom) are shown. 
A spherical HO basis with N0 = 8 shells and 
the Sly5 EDF were used; see text for more de-
tails on the parameters of the calculation.

J = 0 hfbtho hfodd

E(n)

kin 475.811944 475.811932

E(p)

kin 418.693797 418.693807

Eρρ -1797.938577 -1797.938577

Eρτ 269.775424 269.775424

Eρ�ρ 149.166859 149.166858

Eρ∇ J -42.039341 -42.039339

E J J 1.213084 1.213084

Ess 0.251440 0.251439

Esj 0.287586 0.287585

Es�s 0.111281 0.111280

Es∇ J 0.137866 0.137865

EsT 0.009186 0.009186

E(n)
pair -2.848138 -2.848137

E(p)

pair -4.507887 -4.507885

EAMP -532.307952 -532.307950

J = 8 hfbtho hfodd

E(n)

kin 467.384564 467.384572

E(p)

kin 437.860544 437.860226

Eρρ -1812.483313 -1812.482960

Eρτ 275.246980 275.246855

Eρ�ρ 148.724958 148.724962

Eρ∇ J -40.088099 -40.088112

E J J 0.997760 0.997763

Ess -1.279415 -1.279386

Esj -1.763059 -1.763017

Es�s -0.559418 -0.559406

Es∇ J -0.449841 -0.449832

EsT -0.070601 -0.070600

E(n)
pair -1.159525 -1.159544

E(p)

pair -2.563745 -2.563772

EAMP -527.963805 -527.963895

sin β d J
00(β). For J = 0, d0

00(β) = 1, and the weight is sim-
ply sin β . Consequently, the β≈π/2 configurations, which are 
numerically less precise, have larger weights than the β ≈ 0
configurations, which are numerically more precise. For J > 0, 
the function sin β d J

00(β) is not monotonous and this simple 
analysis does not hold anymore.

• The Effect of the Rotation Matrix. The rotation matrix [Eq. 
(24)] enters the calculation of overlaps [Eq. (15)]. Furthermore, 
the overlaps enter the calculation of the norm overlap ker-
nel N J ;p

q and the Hamiltonian kernel H J ;p
q , both of which are 

needed to calculate the AMP energy [Eq. (14)]. However, the 
properties of the rotation matrix depend on the basis defor-
mation. For example, the determinant of the rotation matrix 
equals to 1 in the spherical basis and decreases rapidly as the 
basis deformation increases. Without actually performing the 
calculations, it is not clear how the deformation of the basis
12
Fig. 5. Total HFB and J p = 0+ energy of 50Cr as a function of the constraint on the 
axial quadrupole moment 〈Q̂ 20〉. Blue curves with squares show results obtained 
with a spherical basis; red curves with circles show results obtained with a prolate-
deformed basis of β2 = 0.1; green curves with triangles show results obtained with 
an oblate-deformed basis of β2 = −0.1. Plain symbols correspond to AMP results 
and open symbols to HFB ones; see text for additional details.

Fig. 6. The convergence of the HFB energy (bottom) and the AMP 0+ energy (top) 
as a function of the basis deformation β2 for three configurations along the fis-
sion path of 240Pu: (Q 20, Q 30) = (90 b, 0 b3/2), (Q 20, Q 30) = (140 b, 12 b3/2), and 
(Q 20, Q 30) = (240 b, 25 b3/2). All curves are normalized relative to their respective 
minima over the interval β2 ∈ [0, 0.9]; see text for additional details.

impacts the rotation matrix, the subsequent kernels and, even-
tually, the AMP energy.

To get a better idea of the convergence pattern of AMP calcula-
tions as a function of the basis deformation, Fig. 6 shows a semi-
realistic example of the fission path of 240Pu. We considered three 
different configurations along the path: (Q 20, Q 30) = (90 b, 0 b3/2), 
(Q 20, Q 30) = (140 b, 12 b3/2), and (Q 20, Q 30) = (240 b, 25 b3/2). 
For each configuration, we computed the HFB solution in a basis 
characterized by Nmax

0 = 24 HO shells and β2 =0.0, 0.1, ..., 0.9 de-
formation. In addition, the basis was truncated and only the low-
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est Nstates = 1100 states were retained. The spherical-equivalent 
oscillator length b0 was not adjusted and was instead fixed at 
b0 = 2.288 fm. In other words, the oscillator lengths bz and b⊥
vary as a function of β2 in such a way that the product bzb2⊥ = b3

0
is constant.

The HFB convergence pattern (bottom panel) should be familiar 
to the practitioners: very deformed configurations require (very) 
deformed bases. In our example, the lowest HFB energy is found 
for β2 = 0.6 (〈Q̂ 20〉= 90 b and 〈Q̂ 20〉= 140 b) and for β2 = 0.8
(〈Q̂ 20〉 = 240 b). Note that, in principle, one should also adjust 
the oscillator frequency as a function of the deformation; see dis-
cussion in [48]. For very deformed configurations, the convergence 
pattern of the 0+ energy is qualitatively similar to the HFB pattern 
in the sense that the minimum is obtained for non-zero β2 values. 
However, these values are significantly smaller than in the HFB 
case. In fact, for the least-deformed configuration (which approxi-
mately corresponds to the fission isomer), the lowest 0+ energy is 
obtained for a spherical basis. These results suggest that large-scale 
applications of AMP in a deformed basis should be accompanied by 
a careful study of the numerical convergence.

3.2.4. Limitations of the model
The user should be aware of a number of limitations of the 

novel symmetry restoration module, related to both the underlying 
physics and the numerical implementation:

• Projection of the Eigenstates. Some HFB configurations are 
already eigenstates of an operator related to the symmetry 
being restored. For example, the spherical configuration is an 
eigenstate of the angular momentum operator with the eigen-
value J = 0. Similarly, configurations with vanishing odd mul-
tipole moments are eigenstates of the parity operator with the 
eigenvalue p = +1. Projecting these configurations onto other 
eigenvalues ( J =1, 2, ... for the former and p =−1 for the lat-
ter) will yield non-physical results. In practice, one should be 
cautious because numerical issues can occur already for con-
figurations that are sufficiently close to being eigenstates.

• Invertibility of the Rotation Matrix. The inverse and the de-
terminant of the rotation matrix enter our calculations ex-
plicitly. However, as the size and the deformation of the ba-
sis increase, the determinant drops rapidly and the matrix 
can become numerically non-invertible for some rotational an-
gles close to β = π/2. These angles are then disregarded in 
AMP, under the assumption that the corresponding overlaps 
are negligible. This assumption is justified for very deformed 
configurations, but it can break down for configurations with 
moderate or small deformations. Consequently, caution is ad-
vised when calculating moderately deformed configurations 
with deformed bases. In particular, the description of near-
spherical configurations with deformed bases is imprecise and 
should therefore be avoided.

• Spuriosity of Projected Energies. The Hamiltonian kernel is 
formally not well-defined for EDFs that are density-dependent 
or omit parts of the interaction. In the worst case scenario, this 
can lead to sizeable finite steps and even divergences in pro-
jected energies. Such spuriosities were abundantly reported in 
PNP [49–52], while AMP in even-even nuclei seems to remain 
issue-free [22]. In many practical implementations, however, 
the scale of these spuriosities is smaller than the errors due to 
the various numerical limitations. Nevertheless, as the quest 
for spuriosity-free EDFs is under way, the user should remain 
aware of this formal limitation.
13
Fig. 7. The absolute error (in MeV) of the Gaussian expansion of the Coulomb poten-
tial as a function of Gauss-Legendre quadrature points, i.e., the number of Gaussians 
approximating 1/r; see Eq. (62).

3.3. Exact Coulomb

We tested our implementation of the “exact” Coulomb calcu-
lation by comparing results obtained with the new version of
hfbtho and with the Gogny code used in [53,54]. In the lat-
ter, all contributions of the Coulomb interaction (direct, exchange, 
and pairing) are computed exactly thanks to the properties of the 
spherical HO basis.

For numerical comparison, we consider the 208Pb nucleus and 
use the D1S Gogny EDF. Furthermore, we disregard the two-body 
center-of-mass correction and neglect the Coulomb contribution 
to pairing. Calculations are performed in a spherical HO basis 
with N0 = 12 shells and the oscillator length b0 = 2.5 fm. They 
were converged up to 10−12. Fig. 7 shows the absolute error ε =
|E X

hfbtho
− E X

Gogny| as a function of the number of Gauss-Legendre 
quadrature points NLeg. Here, X stands for either the direct or the 
exchange contribution to the Coulomb energy, and the subscripts 
“hfbtho” and “Gogny” refer to the hfbtho 4.0 and the spherical 
Gogny code, respectively.

For NGauss =60 points in both the Gauss-Hermite and Gauss-
Laguerre integrations (the full lines), the expansion of the Coulomb 
potential onto Gaussians converges nicely to the exact value. In 
particular, at NLeg = 14, the difference is 20 meV and 1 meV for 
the direct and the exchange term, respectively. If the number of 
quadrature points is reduced to NGauss = 40 (the dashed lines), we 
observe a saturation of convergence at about 1 eV (direct) and 80
meV (exchange) at NLeg = 14. For comparison, we also show the 
results of the “standard” prescription for the direct term, which is 
based on the substitution method in a box of size L = 50 fm with 
80 Gauss-Legendre quadrature points; see discussion in [12], and 
for the exchange term, which is computed at the Slater approxi-
mation.

4. Input data file

The input data file format remains similar to version 3.00 and 
only contains one additional namelist.

4.1. Sample input file

&HFBTHO_GENERAL
number_of_shells = 10,
oscillator_length = -1.0,
basis_deformation = 0.0,
proton_number = 24, neutron_number = 26,
type_of_calculation = 1 /
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&HFBTHO_INITIAL
beta2_deformation = 0.0,
beta3_deformation = 0.0,
beta4_deformation = 0.0 /

&HFBTHO_ITERATIONS
number_iterations = 100, accuracy = 1.E-5,
restart_file = -1 /

&HFBTHO_FUNCTIONAL
functional = ’SLY4’,
add_initial_pairing = F,
type_of_coulomb = 2 /

&HFBTHO_PAIRING
user_pairing = F,
vpair_n = -300.0, vpair_p = -300.0,
pairing_cutoff = 60.0,
pairing_feature = 0.5 /

&HFBTHO_CONSTRAINTS
lambda_values = 1, 2, 3, 4, 5, 6, 7, 8,
lambda_active = 0, 0, 0, 0, 0, 0, 0, 0,
expectation_values = 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0 /

&HFBTHO_BLOCKING
proton_blocking = 0, 0, 0, 0, 0,
neutron_blocking = 0, 0, 0, 0, 0 /

&HFBTHO_PROJECTION
switch_to_THO = 0,
projection_is_on = 0, gauge_points = 1,
delta_Z = 0, delta_N = 0 /

&HFBTHO_TEMPERATURE
set_temperature = F, temperature = 0.0 /

&HFBTHO_FEATURES
collective_inertia = F,
fission_fragments = F,
pairing_regularization = F,
localization_functions = F /

&HFBTHO_NECK
set_neck_constrain = F, neck_value = 0.5 /

&HFBTHO_DEBUG
number_Gauss = 40, number_Laguerre = 40,
number_Legendre = 80,
compatibility_HFODD = F,
number_states = 500,
force_parity = T, print_time = 0 /

&HFBTHO_RESTORATION
PNP_is_on = 0, number_of_gauge_points = 1,
delta_neutrons = 0, delta_protons = 0,
AMP_is_on = 0,
number_of_rotational_angles = 1,
maximal_angular_momentum = 0 /

4.2. Description of input data

We now define the new or updated inputs introduced in ver-
sion 4.0.

Keyword: HFBTHO_FUNCTIONAL

• type_of_coulomb = 2: Logical switch that defines the treat-
ment of the Coulomb potential. In previous versions, this switch 
could only take values 0 (no Coulomb), 1 (direct contribution only) 
or 2 (direct and exchange contribution with the Slater approxima-
tion). In the current version, the following new options are also 
available:

-1: direct Coulomb only by sum of Nc Gaussians;
-2: direct Coulomb by the substitution method, exchange Coulomb 

by sum of Nc Gaussians;
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-3: direct Coulomb by sum of Nc Gaussians, exchange Coulomb 
with the Slater approximation;

-4: direct and exchange Coulomb by sum of Nc Gaussians;
-5: direct, exchange, and pairing Coulomb by sum of Nc Gaussians.

Here, Nc is the number of Gaussians in (62). It is stored in the 
UNEDF module variable n_g_coul and is preset at n_g_coul=9
in the file hfbtho_unedf.f90. There is no option to change this 
number directly in the input file. Default: 2.

Keyword: HFBTHO_RESTORATION

• PNP_is_on = 0: Logical switch that activates the particle 
number projection in the quasiparticle basis. When set to 1 the 
mixed density prescription is used and when set to 2 the pro-
jected density prescription is used (see Sections 2.1.6 and 3.1.3). 
This option is different from the old projection_is_on switch 
in the HFBTHO_PROJECTION namelist, which activates PNP with 
the mixed density prescription in the canonical basis. For an infi-
nite quasiparticle cutoff, the two mixed density prescription op-
tions should give the same result. This option is incompatible 
with: finite-temperature, THO basis, and blocking calculations. De-
fault: 0;

• number_of_gauge_points = 1: Number of gauge angles 
Nϕ for particle number projection. The same number Nϕ is used 
for protons and neutrons. Default: 1;

• delta_neutrons = 0: Value of the shift in neutron number 
δN . In the case of PNP, one can project on all even neutron num-
bers in the interval [N0 − δN, N0 + δN], where N0 is the number 
of neutrons of the considered nucleus (even only for PNP). Default: 
0;

• delta_protons = 0: Value of the shift in proton number δZ . 
In the case of PNP, one can project on all even proton numbers in 
the interval [Z0 − δZ , Z0 + δZ ], where Z0 is the number of protons 
of the considered nucleus (even only for PNP). Default: 0;

• AMP_is_on = 0: Logical switch that activates (if equal to 1) 
the restoration of angular momentum J and parity p. This option 
can be combined with PNP to carry out a simultaneous projection 
on N , Z , J , and p. It is incompatible with: finite-temperature, THO 
basis, and blocking calculations. Default: 0;

• number_of_rotational_angles = 1: Number of rota-
tional angles Nβ use for AMP. Internally, the code will readjust 
Nβ if reflection symmetry is enforced. In such a case, the program 
will compute either Nβ/2 (Nβ even) or (Nβ + 1)/2 (Nβ odd) rota-
tional angles (see Section 2.1.4). Default: 1;

• maximal_angular_momentum = 0: Maximum value of the 
angular momentum Jmax. In the case of AMP, all even values of J
in [0, Jmax] (parity conserved) or all values J in [0, Jmax]. Default: 
0.

5. Program HFBTHO

5.1. Structure of the code

Compared with version 3.00, we have substantially increased 
the modularization of the source code since the number of mod-
ules increased from 18 to 25. The code is organized as follows:

• hfbtho_bessel.f90: defines the modified Bessel functions 
of order 0 and 1;

• hfbtho_canonical.f90: defines the canonical basis of the 
HFB theory;
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• hfbtho_collective.f90: computes the ATDHF and GCM 
collective inertia tensor and zero-point energy correction in 
the perturbative cranking approximation; see [5] and refer-
ences therein;

• hfbtho_elliptic_integrals.f90: defines complete el-
liptic integral of the second kind used for the Coulomb poten-
tial;

• hfbtho_fission.f90: computes the charge, mass, and ax-
ial multipole moments of fission fragments and the value of 
the Gaussian neck operator;

• hfbtho_gauss.f90: defines the quadrature meshes: Gauss-
Hermite, Gauss-Laguerre, and Gauss-Legendre;

• hfbtho_gogny.f90: computes the matrix elements of the 
Gogny force as well as the corresponding mean field and pair-
ing field;

• hfbtho_io.f90: contains a collection of routines handling 
inputs and outputs;

• hfbtho_large_scale.f90: contains a collection of rou-
tines for mass table, drip lines, or potential energy surface 
calculations, as well as for the parallelization of single HFB cal-
culations;

• hfbtho_library.f90: provides the definition of the main 
routine Main_Program() that launches complete hfbtho

calculations: stand-alone, mass tables, drip lines, or potential 
energy surfaces;

• hfbtho_lipkin.f90: calculates the Lipkin-Nogami correc-
tion, including the λ2 parameters, densities, and energies;

• hfbtho_localization.f90: computes spatial localization 
functions;

• hfbtho_main.f90: calls the Main_Program() routine;

• hfbtho_math.f90: contains a collection of general-use 
mathematical routines;

• hfbtho_multipole_moments.f90: computes the expec-
tation value and matrix elements of axial multipole moments;

• hfbtho_pnp.f90: implements particle number projection 
in the canonical basis;

• hfbtho_projections.f90: implements the angular mo-
mentum, particle number, and parity projection in the quasi-
particle basis;

• hfbtho_read_functional.f90: contains a collection of 
routines to read the parameters of the EDF from a file;

• hfbtho_solver.f90: solves the self-consistent iterations 
of the HFB theory;

• hfbtho_storage.f90: contains an interface to the QRPA 
pnFAM code; see [55] and references therein;

• hfbtho_tho.f90: defines the transformed harmonic oscil-
lator basis; see [11] and references therein;

• hfbtho_unedf.f90: defines parameterizations of the Skyrme
and Gogny functionals, and computes density-dependent cou-
pling constants and fields of generalized Skyrme energy func-
tionals;

• hfbtho_utilities.f90: defines the integer and real 
types used throughout the code, as well as various numeri-
cal constants;
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• hfbtho_variables.f90: contains list of global variables 
used throughout the code;

• hfbtho_version.f90: version number (currently git com-
mit number of the previous commit) and history of previous 
versions.

The programming language of most of the code is now Fortran 
2003. The code hfbtho requires an implementation of the BLAS 
and LAPACK libraries to function correctly. Shared memory paral-
lelism is available via OpenMP pragmas.

This version comes with a built-in Doxygen documentation. To 
benefit from this feature, the user should install the doxygen soft-
ware available at www.doxygen .org. The documentation is built by 
typing

make doc

By default, Doxygen generates only an on-line HTML documen-
tation. The main page is located in the source directory at 
./src/doc/html/index.html. A PDF documentation can also 
be generated by going into ./doc/latex and typing

make

The PDF file is named refman.pdf.

5.2. Running the code

The program ships with a Makefile that is preset for a number 
of Fortran compilers. The user should choose the compiler and set 
the path for the BLAS and LAPACK libraries. In version 4.0 of the 
code, we have simplified the call sequence of hfbtho. Assuming an 
executable named hfbtho_main and a Linux system, execution is 
started by typing

./hfbtho_main [input_file_name]

where [input_file_name] is an optional name of the hf-

btho input file that contains all the Namelists. If none is given, 
the code will attempt to read the file with the generic name
hfbtho_NAMELIST.dat in the current directory. The code 
will also automatically generate two ASCII output files: a com-
pact one called hfbtho.out and a more extended one called
thoout.dat. Finally, the code generates a binary file named hf-
btho_output.hel that is used to restart calculations.

HFB calculations are greatly accelerated when OpenMP multi-
threading is activated. However, the user should keep in mind 
that this requires setting additional environment variables. In 
Linux/Unix machines, the default stack size is not large enough 
to run the code and must be increased. This can be achieved by 
instructions such as

ulimit -s unlimited
export OMP_STACKSIZE=32M

The value of ulimit defines the amount of stack size for the 
main OpenMP thread. OpenMP supports control over the stack 
size limit of all additional threads via the environment variable
OMP_STACKSIZE. The value given above should be sufficient for 
all applications. Note that this value does not affect the stack 
size of the main thread set by ulimit. For completeness, note 
that the GNU OpenMP run-time (libgomp) recognizes the non-
standard environment variable GOMP_STACKSIZE. If set, it over-
rides the value of OMP_STACKSIZE. Finally, the Intel OpenMP 
run-time library also recognizes the non-standard environment 
variable KMP_STACKSIZE. If set, it overrides the value of both
OMP_STACKSIZE and GOMP_STACKSIZE.

http://www.doxygen.org
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Appendix A. Densities and currents in the coordinate-space 
representation

Taking into account the block structure of the density matrix in 
the y-simplex basis [cf. Eq. (30)], we can write

ρ(τ)(rσ , r′σ ′) =
∑
αγ

ρ
(τ )++
αγ �s=+i∗

γ (r′σ ′)�s=+i
α (rσ)

+
∑
αγ

ρ
(τ )−−
αγ �s=−i∗

γ (r′σ ′)�s=−i
α (rσ),

(A.1)

where the sums run over HO basis states α and γ , while 
�s=+i

γ (rσ) and �s=−i
γ (rσ) are the coordinate space representa-

tions of the eigenstates of the y-simplex operator [cf. Eqs. (19)
and (20)]

�s=+i
γ (rσ) = 1√

4π
ψnα

z
(z)ψ |
α |

nα⊥
(r⊥)

×
[

iei
αφχ+ 1
2
(σ ) + e−i
αφχ− 1

2
(σ )

]
, (A.2a)

�s=−i
γ (rσ) = 1√

4π
ψnα

z
(z)ψ |
α |

nα⊥
(r⊥)

×
[

ei
αφχ+ 1
2
(σ ) + ie−i
αφχ− 1

2
(σ )

]
. (A.2b)

Components of the HO eigenfunctions ψnα
z
(z) and ψ

|
α |
nα⊥

(r⊥)

are defined in [11] and χ± 1
2
(σ ) are the eigenstates of the z-

component of the spin operator. Note that in Eq. (A.1) the de-
pendence on x(τ ) and q was dropped for compactness in both 
ρ

(τ)
q (rσ , r′σ ′; x(τ )) on the left and ρ(τ)++

q,αγ (x(τ )), ρ(τ)−−
q,αγ (x(τ )) on 

the right.
The auxiliary local densities (40a)-(40f) can then be calculated 

from Eq. (A.1) as

ρ(τ)(r) =
∑
αγ

ρ
(τ )
αγ ,+F 1

αγ (r⊥, z) cos
[
(
α − 
β)φ

]
, (A.3a)

s(τ )
r⊥ (r) = −

∑
αγ

ρ
(τ )
αγ ,−F 1

αγ (r⊥, z) sin
[
(
α+
β+1)φ

]
, (A.3b)

s(τ )
φ (r) = −

∑
αγ

ρ
(τ )
αγ ,−F 1

αγ (r⊥, z) cos
[
(
α+
β+1)φ

]
, (A.3c)
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s(τ )
z (r) = i

∑
αγ

ρ
(τ )
αγ ,+F 1

αγ (r⊥, z) sin
[
(
α − 
β)φ

]
, (A.3d)

τ (τ )(r) =
∑
αγ

ρ
(τ )
αγ ,+F 2

αγ (r⊥, z) cos
[
(
α − 
β)φ

]
, (A.3e)

T (τ )
r⊥ (r) = −

∑
αγ

ρ
(τ )
αγ ,−F 3

αγ (r⊥, z) sin
[
(
α+
β+1)φ

]
, (A.3f)

T (τ )
φ (r) = −

∑
αγ

ρ
(τ )
αγ ,−F 3

αγ (r⊥, z) cos
[
(
α+
β+1)φ

]
, (A.3g)

T (τ )
z (r) = i

∑
αγ

ρ
(τ )
αγ ,+F 2

αγ (r⊥, z) sin
[
(
α − 
β)φ

]
, (A.3h)

j(τ )
r⊥ (r) = 1

2i

∑
αγ

ρ
(τ )
αγ ,+F 4

αγ (r⊥, z) cos
[
(
α − 
β)φ

]
, (A.3i)

j(τ )
φ (r) = 1

2i

∑
αγ

ρ
(τ )
αγ ,+F 5

αγ (r⊥, z) sin
[
(
β − 
α)φ

]
, (A.3j)

j(τ )
z (r) = 1

2i

∑
αγ

ρ
(τ )
αγ ,+F 6

αγ (r⊥, z) cos
[
(
α − 
β)φ

]
, (A.3k)

J (τ )
r⊥r⊥(r) = i

∑
αγ

ρ
(τ )
αγ ,−F 4

αγ (r⊥, z) sin
[
(
α+
β+1)φ

]
, (A.3l)

J (τ )
r⊥φ(r) = i

∑
αγ

ρ
(τ )
αγ ,−F 4

αγ (r⊥, z) cos
[
(
α+
β+1)φ

]
, (A.3m)

J (τ )
r⊥z(r) =

∑
αγ

ρ
(τ )
αγ ,+F 4

αγ (r⊥, z) sin
[
(
α − 
β)φ

]
, (A.3n)

J (τ )
φr⊥(r) = i

∑
αγ

ρ
(τ )
αγ ,−F 7

αγ (r⊥, z) cos
[
(
α+
β+1)φ

]
, (A.3o)

J (τ )
φφ (r) = −i

∑
αγ

ρ
(τ )
αγ ,−F 7

αγ (r⊥, z) sin
[
(
α+
β+1)φ

]
, (A.3p)

J (τ )
φz (r) =

∑
αγ

ρ
(τ )
αγ ,+F 5

αγ (r⊥, z) cos
[
(
α − 
β)φ

]
, (A.3q)

J (τ )
zr⊥(r) = i

∑
αγ

ρ
(τ )
αγ ,−F 6

αγ (r⊥, z) sin
[
(
α+
β+1)φ

]
, (A.3r)

J (τ )
zφ (r) = i

∑
αγ

ρ
(τ )
αγ ,−F 6

αγ (r⊥, z) cos
[
(
α+
β+1)φ

]
, (A.3s)

J (τ )
zz (r) =

∑
αγ

ρ
(τ )
αγ ,+F 6

αγ (r⊥, z) sin
[
(
α − 
β)φ

]
. (A.3t)

Here, we have introduced a shorthand notation for density matri-
ces

ρ
(τ)
αγ ,+ = 1

2π

(
ρ

(τ)++
αγ + ρ

(τ)−−
αγ

)
, (A.4a)

ρ
(τ)
αγ ,− = 1

2π

(
ρ

(τ)++
αγ − ρ

(τ)−−
αγ

)
, (A.4b)

as well as for the coordinate-dependent factors

F 1
αγ (r⊥, z) = ψnα

z
(z)ψ |
α |

nα⊥
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P. Marević, N. Schunck, E.M. Ney et al. Computer Physics Communications 276 (2022) 108367
F 3
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F 7
αγ (r⊥, z) = (
α−
β)

r⊥
F 1

αγ (r⊥, z). (A.5g)

Furthermore, the local pairing densities read

ρ̃(τ )(r) =
∑
αγ

κ
(τ )
αγ ,−F 1

αγ (r⊥, z) cos
[
(
α−
β)φ

]
, (A.6a)

ρ̃∗(τ )(r) =
∑
αγ

κ
∗(τ )
αγ ,−F 1

αγ (r⊥, z) cos
[
(
α−
β)φ

]
, (A.6b)

with an equivalent shorthand notation

κ
(τ )
αγ ,− = 1

2π

(
κ

(τ )+−
αγ −κ

(τ )−+
αγ

)
, (A.7a)

κ
∗(τ )
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∗(τ )+−
αγ −κ

∗(τ )−+
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)
. (A.7b)

Appendix B. Coupling constants of the Skyrme EDF

The time-even and time-odd contributions to the Skyrme EDF 
[cf. Eqs. (54) and (55), respectively] contain a total of twenty cou-
pling constants in the isoscalar (t = 0) and the isovector (t = 1) 
channel. Four of these constants are density-dependent and can 
further be decomposed as

Cρρ
q,t (r; x) = Cρρ

t,0 + Cρρ
t,Dρα

q (r; x), (B.1a)

C ss
q,t(r; x) = C ss

t,0 + C ss
t,Dρα

q (r; x). (B.1b)

Here, the real number α can be considered as a parameter of an 
EDF. The remaining twenty four density-independent coupling con-
stants can then be expressed in terms of the (t, x) parameters of 
the Skyrme EDF. In the time-even channel, the coupling constants 
read

Cρρ
0,0 = +3

8
t0, (B.2a)

Cρρ
0,D = + 1

16
t3, (B.2b)

Cρρ
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4
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2
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, (B.2c)
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2
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, (B.2d)
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where b4 and b′
4 are the parameters of the spin-orbit force and we 

took te = to = 0 for the tensor terms [1]. In the time-odd channel, 
the coupling constants read
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)
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, (B.3e)
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C sj
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C sj
1 = −Cρτ

1 , (B.3h)

C s∇ j
0 = +Cρ∇ J

0 , (B.3i)

C s∇ j
1 = +Cρ∇ J

1 , (B.3j)

C sT
0 = −C J J

0 , (B.3k)

C sT
1 = −C J J

1 . (B.3l)

Note that relations (B.3g) - (B.3l) are imposed by the local gauge 
invariance of an EDF [1].
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[29] P. Marević, N. Schunck, Phys. Rev. Lett. 125 (10) (2020) 102504.
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