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Abstract. Nucleon localization and formation of clusters in nucleonic matter and

finite nuclei are explored in a framework based on nuclear energy density functionals.

The liquid-cluster transition is investigated and different measures of localization are

discussed. The formation and evolution of α-clusters in excited states of both N = Z

and neutron-rich nuclei are analyzed. Effects of the spin-orbit coupling are discussed

in relation to the confining potential.
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Localization and clustering in atomic nuclei 2

1. Introduction

Localization of strongly interacting matter (baryons) and correlations that lead to

formation of cluster structures in nucleonic matter, stellar matter, and finite nuclei

is a topic at the forefront of experimental and theoretical research in nuclear physics

and in astrophysical modelling [1, 2, 3, 4, 5, 6, 7]. The most simple system, infinite

nuclear matter, consists of protons and neutrons only, and does not take into account

electromagnetic interactions. At equilibrium (saturation) density it is a quantum

liquid, however in dilute symmetric and asymmetric nuclear matter correlations induce

formation of nucleon clusters. Matter in compact stellar objects, e.g. neutron stars,

is characterized by the interplay of strong and electromagnetic interactions between

the constituent hadrons and leptons, that leads to the formation of various phases

of inhomogeneous matter, including cluster structures and the nuclear “pasta” phase

[8, 9, 10] with neutrons and protons arranged in a variety of complex geometrical

structures, e.g. cylindrical and planar, resembling different types of pasta. Finite nuclei,

especially relatively light systems, exhibit a coexistence of the nucleonic liquid phase

and nucleon clusters, predominantly 4He nuclei (α-particles).

Clustering phenomena present a unique characteristic of nuclear structure and

dynamics from light even-even systems with equal number of protons and neutrons to

heavy and superheavy elements, and from stable nuclei to exotic neutron-rich systems

far from the valley of β-stability. Some of the earliest models of nuclear structure

were, in fact, formulated in terms of aggregates of nucleon clusters [11, 12, 13, 14].

Later it was suggested that although nucleonic matter in nuclei at low energies behaves

like a quantum liquid, cluster structures should be observed as excited states close

to the corresponding threshold energy for cluster emission [15, 16]. Closeness to the

continuum and geometric shape transitions (intrinsic deformations) in light nuclei favour

the formation of clusters. Their origin, however, lies in the effective nuclear interaction

[17]. Very recently it has been shown, using lattice effective field theory, that in light

even-even nuclei with equal numbers of protons and neutrons, a first-order transition at

zero temperature occurs from a Bose-condensed gas of α-particles to a nuclear liquid [18].

The transition is determined by the strength of the α − α interaction, which depends

on the strength and locality of the nucleon-nucleon interactions. In an earlier study

based on nuclear energy density functionals [19], we demonstrated that conditions for

nucleon localization and formation of clusters can be related to the depth of the effective

potential that confines protons and neutrons in a nucleus. To gain a full understanding

of the mechanism of cluster formation, a consistent theoretical framework will have

to be developed in the future that encompasses both cluster and quantum liquid-drop

aspects, taking into account the principal characteristics of nuclei as finite, self-bound

and open quantum systems: a relatively small number of constituent particles that

self-consistently generate the confining potential, geometric shape transitions, surface

effects, and coupling to the continuum.
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Localization and clustering in atomic nuclei 3

2. Localization and clustering in nucleonic matter

Neutrons and protons in finite nuclei and extended nucleonic matter exhibit several

phases. Symmetric nuclear matter, in particular, is an idealised infinite and

homogeneous medium of equal number of structureless protons and neutrons interacting

by low-energy nuclear forces, and no Coulomb force. At equilibrium nuclear matter

behaves like a quantum (Fermi) liquid characterised by a saturation density of ρ0 ≈ 0.16

nucleon/fm3 and binding energy EB ≈ 16 MeV/nucleon. The quantum liquid nature

of nuclei and nuclear matter was discussed by B. Mottelson[20], who used a previously

introduced quantality parameter [21]:

ΛMot=̂
~
2

mr̄2|V0|
, (1)

The quantality ΛMot is defined as the ratio of the zero-point kinetic energy of the

confined particle to its potential energy. The kinetic energy ~
2/mr̄2 corresponds to

the momentum p = ~/r̄, and the reduced mass m/2. The equilibrium inter-particle

distance is r̄, and |V0| denotes the depth of the potential. The transition between a

solid phase (small kinetic energy compared to the potential at equlibrium) and a liquid

(relatively large kinetic energy in comparison to the depth of the potential) occurs for

ΛMot ≃ 0.1. For small ΛMot the inter-particle interaction dominates and the equilibrium

state of the many-body system will be a configuration in which each particle is localized

with respect to its neighbours, whereas for ΛMot > 0.1 the ground state is a quantum

liquid in which the individual particles are delocalized and the low-energy excitations

(quasi-particles) have infinite mean free path [22]. In the case of nuclear matter r̄ is of

the order of 1 fm, the strength of the bare nucleon-nucleon interaction |V0| ∼ 100 MeV,

mc2 ≃ 940 MeV is the nucleon mass and, therefore, ΛMot ≃ 0.4 is a characteristic value

for the nuclear quantum liquid phase.

At subsaturation densities correlations in strongly interacting matter lead to

clustering phenomena [23] and, eventually, to a gas phase with nucleons and light

clusters. As a result of strong correlations bound states are formed at low density and,

when nucleonic bound states can be considered as bosons, that is, when formed from an

even number of nucleons, Bose-Einstein condensation may occur at low temperatures

in nuclear matter. In the spin singlet (S = 0) channel the interaction is not attractive

enough to form a bound state. A bound proton-neutron pair, the deuteron, materializes

in the triplet (S = 1) channel. However, as shown in Ref. [24], in the low-density limit

the transition to triplet pairing does not take place because four-nucleon correlations

dominate. In chemical equilibrium, at low temperatures in the low-density limit nuclear

matter is characterised by condensation of α-particles (bound states of two protons and

two neutrons) that are much more strongly bound than deuterons. The formation of

well defined clusters is predicted at densities well below the saturation point. With

increasing density clusters dissolve because of a reduction of their binding caused by the

Pauli blocking that leads to the Mott effect for vanishing binding [25, 26].
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Localization and clustering in atomic nuclei 4

3. Liquid-cluster transition in finite nuclei

When temperature decreases and density increases, a system of particles interacting

through a short-range force undergoes a transition to a quantum liquid state [27].

Quantum effects become important when the typical dispersion of the constituent

particles, that is, the thermal de Broglie wavelength of a particle λ = h/p ≃ ~/
√
2mkT

becomes comparable to the average inter-particle spacing. In a transition to a

quantum liquid state the constituent particles are delocalized and the system reaches a

homogeneous density (mean-field phase). Both the bosonic/fermionic nature of a many-

body system and the inter-particle interaction determine characteristic properties of a

quantum liquid [27]. In a finite isolated system in which temperature cannot be assigned

unambiguously, the de Broglie wavelength can be defined for the motion of particles as

λdB = 2π~/
√

2m(E − V ). For E ∼ 0 and V = −V0, the de Broglie wavelength can be

related to Mottelson’s quantality parameter [23]:

λdB = πr̄
√

2ΛMot (2)

The quantality parameter is defined for infinite homogeneous systems and, therefore, in

the nuclear case it does not include any mass or size dependence. To analyze localization

of single-nucleon wave functions in finite nuclei one needs to consider a quantity that is

sensitive to both the nucleon number and size of a nucleus. In Ref. [19] we introduced

the dimensionless parameter αloc:

αloc=̂
∆r

r̄
(3)

where r̄ is the average inter-nucleon distance, and ∆r the spatial dispersion of the wave

function:

∆r =

√

〈r2〉 − 〈r〉2 (4)

For large values of αloc the orbits of individual nucleons will be delocalized and the

nucleus in the Fermi liquid phase. When αloc is very small nucleons can be localized on

the nodes of a crystal-like structure. For αloc ≈ 1 the spatial dispersion of the single-

nucleon wave function is of the same size as the inter-nucleon distance and, therefore,

localization facilitates a transition from the quantum liquid phase to a hybrid phase of

cluster states. For finite systems like nuclei this transition, of course, cannot be sharp

and cluster states coexists with mean-field type states. The transition from the quantum

liquid to the cluster phase is controlled by the specific dynamics and length scale of the

system under consideration [19, 18] and, in particular, finite size effects are important.

When the confining nuclear potential is approximated by a 3-dimensional isotropic

harmonic oscillator, the localization parameter αloc takes the form:

αloc ≃
b

r0
=

√
~R

r0(2mV0)1/4
, (5)
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Localization and clustering in atomic nuclei 5

where b is the oscillator length and r0 = 1.25 fm. Using the simple liquid drop

parameterization for the radius R=r0A
1/3, one obtains [28]:

αloc =

√
~A1/6

(2mV0r20)
1/4

≃ 0.67A1/6 . (6)

αloc increases with A1/6 and, therefore, one expects that cluster states are preferably

formed in lighter nuclei. According to this simple expression based on a harmonic

oscillator potential, the transition from coexisting cluster and mean-field states to a

Fermi liquid state should occur for nuclei with A ≈ 20− 30. For heavier systems αloc is

larger than 1 and, thus, heavy nuclei consist of largely delocalized nucleons characterized

by a large mean-free path. The mass dependence of Eq. (6) for αloc has been verified by

a fully self-consistent mean-field calculation [28] based on global nuclear energy density

functionals. While a harmonic oscillator potential can be used to qualitatively analyze

(de)localization of single-nucleon states, microscopic and semi-empirical energy density

functionals include many-body short- and long-range correlations through their explicit

dependence on nucleonic densities and, therefore, can account for the formation and

stability of cluster-like substructures in nuclei [29].

Two functionals were used in the study of Ref. [28] to calculate the localization

parameter for selected orbitals, as well as the values of αloc obtained by averaging the

microscopic dispersions Eq. (3) for all occupied proton and neutron orbitals in the

self-consistent ground-state solution. It was shown that, although both functionals

reproduce empirical ground-state properties, e.g. the binding energy and charge radius,

with a typical accuracy of 1%, the functional that produces a deeper self-consistent

mean-field confining potential systematically predicts smaller values of αloc in lighter and

medium mass nuclei and, consequently, generates equilibrium densities that are much

more localized, often with pronounced cluster structures. This result is in agreement

with the discussion above related to the definition of the quantality parameter ΛMot and

confirms the findings of Ref. [19], where it has been shown that conditions for cluster

formation can in part be traced back to the depth of the confining nuclear potential,

that is, to the effective nuclear interaction. The depth of the potential determines

the energy spacings between single-nucleon orbitals in deformed nuclei, the localization

of the corresponding wave functions and, therefore, the degree of nucleonic density

clustering.

4. Clusters in light α-conjugate nuclei

The coexistence of nuclear mean-field states and cluster structures in light nuclei is

illustrated by the Ikeda diagram [16, 30, 31, 32, 4]. In a number of cases ground-

state nucleonic densities display pronounced localization [29, 19], and this facilitates the

formation of clusters as excited states close to the corresponding decay threshold [32, 4].

Such states cannot be isolated from the continuum of scattering states and, therefore,

clusters close to the threshold belong to an open quantum system [33]. It is also well

known that nuclear shape deformation plays an important role in cluster formation
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Localization and clustering in atomic nuclei 6

because it removes the degeneracy of single-nucleon levels associated with spherical

symmetry [30, 34, 35]. For instance, α clusters can be associated with isolated single-

particle levels in light deformed α-conjugate systems (N = Z even-even nuclei). Because

of both time-invariance symmetry and isospin symmetry, two protons and two neutrons

in such a level have similar wave functions, and the localization of these functions leads

to an α-like structure arrangement [36, 37]. The saturation property of inter-nucleon

forces, effective when both spin and isospin are coupled to zero, produces a particularly

strong binding of the α cluster and a central density that is by almost a third larger

than central densities in most nuclei.

The role of deformation can be exemplified by performing self-consistent mean-field

calculations based on nuclear energy density functionals (EDFs), with constraints on

the mass multipole moments of a nucleus. The corresponding single-nucleon Kohn-

Sham equations (Schrödinger for non-relativistic functionals, or Dirac for relativistic

EDFs, with the Hamiltonian defined as the functional derivative of the corresponding

EDF with respect to density) are solved in the intrinsic frame of reference attached

to the nucleus, in which the shape of the nucleus can be arbitrarily deformed. The

result are static symmetry-breaking product many-body states, and in the examples

below we consider configurations that are obtained by breaking both the axial and

reflection symmetries. Even though the many-body system is determined by a very large

number of microscopic states, these can be organised in a collection of basins on the

deformation energy surface, that are robust to small external perturbations [38]. In the

present illustrative calculation nuclear shapes are characterized by mass quadrupole and

octupole moments that can be related to the polar quadrupole deformation parameters

(β2, γ), and the axial and triaxial octupole parameters (β30, β32), respectively. In the

examples considered in this section different shapes correspond to global or local minima

on the (β2, γ, β30, β32) energy hypersurface.

Figure 1 displays the self-consistent intrinsic densities of 20Ne, calculated using

the relativistic Hartree-Bogoliubov model (RHB) [40] based on the energy density

functional DD-ME2 [39]. For the examples considered in the present work, pairing

correlations have been taken into account by employing an interaction that is separable

in momentum space, and is completely determined by two parameters adjusted to

reproduce the empirical bell-shaped pairing gap in symmetric nuclear matter [41]. The

reflection-asymmetric axial density shown in the upper panel is obtained by imposing

constraints on both the axial quadrupole and octupole deformation parameters β2 and

β30, respectively. β2 = 0.55 corresponds to the equilibrium quadrupole deformation, and

β30 = 0.50. The intrinsic density exhibits the structure of an 16O core plus the α-cluster.

In the lower panel we plot the corresponding axially and reflection symmetric equilibrium

nucleon density distribution of 20Ne. This quadrupole deformed shape is characterized

by two regions of pronounced localization at the outer ends of the symmetry axis and

an oblate deformed core, that is, a quasimolecular α-12C-α structure.

The identification of cluster structures from nucleonic density distributions, as

shown in Ref. [29], often misses important aspects of many-body dynamics, such as
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Localization and clustering in atomic nuclei 7

Figure 1. Self-consistent deformation-constrained axially symmetric intrinsic

densities of 20Ne. The octupole deformed density in the upper panel is reflection

asymmetric. Adapted from references [28] and [34].

the kinetic energy density or density gradients. Therefore, an alternative localization

measure, originally developed for the analysis of bonding structures in molecules [42],

has been applied in Refs. [29, 43] to α-clustering in light nuclei. The nucleon localization

function can be derived by considering the conditional probability of finding a nucleon

within a distance δ from a given nucleon at point ~r with the same spin σ (=↑ or ↓) and
isospin q (= n or p) quantum numbers [29]:

Rqσ(~r, δ) ≈
1

3

(

τqσ −
1

4

|~∇ρqσ|2
ρqσ

−
~j2qσ
ρqσ

)

δ2 +O(δ∋), (7)

where ρqσ, τqσ, ~jqσ, and ~∇ρqσ denote the particle density, kinetic energy density, current

density, and density gradient, respectively, that are completely determined by the self-

consistent mean-field single-particle states. A small conditional probability indicates a

high degree of localization of the reference nucleon. The corresponding dimensionless
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Localization and clustering in atomic nuclei 8

and normalized expression for the localization measure can be expressed by the following

relation:

Cqσ(~r) =



1 +

(

τqσρqσ − 1
4
|~∇ρqσ|2 −~j2qσ

ρqστTF
qσ

)2




−1

, (8)

With the Thomas-Fermi kinetic energy density τTF
qσ = 3

5
(6π2)2/3ρ

5/3
qσ in the denominator,

the function Cqσ(~r) is normalized and provides a dimensionless measure of nucleon

localization. For homogeneous nuclear matter τ = τTF
qσ , the second and third term in

the numerator vanish, and Cqσ = 1/2. In the other limit Cqσ(~r) ≈ 1 indicates that the

probability of finding two nucleons with the same spin and isospin at the same point ~r

is very small. This is precisely the case for the α-cluster of four particles: p ↑, p ↓, n ↑,
and n ↓, for which all four nucleon localization functions Cqσ ≈ 1.

In Fig. 2 we plot the proton localization function Cp↑ (left panel) and total intrinsic

nucleon density (right panel) in the x− z plane for 20Ne, calculated with the relativistic

energy density functional DD-ME2. For this case time-reversal states are equally

occupied and the current density ~jqσ in Eq. (8) vanishes. The localization functions

are identical for spin-up and spin-down nucleons and, since the Coulomb contribution

is small, the neutron and proton localization functions are also very similar. One

notices that even though the single-nucleon density already indicates the formation

of α clusters in the axially symmetric configurations, it is the localization function that

clearly identifies the regions with Cp↑(~r) ≈ 1 on the elongation axis: the α-16O structure

in the upper panel, and a ring at the center for the α-12C-α structure in the lower panel.

This result is similar to the one obtained in Ref. [29] using a Skyrme energy density

functional, and where it was also emphasized that Cqσ(~r) provides an excellent measure

of correlation and localization because it includes the dependence on the kinetic energy

of the relative motion of spin-parallel nucleons at a particular point in space.

The pronounced density peaks enhance the probability of formation of α-clusters in

excited states close to the energy threshold for α-particle emission [16, 30, 33, 35]. This

is illustrated in Fig. 3 where we display various cluster shapes in α-conjugate nuclei,

obtained in triaxial and reflection-asymmetric self-consistent calculations based on the

functional DD-ME2. Densities that correspond to positive-parity projected intrinsic

states are arranged in order of increasing energy. The lowest configurations correspond

to equilibrium density distributions [35]. In analogy to the original Ikeda diagram [16],

these microscopic self-consistent density distributions emphasize the coexistence of the

nuclear mean-field and cluster structures that appear near or above the α dissociation

threshold energy.

Exotic structures of α clusters (chains and rings) can be stabilized in a rotating

nucleus by a competition between the nuclear attractive and centrifugal forces [44]. A

microscopic study of this phenomenon can be performed, for instance, by using cranked

self-consistent mean-field methods. The cranked self-consistent equation in the rotating

intrinsic frame is obtained variationally: δ < H − ω · J >= 0, where H is the total

Hamiltonian in the laboratory frame, ω is the rotational frequency, and J the angular

Page 8 of 20AUTHOR SUBMITTED MANUSCRIPT - JPhysG-101858.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



Localization and clustering in atomic nuclei 9

Figure 2. Proton localization function (left) and total density (in nucleon/fm3, right)

in the x − z plane for 20Ne. The top and bottom panels correspond to the reflection

asymmetric (octupole) and reflection symmetric (quadrupole) shapes, respectively,

shown in Fig. 1.

momentum. Within this general framework a variety of models based on energy density

functionals or effective nuclear interactions have been used to analyze the stability of

chain and ring configurations in relation to angular momentum. Among a number of

interesting recent studies, it has been shown that in a region of angular momentum

(13~ − 18~) the chain of four α clusters is stabilized in 16O [45, 46]; the stability of

rod-shaped structures has been analyzed for 24Mg [47] and carbon isotopes [48]; and

a systematic investigation of extremely deformed structures in N ≈ Z nuclei of the

A ≈ 40 mass region has been performed [49].

Figs. 1 – 3 exhibit localized, crystal-like cluster structures, characteristic for

the self-consistent mean-field method used to calculate nuclear deformation energy

hypersurfaces. The corresponding self-consistent solutions contain the energy of spurious

center-of-mass motion of each cluster that needs to be subtracted from the total energy.

By restoring symmetries broken by the mean-field (translational, rotational, and parity

in the case of octupole deformations), and allowing for configuration mixing, solutions

that correspond to non-localized clusters are obtained. Non-localized clustering has
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Localization and clustering in atomic nuclei 10

Figure 3. Intrinsic densities of deformation-constrained configurations in N = Z

nuclei. For each nucleus the density in the bottom row corresponds to the equilibrium

configuration, and excited configurations are displayed in order of increasing energy.

Adapted from reference [35].

extensively been investigated using an angular-momentum-projected version of the

Tohsaki-Horiuchi-Schuck-Röpke (THSR) wave function [50, 51, 52, 6]. In light nuclei at

low densities α-like clusters display a strong tendency to condense in the same orbital

with respect to their center-of-mass motion. The best known example is the second

0+ state in 12C at 7.65 MeV [53] – the Hoyle state that plays a key role in stellar

nucleosynthesis – and can be considered as a weakly interacting gas of 3 α particles. It

is located at an excitation energy that is ≈ 300 keV above the threshold at which 12C

dissociates into 3 α particles, and it is quasi-bound by the Coulomb barrier. In fact, the

wave function of this state can be described with 70% probability as a product state

of α particles, all in the lowest 0S state [54, 55, 6]. One could consider this state as

an α-boson condensate [56] taking into account, of course, that it belongs to a finite

system with a small number of particles. In fact, microscopic calculations indicate that

the relative positions of the clusters are correlated and, therefore, the Hoyle state can

only qualitatively be interpreted as a boson condensate [57].
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Localization and clustering in atomic nuclei 11

The formation of an α-condensate can occur at an excitation energy that

corresponds to the threshold at which all α particles become unbound. Cluster gas

states near the nα dissociation threshold energy and α particle condensation in heavier

α-conjugate nuclei is a topic of great current interest, both theoretical and experimental

[58, 4, 59, 23, 60, 51]. An interesting question is how many α particles can be bound in a

dilute finite nuclear system, that is, what is the critical number of α bosons in condensed

states beyond which the system becomes unbound [61]? Starting from 12C, for instance,

and adding more α clusters, the total energy of the Nα gas state increases because of

the competition between the short-range attractive α−α nuclear potential and the long-

range repulsive Coulomb potential. With increasing the number of charged α bosons

the repulsive potential becomes dominant, the system expands and the average distance

between α particles increases. The Coulomb potential barrier confining the α clusters

gradually decreases and, at some critical value Nc, the self-trapped system becomes

unbound. In the phenomenological study of Ref. [61] it has been shown that Nα states

with J = 0+ in α-conjugate nuclei from 12C to 40Ca occur at excitation energies below

20 MeV, and the critical number of α bosons is Nc ≈ 10.

More generally, we emphasize the role of the saturation property of inter-nucleon

interactions in the mechanism of cluster formation in finite nuclei and in dilute nuclear

matter. In excited configurations of light deformed nuclei the nucleon density is reduced

along the deformation axis with respect to the equilibrium. This favors the formation

of clusters because it locally enhances the nucleonic density toward its saturation value,

therefore increasing the binding of the system. For a relatively light nucleus, and

especially for α-conjugate systems, the most effective way to increase the density locally

is the clustering of nucleons into α particles. Because of saturation the interaction

between α-clusters is weak and excited states near the nα threshold energy can be

described as a gas of α-clusters. In fact, when the density of nucleonic matter is reduced

below its equilibrium values, saturation causes a Mott-like transition to a hybrid phase

composed of clusters of α-particles. This effect has been investigated in self-consistent

mean-field calculations of even-even N = Z nuclei, with a restriction to spherically

symmetric configurations[62, 35]. It has been shown that by expanding an n−α nucleus

the corresponding total energy as a function of the nuclear radius goes over a maximum

before reaching the asymptotic low density limit of a gas of α-particles.

This transition is illustrated in Fig. 4, where we display the result of a constrained

self-consistent mean-field calculation of 16O, using the relativistic functional DD-ME2.

The equilibrium mean-field solution reproduces the empirical binding energy and charge

radius of 16O. A constraint on the nuclear radius is used to gradually reduce the nucleon

density by inflating the spherical nucleus. As the size of the nucleus becomes larger

the total energy of the system increases with respect to the equilibrium configuration.

When the density is reduced to ρ/ρeq ≈ 1/3, the system undergoes a Mott-like phase

transition [25, 62, 35] to a configuration of 4 α-particles. As shown in Fig. 4, this

transition occurs at a radius of rc = 3.33 fm, with the corresponding ratio of the critical

radius to the ground-state radius rc/rg.s. ≈ 1.3. Experimental evidence for α-particle
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Localization and clustering in atomic nuclei 12

Figure 4. Self-consistent intrinsic nucleon density of 16O for a radius constrained to

3.32 fm (a) and 3.34 fm (b). Reprinted from reference [34].

clustering (simultaneous emission) in excited expanding Nα source nuclei 16O, 20Ne and
24Mg, was recently reported in a study of fragmentation of quasi-projectiles from the

nuclear reaction 40Ca on 12C [63].

5. Clustering in neutron-rich nuclei

In addition to N = Z systems, a particularly interesting topic is the formation of

clusters in unstable neutron-rich nuclei. In a number of light N > Z nuclei low-

energy cluster structures can be described by molecular bonding of α-particles by the

excess neutrons [30, 31, 4, 5, 64]. The conditions for the formation of molecular states

include the presence of strongly bound α-cores, a weakly attractive α − α potential

which becomes repulsive at small distances, and additional weakly-bound single-particle

orbitals occupied by valence neutrons [65]. Decomposing the total nucleon density into

the α clusters and the density of additional valence neutrons, one obtains a picture

of nuclear molecular states. For covalent bonding, a negative-parity neutron orbital

perpendicular to the α − α axis is called a π-orbital, whereas a σ-orbital denotes a

positive-parity orbital parallel to the α − α direction [65, 5, 66]. While “molecular

orbits” of valence neutrons characterize cluster structures at threshold energies (covalent

bonding), at higher excitation energies excess neutrons tend to form atomic orbits
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Localization and clustering in atomic nuclei 15

be related to the depth of the confining single-nucleon potential [19]. This potential

determines the energy spacings of the corresponding single-nucleon spectra and, in

particular, the energy gaps between major shells. In the following a connection is

established with another important effect that characterizes spectroscopic properties

of bound quantum systems such as atoms, nuclei, hypernuclei, quarkonia, etc.,

and which arises from the spin-orbit coupling. Depending on the specific system

under consideration, the spin-orbit interaction is large in nuclei, small in quarkonia,

perturbative in atoms. In nuclei the strong coupling between the orbital angular

momentum and spin of a nucleon accounts for the empirical magic numbers, and the

energy spacings between spin-orbit partner states can be as large as the gaps between

major shells.

Nucleons are Dirac particles and, in the relativistic mean-field approximation

[70, 71], the single-nucleon dynamics is governed by the Dirac equation:

[~α · ~p+ V + β(m+ S)]ψi = Eiψi (9)

where ψ denotes the single-nucleon Dirac spinor:
(

φ

χ

)

(10)

and m is the nucleon mass . Here we only consider spherical nuclei and assume time-

reversal symmetry (pairwise occupied states with Kramers degeneracy), which ensures

that the only non-vanishing components of the vector fields are the time-like ones and

thus there is no net contribution from nucleon currents. The local self-consistent vector

V and scalar S potentials are uniquely determined by the actual nucleon density and

scalar density of a given nucleus, respectively. In the standard non-relativistic reduction

of the single-particle Dirac equation, the single-particle mean-field equation takes a

Schrödinger-like form which, in addition to the confining potential, exhibits the spin-

orbit potential explicitly:
[

~p
1

2M(r)
~p+ U(r) + V LS(r)

]

φ = εφ , (11)

where M(r) ≡ m+ (S(r)− V (r)) /2 is the nucleon effective mass, U(r) ≡ V (r) + S(r),

and the spin-orbit potential:

V LS ≡ 1

2M2(r)

1

r

d

dr
(V (r)− S(r))~l · ~s . (12)

The effective nuclear spin-orbit potential, therefore, originates from the difference

between the vector potential V (short-range repulsion) with typical strength of ≈ 350

MeV, and the scalar potential S (medium-range attraction), typically of the order of

−400 MeV in nucleonic matter and finite nuclei. The sum of these two fields V +S ≈ −50

MeV provides the confining single-nucleon potential and, therefore, determines the

energy spacings between major shells. The large difference V − S ≈ 750 MeV, on

the other hand, governs the splitting between spin-orbit partner states in finite nuclei,

which are also of the order of MeV. In fact, when considering the ratio between the
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Figure 7. The ratio between the principal energy spacings and the spin-orbit splittings

(fine structure) as a function of the ratio η between the mass of the particle and the

effective potential that determines the spin-orbit force in a given quantum system.

Adapted from reference [72].

energy spacings ~ω0 characterized by principal single-particle quantum numbers and

the energy splitting of spin-orbit partners, it can be shown that [72]:

x ≡ ~ω0

|∆ < V LS > | = K
∣

∣

∣
η − 1 +

1

4η

∣

∣

∣
, (13)

where K =
√
−2mU0R0/l~, U0 ≡ U(r = 0) = V (0)+S(0) is the depth of the potential,

R0 = r0A
1/3 (r0 ≈ 1.2 fm) is the nuclear radius, l denotes the orbital angular momentum,

and

η ≡ m

V − S
. (14)

Since for the nucleon mass m ≈ 940 MeV and V − S ≈ 750 MeV: η = 1.25, and it

follows from Eq. (13) that the ratio x is of the order 1− 5, that is, in nuclei the energy

splitting between spin-orbit partner states is comparable in magnitude to the spacings

between major oscillator shells.

In Fig. 7 we plot the ratio between the principal energy spacings and the spin-orbit

splittings for different systems of bound fermions, as a function of the parameter η:

x ≃
∣

∣

∣
η − 1 +

1

4η

∣

∣

∣
. (15)

In general, η is the ratio between the mass of the particle and the effective potential

whose gradient determines the spin-orbit force in a given quantum system. In nuclei the

Page 16 of 20AUTHOR SUBMITTED MANUSCRIPT - JPhysG-101858.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



Localization and clustering in atomic nuclei 17

near equality of the mass of the nucleon and the difference between the large repulsive

vector and attractive scalar potentials explains the fact that the spin-orbit splittings are

comparable to the energy spacing between major oscillator shells. The same universal

functional form also applies to other bound quantum systems, regardless of whether the

spin-orbit potential originates from the strong or electromagnetic interaction, and for

which the ratio between the principal energy spacings and the spin-orbit splittings is

orders of magnitude larger than in the nuclear case [72].

A special case arises when the mass of the particle is close to (V − S)/2. This

implies η ≃ 1/2 and, thus, x = 0. The energy spacings between bound states are

then characterized by very large spin-orbit coupling (giant LS). Such states could be

generated in particular situations when the strength of the effective potential whose

gradient determines the spin-orbit force can be treated as an external parameter.

The spin-orbit parameter η can be related to the quantality ΛMot Eq. (1) by defining

an effective coupling strength:

αeff =̂
U0r0
~c

(16)

where U0 is the depth of the confining potential and r0 its effective range. It can then

be easily shown that the following relation holds to a good approximation:

ηΛMotα
2
eff ≈ 1 . (17)

By increasing the depth of the potential, the quantality parameter decreases reflecting

an enhanced localization. In this case the spin-orbit parameter η is also reduced because

of the increase of the gradient of the effective potential, and this leads to an enhancement

of the energy spacings between spin-orbit partner states.

7. Summary and outlook

Nucleon localization, conditions for formation of cluster structures in the nuclear

medium, their composition, stability and decay properties present a recurrent theme

in nuclear physics, and nucleon clustering plays a key role in understanding the process

of stellar nucleosynthesis. In this article we discussed some recent issues in a microscopic

theoretical description of the generic phenomenon of cluster formation in finite nuclei

based on the concept of nucleon localization.

Extended nucleonic matter at equilibrium behaves like a Fermi liquid, whereas in

the low-density limit, in chemical equilibrium and at low temperatures, four-nucleon

correlations lead to a condensation of α-particles. Finite nuclei, as self-bound and

open quantum systems, exhibit both quantum liquid-drop and cluster features. As

a measure of nucleon localization and cluster-liquid transition, we have analyzed a

dimensionless ratio between the spatial dispersion of the single-nucleon wave function

and the average inter-nucleon distance. It has been shown that conditions for nucleon

localization and formation of clusters can be related to the depth of the effective

confining potential, that is, to the effective nuclear interaction. In addition to nucleon

Page 17 of 20 AUTHOR SUBMITTED MANUSCRIPT - JPhysG-101858.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



Localization and clustering in atomic nuclei 18

densities, an alternative localization function has been explored that explicitly includes

a dependence on the kinetic energy density and density gradients. We have particularly

emphasized the role of the saturation property of the inter-nucleon interaction in the

mechanism of cluster formation in finite nuclei, and the effect of deformation in the

formation of clusters as excited states has been illustrated by performing fully self-

consistent mean-field calculations, with constraints on the multipole moments of the

nucleon density distribution. An interesting topic that we have briefly illustrated is

the formation of molecular bonds of α-clusters by excess neutrons in neutron-rich light

nuclei. The localization of nucleons is particularly reflected in the energy spacings of the

corresponding single-nucleon spectra, and a relation has been established between the

localization (quantality) parameter and a quantity that characterizes the large energy

spacings between spin-orbit partner states in nuclei.

Even though in recent years important advances have been made in understanding

localization and clustering phenomena, many open issues remain to be explored, both

theoretically and experimentally. These include, in particular, spectroscopy above the α-

decay threshold in light nuclei, the occurrence of cluster structures in neutron-rich nuclei

far from the valley of β-stability, exotic cluster structures stabilized by the rotation of

the deformed nuclear system, cluster gas states and α-cluster condensation, formation

of nucleon clusters in heavy nuclei, clustering in nuclear reactions including those

important for astrophysical applications, and the development of ab initio theoretical

methods that can describe both the formation of the nuclear mean-field and clustering

characteristics of many-nucleon dynamics in finite nuclei.
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[7] M. Freer, H. Horiuchi, Y. Kanada-En’yo, D. Lee, and U.-G. Meissner, arXiv:1705.06192.

[8] D.G. Ravenhall, C. J. Pethick, and J.R. Wilson, Phys. Rev. Lett. 50, 2066 (1983).

[9] M. Hashimoto, H. Seki, and M. Yamada, Prog. Theor. Phys. 71, 320 (1984).

[10] C. P. Lorenz, D.G. Ravenhall, and C. J. Pethick, Phys. Rev. Lett. 70, 379 (1993).

[11] J. A. Wheeler, Phys. Rev. 52, 1107 (1937).
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97, 32 (2000).
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