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Shape coexistence in the relativistic Hartree-Bogoliubov approach
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The phenomenon of shape coexistence is studied in the relativistic Hartree-Bogoliubov framework. Standard
relativistic mean-field effective interactions do not reproduce the ground-state properties of neutron-deficient
Pt-Hg-Pb isotopes. It is shown that, in order to consistently describe binding energies, radii, and ground-state
deformations of these nuclei, effective interactions have to be constructed, which take into account the sizes of

spherical shell gaps.
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I. INTRODUCTION

Nuclear structure models based on the relativistic mean-
field approximation have been successfully employed in the
description of ground-state properties of nuclei all over the
periodic table. By adjusting a minimal set of model param-
eters, meson masses and coupling constants, to binding en-
ergies and radii of few spherical closed shell nuclei, it has
been possible to perform detailed structure calculation of a
large number of spherical and deformed nuclei [1]. More
recently, the relativistic mean-field framework has also been
used in studies of nuclear structure phenomena in exotic nu-
clei far from the valley of 8 stability and of the physics of
the drip lines. In particular, the relativistic Hartree-
Bogoliubov model encloses a unified description of mean-
field and pairing correlations, and we have used this model to
calculate ground-state properties of exotic nuclei with ex-
treme isospin values: the halo phenomenon in light nuclei
[2], properties of light neutron-rich nuclei [3], the reduction
of the effective single-nucleon spin-orbit potential in nuclei
close to the drip lines [4], properties of neutron-rich Ni and
Sn isotopes [5], the location of the proton drip line from Z
=31 to Z=73 and the phenomenon of ground-state proton
radioactivity [6—8].

On the other hand, it is still an open problem how far
from stability can one extrapolate the predictions of standard
relativistic mean-field effective interactions. The question is
how well can effective interactions that are adjusted to global
properties of spherical closed shell nuclei, describe the struc-
ture of nuclei far from stability, or predict new phenomena in
nuclei with extreme isospin values. It is well known, for
example, that various nonrelativistic and relativistic mean-
field models differ significantly in the prediction of the exact
location of the neutron drip line. This is, of course, related to
different isovector properties of various effective interac-
tions. In general, one cannot expect standard mean-field
models to accurately describe the properties, which crucially
depend on the proton and neutron single-particle spectra. An
important example is the suppression of shell effects and the
related phenomenon of deformation and shape coexistence.

A number of theoretical analyses of shell quenching and
shape coexistence phenomena have been performed in the
relativistic mean-field framework. In Ref. [9] we have stud-
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ied the dissolution of the spherical N=28 shell gap in
neutron-rich nuclei. By performing constrained relativistic
Hartree-Bogoliubov calculations, we have shown how the
strong reduction of the gap between the neutron 1f5, orbital
and the 2psp, 2p ), levels results in deformed ground states
and shape coexistence in neutron-rich Si, S, and Ar isotopes,
in excellent agreement with experimental data. On the
proton-rich side, the relativistic mean-field model has been
employed in studies of shape coexistence in neutron-
deficient Pt, Hg, and Pb isotopes [10—13]. However, as has
been pointed out in Ref. [14], the results of these studies
were at variance with experimental data, especially their pre-
dictions of deformed ground states in Pb isotopes, and of
prolate and superdeformed ground states in Hg isotopes. In a
very recent analysis of the Z=82 shell closure in neutron-
deficient Pb isotopes [15], relativistic mean-field calculations
again predicted deformed ground states in some Pb isotopes,
in contradiction with experiment.

In this work we employ the relativistic Hartree-
Bogoliubov model in the analysis of shape coexistence phe-
nomena in neutron-deficient Hg and Pb isotopes. Although
standard relativistic mean-field forces do not reproduce the
experimental data on ground-state properties, it is indeed
possible to construct effective interactions that consistently
describe binding energies, radii, and quadrupole deforma-
tions of neutron-deficient nuclei in this mass region. In addi-
tion to bulk properties, also the sizes of spherical gaps in the
single-nucleon spectra have to be taken into account when
adjusting the parameters of such an effective interaction. The
spherical magic and semimagic gaps determine the relative
excitation energies of coexisting minima based on different
intruder configurations.

Section II contains an outline of the relativistic Hartree-
Bogoliubov model. The problem of the relativistic effective
interaction and shape coexistence in neutron-deficient Hg
and Pb isotopes is discussed in Sec. III. The results are sum-
marized in Sec. IV.

II. OUTLINE OF THE RELATIVISTIC HARTREE-
BOGOLIUBOV MODEL

In the relativistic framework a nucleus is described as a
collection of nucleons that interact by the exchange of effec-
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tive mesons. The lowest order of the quantum field theory is
the mean-field approximation: the meson field operators are
replaced by their expectation values. The sources of the me-
son fields are defined by the nucleon densities and currents.
The nucleons move independently in the mean-field potential
that originates from the nucleon-nucleon interaction. The
ground state of a nucleus corresponds to the stationary self-
consistent solution of the coupled system of Dirac and Klein-
Gordon equations

(1—73)
—ia-V+B(m+goo')+gww0+gp73pg+e 3 Sy i
=&, (1)

[_ A +m(2,]a'(r) = _gops(r) _g20'2(l‘) —g30'3(1‘), (2)

[—A+m)]w’(r)=g,p,(r), (3)
[—A+m]p"(r)=g,ps(r). (4)
—AA(r)=ep,(r). (5)

The single-nucleon dynamics is described by the Dirac equa-
tion (1). o, w, and p are the meson fields, and A denotes the
electromagnetic potential. g,, g,, and g, are the corre-
sponding coupling constants for the mesons to the nucleon.
g, and g3 are the coefficients of the nonlinear o terms,
which introduce an effective density dependence in the po-
tential. Due to charge conservation, only the 3rd component
of the isovector p meson contributes. The source terms in
Egs. (2)—(5) are sums of bilinear products of baryon ampli-
tudes with positive energy (no-sea approximation).

In addition to the self-consistent mean-field potential,
pairing correlations have to be included in order to describe
ground-state properties of open-shell nuclei. For spherical
and deformed nuclei not too far from the stability line, pair-
ing is often treated phenomenologically in the simple BCS
approximation [1]. However, the BCS model presents only a
poor approximation for exotic nuclei far from the valley of 8
stability [16]. The structure of weakly bound nuclei necessi-
tates a unified and self-consistent treatment of mean-field
and pairing correlations. In particular, the relativistic
Hartree-Bogoliubov (RHB) model represents a relativistic
extension of the Hartree-Fock-Bogoliubov framework. In the
RHB model the ground state of a nucleus |®) is represented
by the product of independent single-quasiparticle states.
These states are eigenvectors of the generalized single-
nucleon Hamiltonian that contains two average potentials:

the self-consistent mean-field I', which encloses all the long

range particle-hole (ph) correlations, and a pairing field A,
which sums up the particle-particle (pp) correlations. In the
Hartree approximation for the self-consistent mean field, the
relativistic Hartree-Bogoliubov equations read

Uk(l'))_ (Uk(l'))
v v )

— A*

—hp+m+\
(6)
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where /i, is the single-nucleon Dirac Hamiltonian (1), and m
is the nucleon mass. The chemical potential A has to be
determined by the particle number subsidiary condition in
order that the expectation value of the particle number op-

erator in the ground state equals the number of nucleons. A
is the pairing field. The column vectors denote the quasipar-
ticle spinors and E, are the quasiparticle energies. In most
applications of the RHB model a phenomenological pairing
interaction has been used: the pairing part of the Gogny force

VPr(1.2)= 212 e lmrwl (W 4 g po— . pT
i=1,

—M;P°P7), (7)

with the set DIS [17] for the parameters u;, W;, B;, H;,
and M; (i=1,2).

The RHB equations are solved self-consistently, with po-
tentials determined in the mean-field approximation from so-
lutions of Klein-Gordon equations for the meson fields. The
Dirac-Hartree-Bogoliubov equations and the equations for
the meson fields are solved by expanding the nucleon spinors
U,(r) and V(r), and the meson fields in terms of the eigen-
functions of a deformed axially symmetric oscillator poten-
tial. A detailed description of the relativistic Hartree-
Bogoliubov model for deformed nuclei can be found in Ref.

[7].

II1. SHAPE COEXISTENCE IN NEUTRON-DEFICIENT Hg
AND Pb ISOTOPES

The light isotopes of Hg and Pb exhibit a variety of co-
existing shapes [18,19]. A systematic analysis of shape coex-
istence effects at /"=0" in these nuclei has been performed
by Nazarewicz [20], using the shell correction approach with
the axial, reflection asymmetric Woods-Saxon model. A com-
mon feature is the competition of low-lying prolate and ob-
late shapes. The ground states of Hg isotopes are weakly
oblate deformed (two-proton hole states). In '**Hg the oblate
ground-state band is crossed by the intruding deformed band,
which corresponds to a prolate minimum (4p-6h proton ex-
citations into the hg, and f-, orbits). The excitation energy
of the prolate band is lowered with decreasing neutron num-
ber, and reaches a minimum in '8?Hg. For lighter Hg iso-
topes the excitation energy of the prolate minimum in-
creases, and the oblate ground state evolves toward a
spherical shape. Experimental data on energy spectra and
charge radii show that the ground states of Pb isotopes are
spherical, but both oblate (2p-2h proton excitations) and
prolate (4 p-4h proton excitations) low-lying minima are ob-
served for N<<110. A beautiful example of oblate and prolate
minima at almost identical excitation energies is found in
186pp [21]. A recent review of experimental data on intruder
states in neutron deficient Hg, Pb, and Po nuclei can be
found in Ref. [19].

In Ref. [15] Bender et al. have used nonrelativistic and
relativistic self-consistent mean-field models to analyze re-
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cent experimental data that seem to indicate a strong reduc-
tion of the Z= 82 shell gap in neutron-deficient Pb isotopes.
The systematics of differences between two-proton separa-
tion energies in adjacent even-even nuclei with the same
neutron number (two-proton shell gaps) [22], O, values and
a reduced widths [23] suggest a lessened magicity of the Z
=82 shell when neutrons are midway between N=82 and
N=126. However, in Ref. [15] it has been shown that the
systematics of two-proton shell gaps can be described quan-
titatively in terms of deformed ground states of Hg and Po
isotopes. The experimental Q, values also reflect deforma-
tion effects, and the systematics of a-decay hindrance factors
is consistent with the stability of the Z=82 shell gap.

The structure of coexisting minima in neutron-deficient
Hg and Pb nuclei has also been analyzed in the relativistic
mean-field framework. In Refs. [10,11] the relativistic mean-
field (RMF) model, with the NL1 [24] effective interaction,
was used to calculate prolate, oblate, and spherical solutions
for neutron-deficient Pt, Hg, and Pb isotopes. Pairing was
treated in the BCS approximation with constant pairing gaps.
Although the NLI effective force strongly overbinds these
nuclei, i.e., the calculated binding energies are 10—12 MeV
larger than the empirical ones, nevertheless detailed predic-
tions were made for ground-state deformations and relative
positions of coexisting minima, including the excitation en-
ergies of superdeformed states. Most of these results, as
pointed out in Ref. [14], contradict well established experi-
mental data (wrong sign of the ground-state deformations for
Hg isotopes, calculated deformed ground states for some Pb
nuclei, superdeformed ground states, etc.). The calculations
were repeated in Ref. [12] with the NL-SH effective interac-
tion [25], and the values of the pairing gaps were varied by
as much as 50%, but the results remained essentially the
same. Eventually, deformed RMF+BCS calculations with
the NL1 effective interaction reproduced the experimental
ground-state oblate deformations of '8~'88Hg [13]. The dif-
ferences of the intrinsic energies of the lowest prolate and
oblate states were also in agreement with experimental data.
The gap parameters were not kept constant in each nucleus,
rather they were determined in a self-consistent way from a
monopole force with constant strength parameter G. This
leads to deformation dependent pairing gaps. In particular,
for the oblate ground states the proton pairing gaps vanish,
while the neutron pairing gap is a factor 2 larger than the
average value 12/ \/Z . Since the calculated ground-state prop-
erties are very sensitive to both pairing and deformation ef-
fects, it was argued [13] that a unified and self-consistent
framework, i.e., the relativistic Hartree-Bogoliubov model,
might be more appropriate for the study of neutron-deficient
nuclei in this mass region. It is not only the treatment of
pairing that makes it difficult to assess the conclusions of
Ref. [13], but also the large deviations of the calculated bind-
ing energies from the experimental values. The relative po-
sitions of prolate and oblate minima differ by only
~0.5 MeV in most cases, while the calculated binding en-
ergies are more than 10 MeV too large. This is, of course,
caused by the well known fact that the parameter set NL1
fails to reproduce nuclear binding energies far from stability.

In this work we calculate ground-state properties of
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FIG. 1. Binding energy curves of even-A Pb isotopes as func-
tions of the quadrupole deformation. The curves correspond to RHB
model solutions with constrained quadrupole deformation. The ef-
fective interaction is NL3 + Gogny D1S.

neutron-deficient Hg and Pb nuclei in the relativistic Hartree-
Bogoliubov framework. In most applications of the RHB
model we have used the NL3 effective interaction [26] in the
particle-hole channel, and pairing correlations were de-
scribed by the pairing part of the finite range Gogny interac-
tion D1S [17]. This force has been very carefully adjusted to
pairing properties of finite nuclei all over the periodic table.
In particular, the basic advantage of the Gogny force is the
finite range, which automatically guarantees a proper cutoff
in momentum space. Properties calculated with NL3 indicate
that this is probably the best effective relativistic interaction
so far, both for nuclei at and away from the line of S stabil-
ity. A recent systematic theoretical study of ground-state
properties of more than 1300 even-even isotopes has shown
very good agreement with experimental data [27]. However,
in the analysis of the Z =82 shell closure in neutron-deficient
Pb isotopes [15], it was noted that RMF+ BCS calculations
with the NL3 interaction predict deformed ground states for
several Pb nuclei.

In Fig. 1 we display the calculated binding energy curves
of even-A '-198pp isotopes as functions of the quadrupole
deformation. The curves correspond to axially deformed
RHB model solutions with constrained quadrupole deforma-
tion. The effective interaction is NL3 4+ Gogny DIS. '84Pb
and '8Pb have spherical ground states, and we find low-
lying oblate and prolate minima, in qualitative agreement
with experimental data [19]. With increasing neutron num-
ber, however, the oblate minimum is lowered in energy and
the nuclei '®8~1%Pb have oblate ground states. This result, of
course, contradicts experimental data. Only from A =196 the
calculated Pb ground states become again spherical, but both
for °Pb and '?®Pb the potential curves display wide and flat
minima on the oblate side.
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FIG. 2. Same as in Fig. 1, but for neutron-deficient Hg isotopes.

The RHB NL3+DI1S binding energy curves of even-A
176-1%Hg nuclei are shown in Fig. 2. Model calculations
predict a spherical ground state for '"®Hg and an almost
spherical, but slightly oblate ground state for '"*Hg. With
increasing neutron number the spherical state evolves into an
oblate minimum, and a pronounced minimum develops on
the prolate side. The positions of the minima, 8,~ —0.15 on
the oblate side, and 3,~0.3 for the prolate minimum, agree
well with the values calculated by Nazarewicz [20] using the
Nilsson-Strutinsky approach. The problem is, however, the
relative excitation energies. For the NL3 +DI1S effective in-
teraction the prolate minimum is the ground state for
180.182,184.186o The calculated ground states are oblate for
188.19Hg  These results are at variance with experimental
data: all Hg isotopes with A=178 have oblate ground states,
the prolate minimum is estimated at 300—800 keV above the
ground state [19]. If the NL1 effective interaction is used in
the ph channel, we find that the oblate minima are always
lower, and this is similar to the result obtained with the
RMF+ BCS calculation of Ref. [13]. The calculated binding
energies, however, are on the average more than 10 MeV
larger than the experimental ones.

Is it then possible to construct a relativistic effective in-
teraction, which will consistently describe the ground-state
properties of neutron-rich nuclei in this mass region? The
motivation, of course, is not just to reproduce the experimen-
tal data. The real question is whether effective mean-field
interactions can be accurately extrapolated from stable nuclei
to isotopes with extreme isospin values and to the drip lines.
In the particular example considered in the present study, the
quantitative description of coexisting spherical, oblate, and
prolate minima is, of course, beyond the mean-field ap-
proach. A detailed analysis of coexisting shapes necessitates
the use of models, which can account for configuration mix-
ing effects. However, a consistent description of ground
states should be possible in the relativistic mean-field frame-
work, even if their properties are affected by correlations not
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FIG. 3. Proton single-particle states in 2°Pb. The experimental
levels in the first column are from Ref. [32]. The levels in the
second, third, and fourth columns are calculated in the RHB model
with the effective interactions NL1, NL-SC, and NL3, respectively.

explicitly included in the model. In a series of recent papers
(see, for example, Refs. [28,29]), Furnstahl and Serot have
argued that relativistic mean-field models should be consid-
ered as approximate implementations of the Kohn-Sham
density functional theory, with local scalar and vector fields
appearing in the role of relativistic Kohn-Sham potentials.
The mean-field models approximate the exact energy func-
tional of the ground-state density of a many-nucleon system,
which includes all higher-order correlations, using powers of
auxiliary meson fields or nucleon densities.

In the recent analysis of the phenomenon of shape coex-
istence within the nonrelativistic self-consistent Hartree-
Fock method and the nuclear shell model [30], it was em-
phasized that the sizes of spherical magic and semimagic
gaps in the single-nucleon spectrum determine the relative
positions of many-particle many-hole intruder configurations
with respect to the ground state. The spherical gaps are the
main factor that determines the relative excitation energies of
coexisting minima based on different intruder configurations.
The relative distance between the individual shells also de-
termines the effective strength of the quadrupole field [31].
The spherical proton Z= 82 shell closure is illustrated in Fig.
3, where we display the last four occupied and the first three
unoccupied proton single-particle states in 2**Pb. The experi-
mental levels in the first column are from Ref. [32]. The
levels in the second, third, and fourth columns are calculated
in the RHB model with the effective interactions NLI1,
NL-SC (Shape Coexistence), and NL3, respectively. Com-
paring the magic gaps E(hg,) — E(s,), one notices that the
value calculated with the NL3 effective interaction is much
smaller than the empirical gap. This explains why several
neutron-deficient Pb isotopes, calculated with the NL3 inter-
action, have deformed ground states. The magic gap in the
proton spectrum calculated with NL1, on the other hand, is
somewhat larger than the empirical value. The spectrum of
proton occupied states is, however, more bound and the total
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binding energies calculated with NL1 do not compare well
with the experimental masses of lighter Pb isotopes. We have
tried, therefore, to construct a new effective interaction
which, on one hand, preserves the good properties of NL3
(binding energies, charge radii, isotopic shifts), but at the
same time takes into account the gap between the last occu-
pied and the first unoccupied major spherical shells. The re-
sult is shown in the third column NL-SC of Fig. 3. There are
several comments that should be made at this point.

First, the NL-SC interaction has been constructed by start-
ing from the standard NL1 parametrization, and changing the
parameters towards NL3. While the masses and coupling
constants of the o and w mesons are those of NLI1, the
parameters of the nonlinear o terms and, especially impor-
tant for the binding energies of isotopes with small N/Z, the
coupling constant of the p meson, are very close to the NL3
parameter set. It should also be emphasized that, although in
the construction of the NL-SC interaction we paid particular
attention to the Pt-Hg-Pb region, the parameters were, as
usual, checked to reproduce a set of ground-state data of
about ten spherical nuclei from different mass regions. For
nuclei with A>100 the calculated x> per datum is compa-
rable to the one obtained with the standard NL3 interaction.
The ground-state properties of light nuclei calculated with
NL-SC, on the other hand, are not as good as with NL3 and,
therefore, we do not regard NL-SC as a new general effec-
tive relativistic mean-field interaction. NL-SC has been spe-
cifically tailored to illustrate the problem considered in the
present analysis.

Second, the construction of the NL-SC interaction goes
beyond the standard mean-field approach, in the sense that
the parameters of the mean-field functional depend not only
on the ground-state density, i.e., on the occupied states, but
implicitly also on the relative position of the unoccupied
spherical shells. In order to be consistent with the mean-field
approach, the calculated spherical gap should be larger than
the empirical value. It is well known that the coupling of
single-particle states to collective vibrations increases the ef-
fective mass in the vicinity of the Fermi level, and this effect
decreases the gap between occupied and unoccupied shells.
We have recently shown how to include the particle-
vibration coupling in the self-consistent relativistic mean-
field framework [33], but the present analysis does not con-
sider this effect. In Ref. [30] it was emphasized that the
proper treatment of pairing and zero-point correlations, vi-
brational and rotational, is crucial for detailed predictions of
shape coexistence effects. And while we treat pairing and
mean-field correlations in the unified Hartree-Bogoliubov
framework, no attempt is made to explicitly include zero-
point energy corrections. Since in the analysis of Ref. [30] it
was shown that the sum of rotational and vibrational zero-
point energy corrections is approximately constant as func-
tion of deformation for a given nucleus, we assume that these
corrections can be absorbed in the parameters of an effective
interaction adjusted to reproduce binding energies, at least in
a limited mass region. In any case, since the effective inter-
action NL-SC is adjusted to reproduce the spherical proton
shell gap at Z=82, one cannot really expect that it accurately
describes the ground-state shapes of nuclei in other (Z,N)
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FIG. 4. Binding energies of even-A Hg isotopes calculated in
the RHB model with the mean-field effective interactions NLI,
NL3, and NL-SC, and with the Gogny D1S interaction in the pair-
ing channel. The theoretical binding energies are compared with the
empirical values from Ref. [34].

regions characterized by shape coexistence.

In Figs. 4 and 5 we display the binding energies per
nucleon of even-A Hg and Pb isotopes, respectively, calcu-
lated in the RHB model with the mean-field effective inter-
actions NL1, NL3, and NL-SC, and with the Gogny DIS
interaction in the pairing channel. The theoretical binding
energies are compared with the empirical values from Ref.
[34]. Both the NL3 and the NL-SC interactions reproduce in
detail the mass dependence of the binding energies of Pb
isotopes, while the NL1 interaction strongly overbinds the
nuclei below 2°®Pb. The reason is the much larger value of
the p meson coupling constant. Essentially identical binding
energies are calculated with all three forces for nuclei above
208ph, A similar effect is observed for the Hg isotopes in Fig.
4. While NL3 and NL-SC reproduce much better the empiri-
cal data for the neutron-deficient Hg isotopes, comparable
results are obtained with all three interactions for A=100.

A remarkable success of relativistic mean-field models
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FIG. 5. Same as in Fig. 4, but for Pb isotopes.
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FIG. 6. Charge isotope shifts in even-A Pb isotopes. The results
of RHB calculations with the NL1, NL3, and NL-SC effective in-
teractions, and with the Gogny D1S interaction in the pairing chan-
nel, are compared with experimental data from Ref. [36].

was the realization that, because of the intrinsic isospin de-
pendence of the effective single-nucleon spin-orbit potential,
they naturally reproduce the anomalous charge isotope shifts
[35]. The well known example of the anomalous kink in the
isotope shifts of Pb isotopes is shown in Fig. 6. The results of
RHB calculations with the NL1, NL3, and NL-SC effective
interactions, and with the Gogny D1S interaction in the pair-
ing channel, are compared with experimental data from Ref.
[36]. While all three forces reproduce the general trend of
isotope shifts and the kink at 2°*Pb, this effect is more pro-
nounced for NL1 and NL3. The experimental data are best
reproduced by the NL-SC interaction. The RHB theoretical
values for the charge isotope shifts of even-A Hg isotopes
are compared with the experimental data [36] in Fig. 7. The
large discrepancy between data and the values calculated
with NL3 for A <188, simply reflects the fact that this inter-
action predicts the wrong sign for the ground-state deforma-
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FIG. 7. The RHB theoretical values for the charge isotope shifts

in even-A Hg isotopes, compared with experimental data from Ref.
[36].
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FIG. 8. The difference between binding energies of prolate and
oblate states in even-A Hg isotopes. The results of RHB calcula-
tions with the NL1, NL3, and NL-SC effective interactions, and
with the Gogny DI1S interaction in the pairing channel, are com-
pared with the empirical data from Ref. [37].

tions of neutron-deficient Hg nuclei. The interactions NLI1
and NL-SC reproduce the experimental data, although the
agreement is not as good as in the case of Pb isotopes.

In Fig. 8 we plot the differences between the binding en-
ergies of prolate and oblate minima in even-A '80-!8Hg iso-
topes. The values calculated with the NL1, NL3, and NL-SC
effective interactions are shown in comparison with the em-
pirical data [37]. As it was already shown in Fig. 2, prolate
ground states are calculated with the NL3 interaction. The
NL1 and NL-SC interactions, on the other hand, reproduce
the relative positions of the prolate and oblate minima. One
has to keep in mind, however, that the total binding energies
calculated with NL1 are, on the average, more than 10 MeV
too large. The RHB model with the NL-SC interaction in the
ph channel and with the Gogny DI1S interaction in the pp
channel, provides a consistent description for the ground-
state properties of neutron-deficient nuclei in the Pt-Hg-Pb
region (binding energies, radii, ground-state deformations).
We should emphasize that NL-SC was not adjusted to repro-
duce the relative excitation energies of the prolate minima in
Hg nuclei. However, the fact that the calculated relative po-
sitions of prolate and oblate minima agree with the empirical
values, might indicate that configuration mixing effects are
not very important in these nuclei.

IV. CONCLUSIONS

This work presents an analysis of ground-state properties
of neutron-deficient Hg and Pb isotopes in the framework of
the RHB model. In the last couple of years this model has
been very successfully applied in the description of nuclear
structure phenomena in medium-heavy and heavy exotic nu-
clei far from the valley of B stability and of the physics of
the drip lines. It is still very much an open problem, how-
ever, how far from stability one can apply relativistic effec-
tive interactions that have been adjusted to global properties
of a small number of spherical closed shell nuclei. Can these
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interactions accurately describe experimentally known prop-
erties and predict new structure phenomena in exotic nuclei
far from stability?

One of the testing grounds of nuclear structure models is
their ability to describe shape coexistence phenomena in soft
nuclei. In the present study, in particular, we have analyzed
the results of relativistic mean-field calculations in the region
of neutron deficient Pt-Hg-Pb nuclei. Standard relativistic in-
teractions, adjusted to ground-state properties of stable nu-
clei, do not reproduce the empirical ground-state shapes of
neutron-deficient nuclei in this mass region. We have shown,
however, that effective interactions can be constructed,
which consistently describe binding energies, charge radii,
ground-state quadrupole deformations and, at least qualita-
tively, the relative positions of coexisting minima in Hg and
Pb isotopic chains. In adjusting the parameters of such an
interaction, in addition to the usual experimental data on
ground states of stable nuclei, also the sizes of spherical gaps
in the single-nucleon spectra have to be taken into account.
The spherical magic and semimagic gaps determine the rela-
tive excitation energies of coexisting minima based on dif-
ferent intruder configurations.

PHYSICAL REVIEW C 65 054320

Although a quantitative analysis of shape coexistence
phenomena goes beyond the mean-field approach, a consis-
tent description of ground states is possible in the relativistic
mean-field framework. We have shown that the RHB model
with the NL-SC interaction in the ph channel, adjusted to the
Z=282 proton shell closure in 2%®Pb, and with the Gogny
DIS interaction in the pp channel, reproduces in detail the
empirical ground-state properties of neutron-deficient Hg
and Pb nuclei.

The results of the present analysis suggest that, when con-
structing effective mean-field interactions to be used in re-
gions of exotic nuclei far from stability, not only bulk prop-
erties of spherical nuclei, but also magic and semimagic gaps
in the single nucleon spectra must be taken into account.
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