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1. Introduction

is studies of multipole response in nuclei far from stability with
possible occurrence of exotic modes of excitation [5,6]. Theoreti-

Energy density functionals (EDF) provide an accurate descrip-
tion of ground-state properties and collective excitations of
atomic nuclei, from relatively light systems to superheavy nu-
clei, and from the valley of g-stability to the particle drip-lines
[1-4]. One of the most interesting topics for this type of research
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cal studies of collective vibrations in heavy nuclei are commonly
performed within the framework of quasiparticle random-phase
approximation [7] (QRPA), most often in a matrix form. How-
ever, the dimension of the QRPA matrices increases rapidly for
deformed heavy systems and such calculations have become
possible only during the past decade [8-12].

In order to bypass problems of practical implementation of
matrix QRPA in deformed heavy systems, a finite amplitude
method (FAM) was introduced as an alternative way to compute
the multipole response functions. The FAM has been successfully
applied in a number of studies both in the coordinate space and
in the harmonic oscillator basis [13-22].
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A particular class of self-consistent mean-field models (SCMF)
are those based on zero-range relativistic (covariant) energy den-
sity functionals. These models have been successfully applied
to the analysis of a variety of nuclear structure phenomena,
with accuracy comparable to the nonrelativistic Hartree-Fock-
Bogoliubov approach based on Skyrme functionals or Gogny ef-
fective interactions (see Ref. [4] and references cited therein). We
have presented the DIRHB program package [23] for the solu-
tion of the stationary relativistic Hartree-Bogoliubov equations
for even-even open-shell nuclei with spherical symmetry, axi-
ally symmetric quadrupole deformation, and triaxial quadrupole
shapes. Here we would like to complement this package with
the QFAM solver to calculate the multipole response for systems
with axially symmetric quadrupole deformation. The present ver-
sion of the code is restricted to zero-range effective interaction,
however we plan to upgrade this in the near future.

The paper is organized as follows. Section 2 includes a brief
overview of the small amplitude limit of the time-dependent
relativistic Hartree-Bogoliubov model and the finite amplitude
method, some details of practical implementation are described
in Section 3, and the structure of the program is explained in
Section 4. Short summary is provided in Section 5 and further
mathematical details can be found in appendices.

2. Small amplitude limit of the time-dependent relativistic
Hartree-Bogoliubov model and the finite amplitude method

The relativistic Hartree-Bogoliubov (RHB) model [2,24] pro-
vides a unified description of nuclear particle-hole (ph) and
particle-particle (pp) correlations on a mean-field level by com-
bining two average potentials: the self-consistent nuclear mean
field h that encloses all the long range ph correlations, and a
pairing field A which sums up the pp-correlations. In the RHB
framework the nuclear single-reference state is described by a
generalized Slater determinant |®) that represents a vacuum
with respect to independent quasiparticles. The quasiparticle
operators are defined by the unitary Bogoliubov transformation,
and the corresponding Hartree-Bogoliubov wave functions U and
V are determined by the solution of the RHB equation:

hp —m — A A U, U,
(D—A* —h*+m+A>(v)_E (vu) : Sy

In the relativistic case the self-consistent mean-field is included
in the single-nucleon Dirac Hamiltonian hp, A is the pairing
field, and U and V denote Dirac spinors. In the formalism of
supermatrices introduced by Valatin [25], the RHB functions are
determined by the Bogoliubov transformation which relates the
original basis of particle creation and annihilation operators c, c;
(e.g. an oscillator basis), to the quasiparticle basis «,,,

"
(CCT) =W <31> with W = (8 Z:) . ()

In this notation a single-particle operator can be represented in
the matrix form:

1
F = 3 (f a)F ((;XJ[) + const, (3)
with:
Fll FZO
F = <_F02 _(Fu)T> : (4)

1 In the following, the Roman alphabet characters will denote the particle
basis states, while the Greek will denote the quasiparticle basis states.

In particular, for the generalized density R:

—_wt[ P K
R=W (_K* 1— p*) w, (5)
where the density matrix and pairing tensor read: p = V*VT

and ¥ = V*U'. The RHB Hamiltonian is given by a functional
derivative of a given energy density functional with respect to
the generalized density:

SE[R] h A

The evolution of the quasiparticle operator «,(t) subject to
time-dependent external perturbation F(t) is determined by the
equation:

ie0, (t) = [H(t) + F(t), ()] . (7)
For a weak harmonic external field:
F(t) = n(F(w)e ™" + Fi(w)e™"), (8)

characterized by the small real parameter 7, the F(w) operator
reads:

1
Flo)= 5> Flalal + Flaa, (9)

v

The F;l term that would appear in the previous equation does
not contribute in linear response and thus can be safely omitted.
The external harmonic field F(t) induces a small-amplitude os-
cillations of the «,,(t) operator around the ground-state solution
with the same energy:

au(t) = (o + o, (1)) €. (10)

E,, denotes the quasiparticle energies (see Eq. (1)). The oscillating
part of the «,(t) operator is expanded in terms of quasiparticle
creation operators?:

S, (t) = nZa

The oscillations of the density matrix and the pairing tensor pro-
duce the induced oscillating fields in the single-particle Hamilto-
nian h(t) = ho + Sh(t) and the pairing field A(t) = Ag + SA(t).
hy and A, denote the ground state values. The Hamiltonian H(t)
can also be decomposed into static and oscillating terms:

H(t) = Ho + 8H(t) = Ho + n [8H(w)e ™" + sH(w)e™™].  (12)

The SH(a)) operator is decomposed:

28H20

By inserting Eqs. (10)-(13) into Eq. (7) and retaining only linear
terms, we obtain the QFAM equations:

(@) N+ Y (w)et ). (11)

otI + 8H22V(w)(xvo{ﬂ. (13)

(Eu + Ey — @) Xyu(w) + 8HX (w) = —F7, (14)
(Eu + Ey + @) Yy (@) 4 8H ) (0) = —F 2. (15)

We notice that $H2%(w) and SHJ); () depend on the induced fields
which in turn depend on the induced densities, i.e., on the ampli-
tudes X, (@) and Y,,,(w). Therefore, Egs. (14)-(15) represent a set
of equations that can be solved self-consistently. The expansion
of 8H2)(w) and 8H;(w) in terms of X,,(w) and Y,,(w) up to
linear order leads to the conventional QRPA equations. These
equations contain second derivatives of the density functional

2 We notice that including the annihilation operators in the expansion would
not alter the density matrix or the pairing tensor.
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E[R] with respect to R as matrix elements. For deformed nuclei
in particular, the number of two-quasiparticle configurations can
become very large and the evaluation of matrix elements requires
a considerable, and in many cases prohibitive, numerical effort.
In many cases this has prevented systematic applications of the
conventional QRPA method to studies of the multipole response
of medium-heavy and heavy deformed nuclei.

In order to use the stationary RHB code as a starting point
for the evaluation of the #(R), the generalized density should be
transformed back to the original single-particle basis by using the
Bogoliubov transformation:

OEDY <U,fﬂ(t)ck + v,jﬂ(t)c,j). (16)
k

Egs. (10) and (11) lead to the following expressions for the U(t)
and V(t) coefficients:

Ukp,(t) = Uk,ueiiEut + ﬂeiiE“t Z (V/:,Yvu(w)eiiwt

v

+Vljvxju(w)e+iwt) ) (17)
Vigu(t) = Vet et Z (Uljuyvu(w)e_iwt

+Up X (w)e ™) . (18)

Vi, and Uy, denote the stationary Bogoliubov coefficients. The
induced density matrix p(t) = V*(t)VT(t) reads:

p(t) = V*VT 40 (8p(w)e™™ +8p'(w)e") (19)

with 8p(w) = UX(w)VT 4+ V*YT(w)UT. The induced pairing tensor
k(t) = V*()UT(t) reads:

k() =V*UT + 9 ((S/{H)(w)e*"‘”t + 8K(7)(w)e+i‘”t) , (20)

with sk (w) = UX(0)UT + V*YT(0)VT and 8« (w) = V*XT(w)
VT + UY*(w)UT. It should be noted that although 8 p(w) matrix is
not necessarily Hermitian, the matrices §x*)(w) and §x(~)(w) are
still antisymmetric. The induced single-particle Hamiltonian:

8h(t) = n (Sh(w)e ™" + Sh'(w)et™"), (21)

is linearized explicitly in the coordinate space, while the induced
pairing field reads:

SA(t) = n (AN (w)e ™" + 5A T (w)e ™), (22)
with
1
88D (w) = 5 > Vimpgdk (). (23)
pq

Uimpg are the antisymmetrized matrix elements of the pairing
interaction. The 8H?°(w) and H% (w) are calculated by transform-
ing back to the quasiparticle basis:

Sh(w) SA(“(a))) W (24)

SH(w) =W (—(SA(‘)(w)* —8h" ()

The explicit expressions for 8H?°(w) and §H%(w) read:

SH®(w) = + UTsh(w)V* — VIshT (w)U*

+ Ut AP ()U* — VI[8ATD()]* V¥, (25)
SH?(w) = — VT8h(w)U + UTShT (w)V
— VT8 AN (w)V 4+ UT[ A (w)]*U. (26)

The transition strength for each particular energy is calculated
from:

B (. 0) = S 0) = -~ Im Tl p(w)], 27)
dw T

where §p(w) denotes the induced density matrix and f; are
the matrix elements of the operator F(w) in the single-particle
basis:

Flw)=)_fucla. (28)

ki

3. Practical implementation
3.1. Point-coupling models

The energy density functional (EDF) for the relativistic point-
coupling model is built from densities and currents bilinear in the
Dirac spinor field of the nucleon:

A
Erl . 0. A" ] =) f Eryl @-p+pm i+ 5 f A"
i=1

+ % / d’r I:aspsz + avjﬂju + drju A+ (SSIOSAPS:I~ (29)
Vectors in isospin space are denoted by arrows, and boldfaced
symbols will indicate vectors in ordinary three-dimensional
space. The Dirac spinor ¥ denotes the nucleon with mass m. The
strength parameters «;, i € {s, v, tv} of the interaction terms are
functions of the nucleon 4-current:

=9yt = put, (30)

where u* is the 4-velocity defined as (1 — v*)~/2(1, v). In the
rest-frame of homogeneous nuclear matter v = 0. The variation
of the EDF (29) with respect to the Dirac spinors i leads to the
Dirac equation:

hpri(r) = €vri(r), (31)
where hp denotes the single-nucleon Dirac Hamiltonian:
hp =a-(p— )+ Zo + B(m + ). (32)

The nuclear self-energies X are defined by the following expres-
sions:

Xs = asps + 852 ps, (33)
. 1+t 5 7
S 2AY 4 o T+ SL (34)

The density dependence of the vertex functions «;s, «, and oy,

produces the rearrangement contribution to the vector
self-energy:

1% (Oas day . . oy =
Eﬂz( P+ il + ) (35)
* =20, \ap, > Tap T ap,

The DIRQFAM code includes density-dependent point-coupling
interaction DD-PC1 [26] where the following ansatz was used for
the functional form of the couplings:

as(py) = as + (bs + Csx)eidsxv (36)
av(pv) =a, + bveidvxa (37)
atu(pv) = btve_dtvxs (38)

with X = p,/psat- Psar denotes the nucleon density at saturation
in symmetric nuclear matter. Because of the charge conserva-
tion, only 3rd component of the isovector current contributes.
Furthermore, in the ground-state solution for an even-even nu-
cleus there are no currents (time-reversal invariance), and the
corresponding spatial components of the currents vanish. Finally,
the electromagnetic field is determined by solving the Poisson
equation:

— AAY = epP, (39)
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where pP denotes the proton vector density. The induced single-
particle Dirac Hamiltonian is obtained by calculating the func-
tional derivative of the Dirac Hamiltonian with respect to the
density:

_ (v +65 —o-6%
Ohp = (—0-82 5v-55>’ (40)

where §S = 65, 8V = §5° + 852 + 35V, and §% denote

the induced scalar, time-like and space-like components of the
induced vector potential, respectively. The detailed expressions
for 8%, §3° 8 X2 and 8= are listed below.

825 = {a}(p2)p?} 80u + {ors(pd)} 85 + 8528 s, (41)
82°% = {a(p9)p + au(p) + T3], (PD)PL, } 800
+ {3000(0)} 8 ot (42)
538 = 5 [ oDNO0P + L0 A + el (AR P 0
+ {ei(p)?} 85 + {00y} 800 + {err,(09)00,} 8pt0,
(43)
8% = {au(p))} 8j, + {T3een(p))} 8- (44)

02, p? and p?, denote the isoscalar-scalar, isoscalar-vector and
isovector-vector ground state densities. We notice that the ex-
pression for §% is simplified considerably due to the fact that
the single-nucleon currents vanish in the time-reversal invariant
ground-state.

The induced Coulomb field §Vc is calculated by solving the
standard Poisson equation (39) with the induced proton density
as the source term. In the current implementation of the code,
we omit the space-like components of the induced Coulomb field
since their contribution should be negligible in comparison to the
other terms.

Finally, we have also implemented the method proposed in
[13] to separate the spurious response related to the breaking of
the translation symmetry from the physical response. Although
the zero-energy modes and the physical modes should be decou-
pled exactly within the random phase approximation [7,27], in
practice there is always some mixing mostly due to the finite size
of the oscillator basis used in the calculation. Other numerical
inaccuracies also contribute to the mixing of the spurious and
physical modes, but their contribution is less pronounced in com-
parison to the finite size of the basis. For example, the finite size
of the harmonic oscillator basis certainly violates the translational
invariance thus causing admixtures of the zero-energy mode
within the physical modes. We have verified that the method
proposed in Ref. [13] removes such unphysical admixtures.

3.2. Separable pairing interaction

Pairing correlations in nuclei are restricted to an energy win-
dow of a few MeV around the Fermi level, and their scale is well
separated from the scale of binding energies, that are in the range
from several hundred to thousand MeV. There is no empirical
evidence for any relativistic effect in the nuclear pairing field A
and, therefore, a hybrid RHB model [28] with a non-relativistic
pairing interaction can be formulated. For a general two-body
interaction, the matrix elements of the relativistic pairing field
read:

1
_ § : !l [\PD o
An]p],rz’lp’1 = 5 (nlpla n1P1|V |n2p2an2p2)a’<n2p2,n’2p’2- (45)
nzpz,n’zp/z

The indices p1, p}, p2 and p,, refer to the large and small compo-
nents of the quasiparticle Dirac spinors:

f(U) (V)
U = <ik(u)>» Vi = <ik(v)> . (46)
gk gk

In practical applications of the RHB model only the large compo-
nents of the spinors Uy and Vj, are used to build the pairing tensor
k. The resulting pairing field reads:

1 ,
Angaty = 5 D naf i VPInof  1f)a kg (47)

/
i

The other components: Ag, Ag, and Ag can be safely omit-
ted [29].

In order to reduce the computational effort, a separable form
of the pairing force has been introduced for RHB calculations in
spherical and deformed nuclei [30-32]. The force is separable in
momentum space, and is completely determined by two param-
eters that are adjusted to reproduce the pairing gap of the Gogny
force in symmetric nuclear matter. The gap equation in the 'Sy
channel reads:

© k24K 1 A(K)
A(k) = — k|v 5ok’ , 48
== [ S vz (48)
and the pairing force is separable in momentum space:
(kv 1K) = —Gp(k)p(K) - (49)

By assuming a simple Gaussian ansatz p(k) = e’“z"z, the two pa-
rameters G and a have been adjusted to reproduce the density de-
pendence of the gap at the Fermi surface, calculated with a Gogny
force. For the D1S parameterization [33] of the Gogny force the
following values were determined: G = 728 MeV fm® and a =
0.644 fm. When the pairing force equation (49) is transformed
from momentum to coordinate space, it takes the form:

VPP(ry, 1), 1y, 15) = —5(1 —P;)8° (R —R) P(r)P(r'), (50)

whereR = % (r{ +ry) and r = r,—r; denote the center-of-mass
and the relative coordinates, respectively, and P(r) is the Fourier
transform of the p(k) function:

1

P(r)= ——

") (4na2)3/ 2
The pairing force has a finite range and, because of the presence of
the factor 43 (R - R’), it preserves translational invariance. Even
though &3 (R - R/) implies that this force is not completely sepa-
rable in coordinate space, the corresponding antisymmetrized pp
matrix elements:

(nny VPP n5)q = (nyn, |VPP|nnb) — (nyn,|VPP|n5n)), (52)

can be represented as a sum of a finite number of separable
terms in the harmonic oscillator basis. Detailed expressions can
be found in Appendix E. Finally, the induced pairing field is
calculated according to Eq. (23).

e T4 (51)

3.3. Numerical details

The current version of the code supports the electric isoscalar
and isovector multipole operators, defined as:

A z N
fjfs = Zf)l((ri)’ fJQ/ = Zf]K(rf) - Zf][((ﬁl (53)
i1 i=1 =1

The summations in the expression for the f]}é’ operator run over
protons and neutrons, respectively. In general, the operator
fx(r) = r Yik(6, ¢). However, for the monopole excitations, the
operator is defined as fyo(r) = r?, while for the isovector dipole
excitation (Dx = rYi, K = 0, £1), the following definition is
employed:

z N
DK = e% |:; ZDK(I',') — IIJZDK("'):| . (54)
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Since for an even-even axially symmetric nucleus the operators
fix and fj_x produce identical strength functions, in the code we
employ the jj}f) = (fix + (=1)Xf_x)/~/2 F 25x0 operator and
assume K > 0. Detailed expressions can be found in Appendix B.1.

The QFAM equations (14) and (15) are solved iteratively by
employing the modified Broyden’s method [34]. The mth Broyden
vector V™ in the DIRQFAM code contains the matrix elements of
the induced fields V = {§h(w), 8A™)(w), A7) (w)}. The default
value for the number of Broyden vectors retained in the Broyden
memory is 30 (broyd_m variable located in the prep.f file)
and the convergence criterion is the relative error between two
consecutive Broyden vectors:

[ve™ - v o,
v,

where || - || denotes the Euclidean norm and tol is small value,
defined in the iter_fam subroutine. We have verified that for
most cases already the value tol = 10> produces satisfactory
precision of transition strength (4-5 correct most significant dig-
its). However, if higher precision is required, one should reduce
the default value (10~°) for the tol parameter.

In order to prevent that the QFAM solutions diverge in the
vicinity of the QRPA state £2;, we add a small imaginary part
to the energy w — w + iy. This procedure corresponds to the
folding of the QRPA strength function with a Lorentzian of width
I =2y [16].

In order to solve Egs. (14) and (15), the QFAM amplitudes are
expanded in a basis of the eigenstates of the axially symmetric
harmonic oscillator and the simplex-y operator. The choice of
this basis is motivated by the fact that the fjg(+ ) operator does
not connect the basis states with the opposite simplex quantum
numbers, i.e., the f]gf) operator is block-diagonal in the basis

of the eigenstates of the simplex-y operator. In the following
we will refer to this basis as the simplex-y harmonic oscillator
(simplex-y HO) basis. The induced currents and densities are first
computed in the simplex-y HO basis and after that they are trans-
formed in the coordinate space to calculate the induced fields.
Spatial integrals needed to calculate the matrix elements of the
induced single-particle Hamiltonian §h(w) are computed using
cylindrical coordinates r; and z. The integration is carried out
by using Gaussian quadratures with NGH Gauss-Hermite nodes
in the z > 0 direction and NGL Gauss-Laguerre nodes in the r
direction, while the angular part is calculated analytically. The
default values for both NGH and NGL is 48.

< tol, (55)

4. Description of the DIRQFAM code
4.1. Structure of the DIRQFAM code

The DIRQFAM code consists of a Fortran source code and two
additional files: dirqgfam.par and dirqfam.dat. The dirqg-
fam.par file contains the relevant information about the di-
mensions of the arrays, depending on the multipolarity K of
the excitation, the number of oscillator shells selected for the
expansion of nucleon spinors (n0f), and the number of Gaussian
quadrature nodes in the r, (NGL) and the z > 0 direction (NGH).
This file is generated prior to the compilation process based on
the data from the dirqfam.dat file by invoking the make prep
command. In addition to the nOf, NGH and NGL parameters, the
dirqgfam.dat file includes the data for the specific nucleus being
calculated and the information related to the multipole response
calculation.

The main program calls various subroutines that read the data
and perform the computation. The execution essentially consists
of three parts. The first part uses the file dirqfam.dat to start

the program, initializes and generates all the relevant informa-
tion. The second part of the code carries out the self-consistent
ground-state (GS) computation as described in Ref. [23].

The third part of the code performs the computation of the
multipole response upon achieving the convergence of the
ground-state calculation. Below we specify the subroutines re-
lated to this part of the code.

e main_fam: Main QFAM subroutine that calls the subrou-
tines listed below.

- base_simplex: Constructs the configuration space
and the arrays of quantum numbers for the HO
simplex-y basis.

- construct_u and construct_v: Transforms the Bo-
goliubov U and V matrices from the HO to the HO
simplex-y basis according to Eqs. (A.17) and (A.18)
given in Appendix A.

- check_gs_dens and check_unitarity: Verifies the
previous transformation by recalculating the ground-
state density and calculating the unitarity conditions
for the U and V matrices WWW!' = 1, where the matrix
W is defined in Eq. (2)).

- init_fam: Reads relevant QFAM input data and ini-
tializes QFAM submodule:

* init_basis: Calculates the basis wave functions
in the coordinate space (see Appendix A).

% init_multipole: Calculates the matrix ele-
ments of the multipole operator (see Appendix B).

* init_spurious: Calculates the matrices rele-
vant for eliminating the translational Nambu-
Goldstone mode.

# init_coulomb: Calculates the Green’s function
for the induced Coulomb interaction (see
Appendix D).

* init_pairing: Calculates the W coefficients for
the pairing matrix elements (see Appendix E).

- start_fam: Determines whether the user wants to
calculate the fully self-consistent or the free response
for some predefined range of energies or to calculate
self-consistent response and print induced density for
some selected value of energy. If the user chooses to
calculate the self-consistent response function over the
range of energies, the code loops over the predefined
energy range and executes the following subroutines:

* iter_fam: Performs QFAM iterations for single
energy until self-consistency is reached by calling
the following sequence of subroutines:

- fam_drhodkappa: Calculates the induced
density matrix §p(w) and pairing tensor
8k)(w) using the induced single-particle
Hamiltonian $h(w) and pairing field §A®)
(w) from previous iteration.

- fam_ddensdcurr: Calculates the induced
densities and currents in the coordinate
space (see Appendix C).

- fam_dpotentials: Calculates the induced
potentials in the coordinate space according
to Egs. (41)-(44).

- fam_dh1: Calculates the induced single-
particle Hamiltonian §h(w) in simplex-y ba-
sis.

- fam_ddelta: Calculates the induced pair-
ing field 8 A®)(w).
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Table 1

Total running time per iteration and the required amount of memory for QFAM
calculation of J = 3, K = 1 response in the 2°Ne atomic nucleus with NGH = 48,
NGL = 48 Gaussian quadrature nodes. Test was performed on the Intel® NUC
Kit NUC8i7HVK machine with OpenBLAS [37] implementation on single thread.

Number of Total time Required amount
oscillator shells per iteration (s) of memory (GiB)
12 15 153
14 3.1 2.64
16 55 4.55
18 9.5 7.63
20 16 123
22 25 19.4

- fam_broyden: Performs the Broyden mix-
ing step.

+« fam_strength: Calculates the transition
strength S(f, w) after the convergence of the
QFAM calculation has been achieved.

If the user chooses to calculate free response, then
Sh(w) and 8 A®)(w) are set to zero, fam_drhodkappa
is invoked followed by immediate calculation of tran-
sition strength. If the user chooses to calculate the
self-consistent response for a selected value of energy,
the code executes the fam_iter routine for this par-
ticular value of energy followed by the print_dens
routine in order to print out the induced density. The
code prints out both the real and imaginary parts of
the induced density together with the ground-state
density so that the user can easily generate a movie
showing the density oscillations.

4.2. Compilation and code execution

The programming language of the DIRQFAM code is Fortran
and the user should provide an implementation of the BLAS and
LAPACK (version 3.6.0. or higher) linear-algebra libraries [35,36].
Since the code depends heavily on zgemm, dgemm and dgemv
subroutines, we recommend that the user provides an efficient
implementation of the BLAS library. The code is compiled by
standard Makefile build automation which is set to work with the
GFortran compiler. If the user invokes make prep command, an
auxiliary code will generate dirqfam. par file that contains the
relevant information about the dimension of various arrays used
in the code. The make run command compiles the code and pro-
duces the executable file run. The code is executed by the . /run
command. If the size of the common blocks and local data exceeds
2 GB, the code should be compiled using the -mcmodel op-
tion with values -mcmodel=medium or -mcmodel=large. Oth-
erwise, -mcmodel=small will be sufficient. The default option
-mcmodel=medium can easily be modified by editing the Make-
file.

In order to illustrate the computational resources required
to run the QFAM calculations, in Table 1 we present the total
running time per QFAM iteration and the required amount of
memory for a calculation of ] = 3, K = 1 response of 2°Ne nucleus
with dense Gaussian quadrature mesh: NGH = 48 and NGL =
48. Typically, in order to obtain converged solution, one has to
perform 30-60 iterations at each energy. We would also like to
emphasize that QFAM calculation can be parallelized very easily,
thus reducing the time required to perform such calculations.

4.3. Input data

The input data can be divided into two parts: (i) input related
to the ground state calculation, (ii) input related to the QFAM

calculation. The input data needed by the ground state part of
the code includes:

e Number of oscillator shells used in the expansion of nucleon
spinors (nOf). In the current implementation of the code
n0f should be even.

o Number of Gauss-Hermite nodes (NGH).

o Number of Gauss-Laguerre nodes (NGL).

e B-deformation parameter of the harmonic oscillator basis
(beta0). We recommend that the user chooses the value
that is close to the actual deformation of the considered
atomic nucleus.

e B-deformation parameter for the initial Woods-Saxon po-
tentials (betai). We recommend that the user chooses the
value that is close to the actual deformation of the consid-
ered atomic nucleus.

e The starting parameter for the potentials (inin). If the pa-
rameter inin is set to 1, the code starts from a default
Woods-Saxon potentials predefined in the code. If the pa-
rameter inin is set to 0O, the initial potentials are read from
the file dirhb.wel.

e The starting parameter for the pairing field (inink). If
inink is set to 1, the code starts with the diagonal pairing
field with equal matrix elements delta0. If inink is set to
0, the initial pairing matrix elements are read from the file
dirhb.del.

e The nuclide to be computed: the element name (nucnam)
followed by the mass number (nama). If the element name
has only one character, it should begin with an underscore,
eg. _C12, _016, _U 238.

e Neutron and proton initial pairing gaps (delta0).

e Acronym of the parameter set of the selected energy density
functional (parname). Current implementation of the code
supports DD-PC1 effective interaction.

e The quadrupole constraint control parameter icstr. If ic-
str is set to 0, the quadrupole constraint is not included,
and the parameters betac and cqad are not used. If icstr
is set to 1, then betac denotes the constrained value of the
quadrupole deformation.

e Constrained value of the g-deformation parameter (betac).

o Stiffness constant for the quadrupole constraint (cqad). The
default value is 0.1, but if the iteration starts diverging it
should be reduced.

The input parameters used to calculate multipole response in-
clude:

e The calculation type flag (i_calculation_type). Value O:
free response is calculated for a given range of energies.
Value 1: Self-consistent response is calculated for a given
range of energies. Value 2: Self-consistent response is cal-
culated for a given energy (omega_print) and the induced
density is outputted.

e The Coulomb flag (i_coulomb). Value 0: Coulomb inter-
action is omitted both in the ground state and the QFAM
calculation. Value 1: Coulomb interaction is included both
in the ground state and the QFAM calculation.

e The pairing flag (i _pairing). Value O: pairing interaction is
omitted both in the ground state and the QFAM calculation
by setting the pairing strength constant G to zero. Value 1:
pairing interaction is included both in the ground state and
the QFAM calculation.

e J (J_multipole) and K (K_multipole) multipolarity val-
ues that define the multipole operator fi. In the current
implementation of the code their values are restricted to
0<J=30=<K<=]J

e The isospin IS0 flag that determines whether the excitation
is isoscalar (ISO = 0) or isovector (IS0 = 1).
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e The smearing width y (in MeV) used in the QFAM calcula-
tion (gamma_smear).

e Parameters that control the starting point (omega_start),
the ending point (omega_end) and the increment
(delta_omega) of the energy range over which the re-
sponse is calculated. Relevant only if the calculation type
flag is set to O or 1.

e If the user chooses to calculate the response and print the
induced density for some particular value of energy (calcu-
lation type flag set to 2), this value of energy is also provided
in the input file (omega_print).

4.4. Output data

The output of the calculation is divided into two parts. The
first output file dirhb. out located in the GS_output directory
contains the information on the ground state calculation. Detailed
description of this file can be found in Ref. [23]. The second part
of the output relevant for the QFAM calculation is located in
the QFAM_output directory. The calculated strength function is
written to the strength.out file. If the calculation type flag is
set to 2, an additional file rhov.out is generated which contains
the ground state vector density pf}(r) and the induced vector
density §p,(r, w) for the selected energy (omega_print). The
values printed in the rhov.out file are suitable for visualizing
the time dependent density calculated by using the following
relation:

pu(r, t) = p)(r) + 211 Re [e !5, (r, w)]. (56)
4.5. Test calculations

As a benchmark after the code has been installed on a par-
ticular computer, we provide three test calculations along with
the code. The testl directory contains the fully self-consistent
calculation of the ] = 3, K = 1 response built on top of the
deformed ground state of the 2°Ne isotope. The test2 directory
contains the calculation for the same configuration only for fixed
energy and in this case the induced vector density is printed.
Finally, the test3 directory contains the free response for the
same configuration as the one described in the test1 directory
case. Examples of dirqfam.dat files for three test calculations can
be found in the test directory together with the expected output
files.

Finally, we have also performed the fully self-consistent cal-
culation of the ] = 2, (K = 0, K = 1, K = 2) response built
on top of the spherical configuration of the 3Zr isotope. Due
to the Wigner-Eckart theorem, spherical nuclei should exhibit
the strength function response invariant to the quantum number
K for the fixed value of the angular momentum J. In Table 2
we display the results of this calculation thus demonstrating
the agreement within 7 most significant digits in the strength
response function. In this calculation, we set Broyden’s iteration
tolerance to a slightly lower value (tol = 1078, located in
the iter_fam subroutine) in order to achieve better level of
agreement between various K quantum numbers.

5. Summary

We have developed a computer code to calculate the multipole
response of even—even axially symmetric deformed nuclei by us-
ing the quasiparticle finite amplitude method built on top of the
self-consistent mean-field models based on the relativistic nu-
clear energy density functional. The particle-hole channel is de-
scribed by a zero-range relativistic effective interaction, while the
particle-particle channel is described by a separable finite-range
pairing force.

Table 2

Isoscalar quadrupole response in the spherical configuration of the 4Zr atomic
nucleus. Calculation was performed in a space of 10 harmonic oscillator shells
with dense Gaussian quadrature mesh: NGH = 48, NGL = 48. The value of
tol parameter was decreased to tol = 10~% in order to improve the level of
agreement between various K quantum numbers.

Energy [MeV] S(f, w) [fm* MeV~!]
K=0 K=1 K=2

5 31.5919694917 31.5919710786 31.5919715257
10 24.7155886321 24.7155875415 24.7155892845
15 107.0087945746 107.0087760979 107.0087950602
20 39.7574698943 39.7574764571 39.7574725327
25 8.9181104468 8.9181111725 8.9181102475
30 3.1849102533 3.1849106081 3.1849102773
35 1.3344283637 1.3344283202 1.3344282347
40 0.78188853950 0.7818886118 0.7818885252

The present version of the code solves the QFAM equations by
expanding the QFAM amplitudes in a basis of eigenstates of ax-
ially symmetric harmonic oscillator and the simplex-y operator.
The execution time of the code depends heavily on the number of
oscillator shells used in this expansion. However, the calculation
can be trivially parallelized by calculating the response for each
particular value of the energy on a different node. This would al-
low systematic studies of collective model even in medium-heavy
and heavy deformed nuclei.
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Appendix A. Single-nucleon basis

In this section we first briefly describe the single-particle basis
of eigenfunctions of a single-particle Hamiltonian for an axially
symmetric deformed harmonic oscillator (HO) potential:

1 1
Vosc(z, 1) = EmeZZZ + Emwiriy (A.1)

used in the ground-state calculations. (z, r,, ¢) denote the stan-
dard cylindrical coordinates:
X=r_ cos¢, y=r,sing, (A2)

Imposing volume conservation, the two oscillator frequencies hiw,
and fiw,; can be expressed in terms of a deformation parameter

Bo:

zZ=2Z.

— ilgo 1 iﬁo
hw, = hwpge V™ hw, = hwee?V 7", (A.3)
The corresponding oscillator length parameters are:
h h
b, = b, = (A.4)

mw,’ mw,
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b%b, = b} because of the volume conservation. The basis is
now determined by the two constants hwy and So. Current im-
plementation of the code uses the following estimate for the
HO frequency: hwy = 41A'3 MeV. The eigenfunctions of the
deformed harmonic oscillator potential are labeled by the set of
quantum numbers:

lo) = |nzn, Amy), (A5)

where n,,n, € Ny, are the number of nodes in the z and r|
directions, respectively. A € Z and m; € {j:%} are projections of
the orbital angular momentum and spin on the intrinsic z-axis,
respectively. Making use of the dimensionless variables:

g£=z/b,, n=ri/b%, (A.6)
the harmonic oscillator eigenvectors read:
ol A0
la) = |n n, Amg) = ‘/’nz(Z, bl)garﬁ(rlv bL)EXmS(S), (A7)
where:
¢n (2. b2) = by V2N Hy (6)e 512, (A8)
Qi (r,by) = b NAV 2y A2 LA (e, (A9)

Hp,(¢) and LL?'(n) denote the Hermite and associated Laguerre
polynomials, respectively. The normalization factors are:

N, = (V72" n,)™2 and N2 = (n,/(ne + 1ADD2. (A10)

The large and small components of a Dirac spinor are ex-
panded independently in terms of the oscillator eigenfunctions:

flrmg )= > fMle)x, (1), (A11)
Shell(e)<Nmax
R2=A+ms>0
k), ~
aroms )= Y glla)x,(0). (A.12)

Shell(&)<Nmax+1
2=A+mms>0

To avoid the appearance of spurious states, the quantum numbers
o and @ are chosen in such a way that the corresponding shell
they belong to: Shell(e) = n, 4 2n; + |A| and Shell(@) = 7, +
20, + |A|, are not larger than Ny and Ny + 1 for the large
and small components, respectively.? Due to the time-reversal
symmetry of the ground state solution, only positive eigenvalues
2 = A+ ms > 0 of the J, symmetry operator are retained in the
expansion.

The HO basis states are used to build the eigenfunctions of
the simplex-y operator S, = Pe~™y where P denotes the parity
operator.* One can easily verify that the following combinations
are eigenstates of the S, operator with eigenvalues s = +i and
s = —i

Inzn-A; s = +i) = \% (ilnzn A 1) +nzny — A L)), (A13)
Inzn-A; s = —i) = \% (InznpA 1) +ilnzn. — A ). (A.14)

Furthermore, these states are related by the time-reversal opera-
tor T:

Tinyn, A; s = +i) = Fin,n, A; s = Fi). (A.15)

Due to the time-reversal symmetry of the ground state so-
lution, for each solution with £ > 0, there is a degenerate
time-reversed solution with £ < 0. These two states can be

3 Nmgy parameter corresponds to the nOf parameter from the input file
dirgfam.dat.

4 Notice that the parity operator acting on Dirac spinors is given by y° matrix.

used to construct the eigenstates of the RHB Hamiltonian that are
simultaneously also the eigenfunctions of the simplex-y operator.
The HO basis states used to expand the ground state quasiparticle
spinors are ordered in the following way: basis states with 2 > 0
are listed first followed by their time-reversed pairs. The simplex-
y HO basis states used in the QFAM calculations are ordered into
two blocks: basis states with s = +i are listed first followed by
the s = —i pairs of states. By ordering the single-quasiparticle
states in the same manner, the Bogoliubov matrices U and V
acquire the following block structure:

u 0 0 —v*
UZ(O u*)’ VZ(v 0)'

Furthermore, the following transformation between the quasipar-
ticle spinors in simplex-y HO and HO basis holds:

(A.16)

(up) _ (Up)
(n:,nr.+.(2—%) +1 (ﬂznr,ﬂ—%,ms:+%)
" . U

é:i’)""‘g‘%> - <(n::zr,9+%.ms=—%)

(up) — 1ix g(uﬂ) ) (A17)
(nz,nr-+9—%> B (”z,nr,g—%,m5:+%)

() (Up)

= +1

(nz’nr’_g_;> (”Z«nr.9+%,ms=—%)

(o) _ (V)

ey

(Uu) . (Vl’-)

(nz’nr'_‘q_%> - ("z,nr,ﬂ-%—%.ms:—%)

( (A.18)
) = —ix g™

(nenr +2-3) (rer2- 3me=t 1)

() — _ Vi)

("‘Z’”T”Q*a = g(”‘z.nr,9+%,m5:*%)

The wave functions on the left-hand side of Egs. (A.17) and
(A.18) are expanded in the basis defined in Eqs. (A.13)-(A.14),
while those on the right-hand side are expanded in the HO basis.
Therefore, one can easily construct the U and V matrices in the
HO simplex-y basis from the ground-state solution represented
in HO basis. We emphasize that the large and small components
of the Dirac spinors in particular simplex block are expanded in
the simplex-y eigenfunctions of opposite eigenvalues.

Appendix B. QFAM equations in the simplex-y HO basis

B.1. External perturbation operator in the HO simplex-y basis
The matrix element of the multipole operator fix = 1/ Yi (6, ¢)
calculated in the HO basis reads:
(nzm Amg| Yy (0, )mng A'mg) = Sy, iS4k
2J+1(J—K)
4 (J +K)!

where P (cosf) denotes the associated Legendre polynomial.
Due to the selection rule m; = my; in the previous expression,
the fix operator is block diagonal in the simplex-y basis:

(nzne | Al Pe(cos 0)|n,n | A']), (B.1)

(nzny As s = il Y (0, @)lnin, A5 s = i) = (5A’—A,1< + (SA—A’,K)

2/ +1(J —K)!

o Gk e Al P(cos )i A7),

(B.2)
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For K > 0 we have:

1+6
(nyny A; s = j:z[f},+)|n A s = i) = +2 S A
Y +1( —K)!
n,n.| Al P (cos 0)|n’.n’ | Al'), B.3
| an U+I()!(zr| (17 Py ( Jngni Al (B.3)
+ _ (fi O
fﬂ( = (0 fz) (B.4)

For this particular operator the following relation holds: f; = f,,
where f; (and f,) are real and symmetric matrices.

B.2. QFAM matrices in the simplex-y basis
The single-quasiparticle states are ordered so that we first

list states with s = +i, and then states with s = —i. The
corresponding U and V matrices read:

u 0 0 —v*
U= (O u*)s V= (U 0 )7 (BS)
while the F?° and F%? matrices for the external operator f read:

20 02
F2°=<_[f°m]T ! ) F°2=(_[f%2]r ! ) (B6)

- (qulv + (quz*v)T) and f? = —(vifiut

. In the initial step of the QFAM iteration, we set the

with f20 =

T
<v*f;u>*)
matrix elements of the induced Hamiltonian to zero, i.e. (SHZO( )
SHY2(®) = 0, and the initial QFAM matrices X(w) and Y( )
mherlt the structure of the F?° and F® matrices (see Eq. (B.6)).
This structure is retained in all subsequent QFAM iterations:

X<w)=<_x9(w) "(g”), Y(w)=(_y?(w) y(g”). (87)

The induced density matrix is block diagonal:

Sp(w) = UX(@)VT + V*YT(@)UT = (‘3”1(‘“) 0 ) . (BS)

0 dp2(w)
with 8 p1(w) = — (ux(w)v! + vy’ (w)ut) and §pz(w) = — (vX(w)u
+uyT(a))vT)T. The induced single-particle Hamiltonian is also
block diagonal:
_ (sh(w) 0
Sh(w) = ( 0" shye)) - (B.9)

The pairing tensors 8x(*)(w) and 8x(~)(w) are skew symmetric:

k@) = UX()UT + VYT (w)VT

B 0 Sic1 N w)

B (— [8c1 )] 0 ) (B.10)
K Nw) = VXT(0)VT + UY*(o)UT

_ 0 81 (w)

= (_ [(SK](—)(Q))]T 0 ) (B.11)
with Sk M(w) = ux(w)u! — vy (ww! and 8k, (w) =

—vxf(w)v’ + uy*(w)ut. Consequently, the pairing field acquires
analogous form:

0 Mﬁi)(w)>
) (B.12)

() —
AT (w) = <_ I:(SA(]i)(w)jIT 0

Finally, the induced Hamiltonian elements §H*°(w) and §H%(w)
read:

0 Sh¥(w
SH*(w) = ( [H(0)]" 0( )) . SH®(w)
0 §h%2(w)
= (st 0 ) (B.13)
with:
8h*%(w) = <u*5h (@) + vishl () — ufs A (w)u
_ T
ol [Mﬁ )(a))] u) , (B.14)
8h%(w) = — <UT5h1(a))u + utshi (@) + vis A (@)
+ T
—ut [SA(l‘)(w)] u) (B.15)
Egs. (14) and (15) are reduced to the following form:
(Eu + Ey — oxp(0) + 8h20(w) + f20 = 0, (B.16)
(Ex + Ey + @)y (@) + 8h% (w) + 33 =0. (B.17)

Appendix C. Induced densities and currents in the coordinate
space

In order to calculate the matrix elements of the induced single-
particle Hamiltonian Eq. (B.9), we have to calculate the induced

densities and currents in the coordinate space. The scalar and
vector densities read:

)= Z (5/)1(60))k1¢115=+i(1‘, $)D1s=1i(T, S)

+ ) B
ki

£ Go(@)gdl _ (r.s)bp__(r.s)

Kkl
£ (8p(w));
ki

80u,s(r,

))k@;sz,i(r, $)®s——i(r, s)

ki(pg.s:—ki(r’ 5)®7,$=+i(r’ 5), (C.l)

with positive sign for vector and negative sign for scalar den-
sity. The @y _4i(r, s) are eigenvectors of the simplex-y operator
(A.13)-(A.14). Indices (k, I) and (k, l) denote summations over
large and small components of the Dirac spinor, respectively. For
both eigenvalues of the simplex-y operator, the product of wave
functions reads:

Al
(€2)

1
—ek(z, 1)@z, i) cos [(Ax —

"
®k15:i[(r! S)Pps—i(r,s) = o

where ¢y(z,r,) denotes the product of functions (A.8)-(A.9).
The sums of the matrix elements (801(w)) + (802(w)) and
(6p1(w))gg + (8p2(w))yg vanish for combinations k (k) and [ ()
with [Ay — A)] # K (|A; — A;l # K). This ensures that the
induced density in the coordinate space has the following angular
dependence: dpo(r, w) = §p(z, r., w)cos K¢, which is preserved
in all subsequent iterative steps of solving Eqs. (B.16)-(B.17).
The time-odd current in the coordinate space reads:

)= iZ(apI ()
- IZ 5,01 )kl¢”

Slod;,__i(r,s)

kl(pk 5= +1(

(1. 8)oPrs—yi(T, 5)
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+ iZ (5p2T(w))k7¢,f,s:_,-(r, $)oP;,_ . (r,s)
ki

— i) (8pa(@))g®] _ (1, $)oPisei(r,s). (€3)
Kl

The spin operator o can be decomposed in the cylindrical coor-
dinates:

o=o0.e e, —iey)+o_e (e, +iey)+ ose,, (C4)
leading to the following relation:
1
D (. )oDsi(r,s) = 7oz, TRz, T1)
x [ cos((Ax + Ar+ 1)p)es — sin((Ai + A1+ 1)p)ey (C5)

Ficos((Ax — A)p)e; ] .

The sum of the matrix elements (§p1(w)); — (8pT (@) +
(8p2(@))5 — ((szT(a)))kj vanishes for combinations of the k and I
indices with |Ax + A; + 1| # K. On the other hand, the sum of
the matrix elements (5,01(w))k7+(5,olT(w))k7—(Epz(w))k;—(szT(w))kj
vanishes for combinations of the k and I indices with |Ay — A;| #
K. Finally, the induced current can be cast into the following
form:

8j(r, w) = 8j.(r, w)e, + 8j(r, w)e + 5js(r, w)ey, (C.6)
with:

8j,(r, w) = 8j,(z, 1L, w)cos Ko, (C.7)
3jL(r,w)=28j1(z, 1L, w)cosKe, (C.8)
8jp(r, w) = 8jy(z, 11, w)sinK¢. (C.9)

Subroutine that calculates the induced densities and currents has
been implemented using low-rank approximation techniques. A
brief overview of such methods are described in Ref. [38].

We notice that the induced potentials equations (41)-(44)
depend linearly on the induced densities and currents and as
a consequence they inherit the cosK¢ or sinK¢ angular de-
pendence. Therefore, the angular integrals that appear in the
calculation of the matrix elements of the induced single-particle
Hamiltonian §h(w) can be carried out analytically thus reducing
the computational cost and improving the accuracy of the calcula-
tion. In Appendix D we show that the induced Coulomb potential
8V also inherits the cos K¢ angular dependence.

Appendix D. Induced coulomb potential

The induced potential for protons includes the direct Coulomb
field:
SpP(r',
3Ve(r, w) = € / PELLLAULD)

) (D.1)
r—r

where §pP(r, ) denotes the induced proton vector density. The
logarithmic singularity in the integrand at the point r = r’ can
be eliminated by using the identity [39]:

Aplr —1'| = ; (D.2)
[r —r'|
that together with an integration by parts, gives:
62
SVe(r, w) = 5 / Er'ir —r'|ApSpP(r, o). (D.3)

Since the induced proton density can be written as §pb(r, w) =
8pP(z, T, w)cos K¢, this angular dependence also holds for the
Laplacian:

Ar‘Spg(n Cl)) = [AZ,TL,Kspg(Za Ty, Cl))] Cos I<¢7 (D'4)

with:
1 K?

ANgrix = —0 (rJ_arL) -+ 322. (D.5)
ry r

The angular part of the integral (D.3) can be solved analytically.
We insert the following relation into Eq. (D.3):

r —7r'| =\/(rL+r’L)2+(z—z’)2 1 — acos? g (D.6)
with:

4 /
a= LN (D.7)

ST P2

Next, we substitute ¢ —¢’ = 2x and use the symmetry properties
of the integrand to reduce the integration interval. Finally, we
obtain the following integral:

/2
Ix(a) = / v/ 1 — acos? x cos (2Kx)dx.
0

We notice that K > 0 and a € [0, 1]. For the K = 0 value Eq. (D.8)
is reduced to the definition of the complete elliptic integral of the
second kind:

(D.8)

/2
Ip(a) = E(a) = / V1 — acos? xdx, (D.9)
0
while for the K = 1 value it can be written as:
2-2 2 —
h(a) = ( “) K(a) - ( ") E(a), (D.10)
3a 3a

where K(a) denotes the complete elliptic integral of the first kind:

/2 dx
K(a):/ B En—— (D.11)
o +/1—acos*x
Finally, for K > 2 the following recursive relation can be used to
calculate Ig(a):

(4K —4)2 —a) 2K —5
Ix(a) = (W) Ix—1(a) — <m> Ix_2(a). (D.12)

The entire problem of calculating the I is reduced to compu-
tation of the complete elliptic integrals E(a) and K(a) and this
can be accomplished easily by using a polynomial approximation
or any other well established numerical method. The induced
Coulomb field also inherits the cos K¢ angular dependence:

8Ve(r, w) = 6Ve(z, 1L, w)cosKe, (D.13)
with:
+0o0 +0o0

8Velz, r, w) = / dz// dr'r Gz 1\, z,1))

—00 0

XAZr,rLK(Spg(Z/, ', ). (D.14)
The Green’s function G(z', ' , z, r, ) reads:
Gz, r,z,r) = 2e2\/(rl +1 P+ (z—2)

4r 1)
X1 . D.15
K((m+rL)2+(Z—2/)2> (D13)

Appendix E. Induced pairing field

In the following sections, for a given set A C R, we use 14(+)
to denote the characteristic function of the set A, and sgn(-) to
denote the signum function. The induced pairing field in the HO
simplex-y basis takes the following form:

0 (SA(li)(w)>

(£) —
AT (w) = (_ [(M(li)(w)]T 0 (E.1)
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In this section, we give an efficient formula for calculating
6A(1i)(w) obtained from formula (23). Suppose we have N,, N;,
N1, Ny, N1, Ny € Ng and Aq, A, € Z. We will use the shorthand
k = (n;, n;, A) for triples of large component expansion of the
Dirac spinor just as we did in Appendix C. First we define:

Nz,Nr

() A1) (g g, Ag) = INoN10.m,141,51(N2) X Smod(ny14+nz,2),mod(N;,2) X

1Noﬂ[0.nr1+n 2+7‘A1HM2‘7M17A2‘ ](Nr)x

M0T22 o ppre A, =42

Ny, Nr,A1—Ag,np,0 X
blf vt (¢ - bg)TZ
Qrp/A " 3% ("72)' (a2 + b2) i

(b: —a®)”

2 +a)" "
(E.2)

where we used the shorthand: n, = n,; +n, —N, and n, = n,;{+

_ A A
Myy _Nr+7‘/‘”+‘/‘2|2 l41=42l Coefficients M"Zl 22 and M]T,;IA ,}r";z 2

are Talmy-Moshinsky brackets, and are glven m Appendlx F.
Notice that W,ffi‘”’ enjoy symmetry property: W, ,f Nr ka N,
Next, for any N,, N, € Ny, we define:

(£) Nz,Ny ()
Pan(@ =Y Wy (8 ())W. (E.3)

Shell(k)<Nmax

Shell(I')<Nmax
Similar to the selection rules governed in §pi(w) and §p;(w)
from Appendix C, one can show that the following selection

rule is fulfilled in the induced pairing tensor: (8K§i)(w)) +
Kl
(&cgi)(w))lk o< 8| A,—a,1,k- Therefore, if we rewrite (E.3) as

1
(&) Nz,Nr (x) (x)
Py, (@) = Z W3 [(8K1 (w))w + <8K1 (w))l’k’] ’

Shell(k')<Nmax
Shell(!")<Nmax
(E.4)

we see that the sum in (E.3) can be constrained by the addi-
tional selection rule: |Ay — Ay| = K. Finally, for any k; =
(nz1, ne1, A1), ka = (g2, Ny, Az), the following formula holds:

1+6
(3 Agi)(w)) — _Gx 1%
kqky 2
N N/
X § :E W Pﬁ,ﬂv,(w), (E5)

where the first summation is over all 0 < N, < n;1 + ng,
satisfying mod(N,, 2) = mod(n,; + ny, 2), and the second sum-
mation is over all 0 < N/ < nyq +n;p + AT —42) We see
that the tedious summation over all quantum numbers has been
separated in two independent parts: {k’, I'} and {N,, N,} by means

of coefficients W which can be easily pre-calculated.

X 8\A1—Az\,K

Appendix F. Talmy-Moshinsky brackets

F.1. One dimensional Talmy-Moshinsky brackets

For a given scale parameter by > 0, and for any n, € Ny, we
introduce a sequence of functions:

1 1 z 1/2)\?
¢nZ(Z)_x/7b>o\/ﬁ2”znZ!H <b0>exp( (bo)>

Vz e R, (F.1)

where H,(-) denotes nth-degree Hermite polynomial. For any
non-negative integers: n,q, n,1, N;,n, € Ny, we define one di-
mensional Talmy-Moshinsky bracket My'," as follows:

Nz1.Mz2 __
My =Tngni0,n,14n,1(Nz) X 8ny im0 N, 0, X
1 le1!n22!
X
N/ 2211122 N,!n,! (FZ)
min{nz,nz1}

)
} p Nz1 —p

Then, for any fixed n,, n,; € Ny, and z1, z; € R, it holds that:

400 +00
-3 e (252 (252).
Nz,ng \/’ z \/i

=0n;=0

p=max{0,n;1—N;

¢nzl (z4 ¢n22 22)

(F.3)

Previous equation has been numerically verified for various com-
binations of n,1,n,, € N, z1,z2 € R. Notice that due to the
constraints on N, and n, in (F.2), infinite series in (F.3) reduces
to finite sum. Also notice that from Eq. (F.3), one can easily see
the following symmetry:

M"zz«,"zl — ( 1)nZM"z1 ”22. (F.4)

Nz,nz Nz,nz
F.2. Two dimensional Talmy-Moshinsky brackets

Let us assume that by > 0 is a scale parameter, and for any
n, € No, m € Z, we define a sequence of functions:

1 2n,! ol \"™ <|,,|2)
= [—=T (& pmf ==
Prem(P) bo{ (ny + [m|)! (bo ) "\ bl

1|p|2) eme
xexp|—=— . (F.5)
( 2 b% 2
o = (Iplcose, |p|sing) € R? where L%(-) denotes associ-

ated Laguerre polynomial. For any n;1, n., Nr,n, € Np and
my, my, M, m € Z, we define two dimensional Talmy-Moshinky
bracket My as follows:

M”rlvmlv”rZsmz —
Nr .M.y, m Noﬂ[o-nr1+“r2+

1

Imy I+ 1my |~ M| —|m] ] (N;)x
2

Zﬂ[f

m m
x(M—%)x

Smy+my M4m X 2n,y+1my|4+2n,-+ma |, 2Ny +IM|+2n; +Im| X
(_ 1 )Nr+nr+ﬂr1+nr2

«/22Nr+|M\+2"r+|m‘
. \/ M (s + Ima Dl (s + Im )t

2"r1+|m1\J2r2”rz+lmz\ +2"r1+|m1‘;2”r2+|m2‘]

Ne{(N; + M)y (e + |m])!

Z (_1)t+r+s ( nr ) ( Nr )
pqrs/)\PQRS

0=p.q,r,s<nr
0<P,Q,R.S<Nr
0<t<|m|
0<T<|M|
(€1),(C2),(C3),(C4)

o <|1¥|) (ITI)’

where the summation over p,q,r,s,P,Q,R,S,t,T € Ny, is
performed with four additional constraints:

(E.6)
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C):p+q+r+s=n;

(C2) :P+Q+R+S=N;

(C3) = (2np1 +|my]) — (2nr2 + [ma])+|m| + M| = 2(p+P) — 2(q +
Q)+ 2(t+T)

(C4) : my = (r+R)— (s +S) + sgn(m)t + sgn(M)T.

In (F.6), we use standard notation for the multinomial coefficients.
Then, for any n,q, n;, € Ng and my, m, € Z, there holds:

+oo oo 400 400

¢nr],m](pl)¢ﬂr2 my pZ)_ Z Z Z Z

M=—00 Ny=0 m=—00 n; =l

¢NT,M <p1:/i_ip2> ¢’nr,m (%) 5 (F.7)

for all p,, p, € R2. Previous equation has also been proven correct
and numerically verified. Again, constraints on N;, n, € Ny and
M, m € Z in (F.6) result in truncation of the infinite series in (F.7)
to finite sum. Notice that from (F.7), one can easily confirm the
following symmetry properties:

”r1 my,npp,my
Ny,M,ny,m

Np2,Mp,Npp, My __ mp g1r1,M1,02,M
MNr,M,ﬂr,m - ( 1) MN,— M,ny,m s (F8)
Npp,—mMq,Nyp,—My Np1,Mq,N0pp,mMy
N Moem - =My Mem (F.9)
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