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The standard relativistic mean-field model is extended by including dynamical effects that arise in the
coupling of single-nucleon motion to collective surface vibrations. A phenomenological scheme, based on a
linear ansatz for the energy dependence of the scalar and vector components of the nucleon self-energy for
states close to the Fermi surface, allows a simultaneous description of binding energies, radii, deformations,
and single-nucleon spectra in a self-consistent relativistic framework. The model is applied to the spherical
doubly closed-shell nuclei 132Sn and 208Pb.
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I. INTRODUCTION

Relativistic models based on quantum hadrodynamics #1$
provide a microscopic self-consistent description of the
nuclear many-body problem. Detailed properties of finite nu-
clei along the %-stability line have been described with
nuclear structure models based on the relativistic mean-field
!RMF" approximation #2$. With the unified Dirac-Hartree-
Bogoliubov description of mean-field and pairing correla-
tions, the relativistic framework has been very successfully
extended to studies of exotic nuclei far from the valley of %
stability and to the physics of the drip lines #3–8$.
In this framework the single-nucleon dynamics is de-

scribed by classical equations of motion which are derived
self-consistently from a fully relativistic Lagrangian. Stan-
dard relativistic nuclear structure models are based on the
static approximation, i.e., the nucleon self-energy is real, lo-
cal and energy independent. Consequently, these models de-
scribe correctly the ground-state properties and the sequence
of single-particle levels in finite nuclei, but not the level
density around the Fermi surface.
In a nonrelativistic mean-field approximation, the total ef-

fective mass m* of a nucleon in a nucleus characterizes the
energy dependence of an effective local potential that is
equivalent to the, generally nonlocal and frequency depen-
dent, microscopic nuclear potential #9,10$. The total effective
mass is a product of the k mass which characterizes the non-
locality, i.e., momentum dependence of the mass operator,
and the E mass which describes the explicit energy depen-
dence of the mass operator. The coupling of single-nucleon
motion to collective vibrations and the resulting enhance-
ment of the effective mass around the Fermi surface has been
extensively studied in the framework of non-relativistic
Hartree-Fock models. For a review, see Refs. #9,10$
In the context of the present analysis, two nonrelativistic

microscopic descriptions of the energy dependent effective
mass are of particular interest. The analyses of the neutron-
208Pb #11$, proton- 208Pb #12$, and neutron- 40Ca #13$ mean
fields were based on dispersion relations that connect the real
and imaginary parts of the optical-model potential. The pa-
rameters of the complex mean field were determined from
available experimental cross sections, and the resulting
optical-model potential was extrapolated towards negative

energies. A very good agreement was found with the experi-
mental single-particle energies of the valence particle and
hole states. In Refs. #14–16$ the effects of the collective
modes on the single-particle states and the effective mass in
208Pb were calculated in a self-consistent microscopic
particle-vibration coupling model. It was shown that, as a
function of energy and radial coordinate, the effective mass
is enhanced around the Fermi level and on the surface of the
nucleus. A similar approach was used in a very recent calcu-
lation of the nucleon E mass for a medium-heavy deformed
nucleus as a function of the rotational frequency along the
yrast line #17$.
In the relativistic framework, the concept of effective

nucleon mass in symmetric nuclear matter and finite nuclei
was analyzed by Jaminon and Mahaux in Refs. #18,19$. In
addition to the k mass and E mass, a third effective mass, the
‘‘Lorentz mass’’ appears in the relativistic approach. It re-
sults from different Lorentz transformation properties of the
scalar and vector potentials. In Ref. #19$ a quantitative analy-
sis of the energy dependence of the effective mass was per-
formed in the framework of the relativistic Brueckner-
Hartree-Fock approximation to the mean field in symmetric
nuclear matter. The calculation was based on dispersion re-
lations that connect the imaginary to the real part of the
Lorentz components of the mean field. Although in finite
nuclei the mechanism which leads to the energy dependence
of the effective mass is different, i.e., it results from the
coupling of single-nucleon motion to the collective modes, a
very useful result of Ref. #19$ is that the energy dependence
of the total dispersive contribution to the real part of the
mean field is almost linear in the region EF!10"E"EF
#10 MeV around the Fermi energy EF .
In the present work we propose a phenomenological

scheme to include the effect of coupling of single-nucleon
motion to surface vibrations, i.e., the energy dependence of
the nucleon self-energy, in self-consistent relativistic mean
field calculations. Rather than calculating the first-order cor-
rection to the RMF single-nucleon energy spectra, a linear
energy dependence of the scalar and vector potentials is ex-
plicitly included in the Dirac equation. The resulting gener-
alized eigenvalue problem can be solved exactly, and this
approach gives the possibility to reproduce, in a self-
consistent calculation, both the total binding energy and the
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density of single-nucleon states around the Fermi surface.
The principal advantage over perturbation calculations is,
however, that the present approach can be easily extended to
constrained calculations in deformed nuclei. The main pur-
pose will be the study of shape coexistence phenomena in
chains of isotopes far from the valley of % stability.

II. THE RELATIVISTIC MEAN-FIELD MODEL WITH
ENERGY DEPENDENT POTENTIALS

In the framework of the relativistic mean field approxima-
tion nucleons are described as point particles that move in-
dependently in mean fields which originate from the
nucleon-nucleon interaction. The theory is fully Lorentz in-
variant. Conditions of causality and Lorentz invariance im-
pose that the interaction is mediated by the exchange of
pointlike effective mesons, which couple to the nucleons at
local vertices. The single-nucleon dynamics is described by
the Dirac equation

! !i!•“#%!m#g&&"#g''0#g()3(3
0#e

!1!)3"
2 A0" * i

$+ i* i . !1"

& , ' , and ( are the meson fields, and A denotes the electro-
magnetic potential. g& , g' , and g( are the corresponding
coupling constants for the mesons to the nucleon. The lowest
order of the quantum field theory is the mean-field approxi-
mation: the meson field operators are replaced by their ex-
pectation values. The sources of the meson fields are defined
by the nucleon densities and currents. The ground state of a
nucleus is described by the stationary self-consistent solution
of the coupled system of the Dirac !1" and Klein-Gordon
equations
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for the sigma meson, omega meson, rho meson, and photon
field, respectively. Due to charge conservation, only the third
component of the isovector "! meson contributes. The source
terms in Eqs. !2"–!5" are sums of bilinear products of baryon
amplitudes, and they are calculated in the no-sea approxima-
tion, i.e., the Dirac sea of negative energy states does not
contribute to the nucleon densities and currents. Due to time
reversal invariance, there are no currents in the static solution
for an even-even system, and therefore the spatial vector
components #, "3, and A of the vector meson fields vanish.
The quartic potential

U!&"$
1
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2&2#
1
3 g2&

3#
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introduces an effective density dependence. The nonlinear
self-interaction of the & field is essential for a quantitative
description of properties of finite nuclei.
The details of the calculated ground-state properties de-

pend on the choice of the effective Lagrangian. Several ef-
fective interactions, i.e., parameter sets of the mean-field La-
grangian have been derived that provide a satisfactory
description of nuclear properties along the %-stability line. In
particular, the parameter set NL3 #20,21$ has been adjusted
to ground state properties of a large number of spherical
nuclei. Properties calculated with the NL3 effective interac-
tion are found to be in very good agreement with experimen-
tal data for spherical and deformed nuclei at and away from
the line of % stability. In particular, NL3 has been used in
most applications of the relativistic Hartree-Bogoliubov
model to the physics of drip-line nuclei #3–8$.
The effective potential that determines the ground state of

a finite nucleus is essentially given by the sum of the scalar
& potential !attractive" and the vector ' potential !repulsive".
Both potentials are of the order of several hundred MeV in
the nuclear interior. The contributions of the isovector
(-meson field and the electromagnetic interaction are, of
course, much smaller. In the relativistic Hartree mean-field
approximation the nucleon self-energy is real, local, and en-
ergy independent. It should be emphasized, however, that
even in the Hartree approximation the equivalent Schrö-
dinger potential is nonlocal, i.e., momentum dependent. This
results from the momentum dependence of the scalar density,
or equivalently, the momentum dependence of the Dirac
mass in the nonrelativistic reduction of the Dirac equation.
A phenomenological description of the effect of coupling

between single-nucleon motion and collective modes can be
obtained by assuming that the scalar and vector potentials
depend linearly on energy in the vicinity of the Fermi surface

V&!r ,E "$V&!r "#-!E!EF",

V'!r ,E "$V'!r "#-!E!EF", !7"

where V&(r) and V'(r) denote the usual, energy indepen-
dent potentials. For simplicity, we only consider the energy
dependence of the two most important contributions to the
effective potential, i.e., the & and ' fields. As we have al-
ready emphasized in the Introduction, in their analysis of the
Fermi surface anomaly and depletion of the Fermi sea in the
relativistic Brueckner-Hartree-Fock approximation #19$,
Jaminon and Mahaux have shown that the total dispersive
contribution to the real part of the mean field potential dis-
plays an almost linear energy dependence in a region of
.%10 MeV around the Fermi energy. A linear energy depen-
dence of the real part of the mean field potential in the region
EF!5"E"EF#5 was also found in the calculation of the
nucleon effective mass in 208Pb in the framework of the mi-
croscopic particle-vibration coupling model !see Fig. 1 of
Ref. #16$". If the effective potential in the Dirac equation
depends only linearly on energy, this defines a generalized
eigenvalue problem

HD#*/$AE#*/, !8"
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where HD is the energy independent Dirac Hamiltonian #see
Eq. !1"$, and on the right-hand side A&E is the matrix which
contains the linear energy dependence. Equation !8" can be
solved exactly, and in this way the effect of coupling to
collective modes can be included in the self-consistent cal-
culation of the ground state of a nucleus.
In principle, there is no deeper reason for the & and '

potentials to have the same energy dependence. If they have,
like in Eqs. !7", the total correction to the effective single-
nucleon potential is 2-(E!EF), and there is no correction
to the spin-orbit term of the effective potential, which is
given by the difference of the & and ' potentials #2$. Since
in the present analysis we are only interested in the effect on
the density of states around the Fermi level, we assume the
same linear energy dependence for V& and V' . This means
that, in principle, an additional parameter can be adjusted to
obtain, if necessary, a better agreement for the energy split-
tings of the spin-orbit partner levels in spherical or deformed
nuclei.
The ground state of a spherical or deformed nucleus is

obtained from a self-consistent solution of the coupled sys-
tem of equations: the Dirac generalized eigenvalue equation
!8", and the Klein-Gordon equations !2"–!5". The equations
are solved by expanding the nucleon spinors and the meson
fields in a spherical or deformed harmonic oscillator basis. In
the present work we only consider spherical nuclei. Instead
of calculating an energy dependent correction to single
nucleon spectra determined by some of the standard RMF
parameter sets such as NL3, we include the energy depen-
dent potentials in the fitting procedure that is used to con-
struct an effective interaction. By adjusting the meson-
nucleon coupling constants, the mass of the & meson, the
parameters of the & meson self-interaction terms, and the
parameter - of the linear energy dependence in Eqs. !7", to
nuclear matter and properties of finite spherical nuclei, we
seek to obtain a simultaneous description of binding energies
and of densities of single-nucleon states in the valence shells.
In order to illustrate the method, in the present analysis

we calculate the single-nucleon spectra of the doubly closed-
shell nuclei 208Pb and 132Sn. In this particular calculation the
starting point is the NL3 parameter set. This effective inter-
action has been adjusted to ground-state properties of a num-
ber of spherical nuclei and, of course, it reproduces the bind-
ing energies of 208Pb and 132Sn. The calculated densities of
single-nucleon states around the Fermi surface are, however,
too low as compared with the experimental spectra, i.e., the
effective mass is too low and energy independent. By includ-
ing the linear energy dependence !7" in the effective single-
nucleon potential of the Dirac equation, the binding is obvi-
ously reduced and the parameter set of the effective
interaction has to be readjusted. In principle, the parameter
of the energy dependence - in Eqs. !7" can be calculated
from the imaginary part of the optical potential by using
dispersion relations, or by coupling single-nucleon states to
core vibrations calculated with the relativistic random phase
approximation. That would, of course, mean a different - for
every nucleus. In the present self-consistent method - is an
adjustable parameter, determined by a fit to ground state
properties, together with the parameter set of the effective
Lagrangian. In this work we only calculate 208Pb and 132Sn,
although of course a larger set of nuclei would be necessary
to obtain an optimal set of parameters. For closed-shell nu-
clei without pairing, the Fermi energy is taken as the half-
energy between the last occupied and the first unoccupied
single-nucleon orbit. The linear energy correction to the ef-
fective potential is confined to the window EF!10"E
"EF#10 MeV. In addition to the available binding energies
and radii, the fitting procedure is constrained with the aver-
age energies of hole and particle states in the last occupied
and the first unoccupied major shells, respectively.
In each iteration step, and for given single-nucleon angu-

lar momentum and parity, the generalized eigenvalue prob-
lem !8" is solved in two steps. In the first step the single-
nucleon energy independent Dirac Hamiltonian HD #see Eq.
!1"$ is diagonalized in the harmonic oscillator basis. From
the resulting single-nucleon spectrum we determine the

FIG. 1. Neutron single-particle
states in 208Pb. In the first column
on the left the relativistic Hartree
mean-field results calculated with
the NL3 effective interaction are
displayed, the levels calculated
with the energy dependent effec-
tive potential are shown in the
second column, and the right-hand
column gives the experimental
spectrum #26,27$.
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eigenvectors * i with eigenvalues 0 i in the energy interval
.%10 MeV around the Fermi energy. In the next step the
matrix of the generalized eigenvalue problem is constructed

Hij$! 1* i#HD#* j/,
1* i#HD#2-!E!E f "#* j/

for EF!10"0 i ,0 j"EF#10 MeV.
!9"

For a solution in coordinate space, the equivalent of this
two-step procedure is the inclusion of the theta function
2!10 MeV!#E!EF#) in front of the energy dependent cor-
rection in Eq. !7". Although we do not include an explicit
radial dependence for the second term in Eq. !7", its contri-
bution obviously vanishes at large distances, i.e., all matrix
elements Hij vanish for large r because * i(r")→0.
The set of states which is the solution of the generalized

eigenvalue problem is not orthogonal. This is not a big ef-
fect, however, because the energy dependent correction to
the potential is relatively small, and it affects only a small
number of states in the vicinity of the Fermi level. After the
orthogonalization, the new set of orthonormalized states is
identified with the single-nucleon spectrum. There is no sig-
nificant difference between the diagonal matrix elements of
the Hamiltonian in this basis, i.e., the ‘‘single-particle ener-
gies,’’ and the original eigenvalues. We have verified that the
same value for the ground-state energy is obtained when this
quantity is calculated as the sum of kinetic and potential
energies, or as the sum of the ‘‘single-nucleon energies’’ and
the energies of the meson fields.
The resulting single-neutron spectra in 208Pb and 132Sn

are displayed in Figs. 1 and 2, respectively. they are com-
pared with the relativistic Hartree mean-field results calcu-
lated with the NL3 interaction, and with experimental single-
neutron spectra #22–27$. In comparison with the original
NL3 interaction, we note a considerable improvement of the
calculated spectra. The increase of the density of states
around the Fermi surface results from the energy dependence

of the effective mass. The spectra obtained with the full po-
tential are in good agreement with the experimental single-
neutron levels. The energy dependent correction, however,
seldom changes the ordering of states, and therefore we still
find inverted doublets, such as, for example, 2 f 5/2-3p3/2 and
1i11/2-2g9/2 in 208Pb. In Table I we compare the NL3 effec-
tive interaction with the new set of parameters which is ob-
tained by including the energy dependent correction to the
single-nucleon potential in the fitting procedure. We note that
the values of the parameters change very little as compared
with the original NL3 parametrization, with the exception of
a somewhat more pronounced decrease of the rho-meson
coupling. The adjusted value of the coefficient of the linear
energy dependence in Eqs. !7" is 2-$!0.288. This value
can be compared with the one calculated in the self-
consistent microscopic particle-vibration coupling model of
Refs. #14–16$. For proton states EF!5"E"EF#5 MeV in
208Pb !see Fig. 1 of Ref. #16$", the coefficient of linear en-
ergy dependence of the real part of the mass operator is

FIG. 2. Same as in Fig. 1, but
for the neutron single-particle
states in 132Sn. The experimental
data are from Refs. #22–25$.

TABLE I. The parameter set of the NL3 effective interaction
#21$ !center column", and the new interaction !right column" which
results from the inclusion of the linear energy dependence in the
effective single-nucleon potential.

NL3 NEW

m 939.0 MeV 939.0 MeV
m& 508.1941 MeV 508.8500 MeV
m' 782.5010 MeV 782.5550 MeV
m( 763.0 MeV 763.0 MeV
g& 10.2169 10.2200
g' 12.8675 12.8730
g( 4.4744 4.4000
g2 -10.4307 fm!1 -10.2153 fm!1

g3 -28.8851 -29.0960
2- -0.288
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.!0.35. In addition to single-nucleon spectra, we also
compare the experimental and calculated binding energies:
for 208Pb the experimental value is !1636.47 MeV, the value
calculated with NL3 is !1639.54 MeV, and the full, energy
dependent effective potential gives !1636.80 MeV. For
132Sn, the binding energy calculated with NL3 is !1105.44
MeV, the value obtained with the new parameter set is
!1101.31 MeV, and the experimental binding energy is
!1102.90 MeV.
The single-neutron spectrum of 208Pb can be compared

with those obtained with the self-consistent microscopic
particle-vibration coupling model !see Fig. 2 of Ref. #15$",
and with the phenomenological dispersion relation analysis
of Ref. #11$ !see Fig. 9 of that article". In comparison with
the experimental spectrum, the results of the present calcu-
lation are somewhat better than those obtained with the mi-
croscopic particle-vibration coupling, but not as good as the
spectrum which results from dispersion relations between the
real and imaginary parts of the optical-model potential. This
is, of course, not very surprising. In the analysis of Ref. #15$
the mass operator is the sum of a Hartree-Fock term and an
energy dependent term which arises from the coupling to the
microscopically calculated RPA vibrations. A number of ap-
proximations have to be made in such a microscopic calcu-
lation, which will necessarily affect the quality of the final
single-nucleon spectrum. On the other hand, there is no ad-
justable parameter such as - in the microscopic calculation.
In the phenomenological analysis of Ref. #11$ the total dis-
persive contribution to the effective potential is written as a
sum of volume and surface components. A relatively large
number of parameters was used to adjust these two contribu-
tions separately. It was shown that about 40% of the total
correction results from volume dispersive effects and about
60% from the surface-peaked correction. The comparison
with the single-neutron spectra of Refs. #15,11$, as well as
with the experimental data, shows that our linear ansatz !7"
presents a very good approximation of the dynamical effects
which arise from the coupling of single-nucleon and collec-
tive degrees of freedom.
In Tables II and III we list both the neutron and the proton

levels of 208Pb and 132Sn, respectively. For the last occupied
and first unoccupied major shells, we compare the results
calculated with the standard relativistic Hartree mean-field
approximation !NL3 interaction", the energy spectrum calcu-
lated with the full, energy dependent model potential, and the
experimental energies. In addition, we compare the average
energies of hole !particle" states

1E/$

3
nl j

!2 j#1 "Enl j

3
nl j

!2 j#1 "

, !10"

where the sum runs over occupied !unoccupied" states within
a major shell. Obviously the inclusion of linear energy de-
pendence in the nucleon self-energy considerably improves
the calculated single-nucleon spectra, while at the same time
it enables the self-consistent calculation of global ground
state properties, such as the binding energy and radii.

III. CONCLUSIONS

In applications of standard relativistic mean-field models
to the description of ground state properties of spherical and
deformed nuclei, the nucleon self-energy is real, local, and
energy independent. This leads to the well known problem of
low effective mass, i.e., low density of single-nucleon states
close to the Fermi surface. In the nonrelativistic framework,
this problem has been considered in first-order perturbation,

TABLE II. Neutron !left panel" and proton !right panel" single-
particle energies Enl j in 208Pb. For each panel, the left-hand column
specifies the radial, orbital, and total angular momentum quantum
numbers, the column labeled NL3 contains results calculated with
the standard relativistic Hartree mean-field approximation, the en-
ergy spectrum calculated with the full, energy dependent, model
potential is displayed in the third column. Theoretical spectra are
compared to the experimental energies shown in the column labeled
EXP. With boldface letters are listed the average energies for par-
ticle and hole states.

Neutron state Proton state
nl j NL3 Full Exp nl j NL3 Full Exp

4s1/2 -0.36 -1.46 -1.90 3p1/2 2.58 0.60 -0.17
3d3/2 -0.02 -1.19 -1.40 3p3/2 1.83 0.00 -0.68
3d5/2 -0.63 -1.72 -2.37 2 f 5/2 0.55 -0.92 -0.98
2g7/2 -0.57 -1.60 -1.44 2 f 7/2 -1.44 -2.55 -2.90
2g9/2 -2.50 -3.17 -3.94 1h9/2 -4.60 -4.97 -3.80
1i11/2 -2.97 -3.29 -3.16 1i13/2 -1.03 -2.37 -2.19
1 j15/2 -0.48 -1.60 -2.51 Ep -1.28 -2.45 -1.79
Ep -1.33 -2.20 -2.63
3p1/2 -7.67 -7.34 -7.37 3s1/2 -8.15 -7.95 -8.01
3p3/2 -8.41 -7.94 -8.26 2d3/2 -9.25 -8.79 -8.36
2 f 5/2 -9.09 -8.38 -7.94 2d5/2 -10.88 -10.16 -9.68
2 f 7/2 -11.11 -10.05 -9.71 1g7/2 -15.05 -13.55 -11.48
1h9/2 -13.39 -11.78 -10.78 1h11/2 -10.21 -9.82 -9.35
1i13/2 -9.60 -8.97 -9.00 Eh -11.30 -10.57 -9.38
Eh -10.47 -9.55 -9.25

TABLE III. Same as in Table II, but for the neutron and proton
single-particle states in 132Sn.

Neutron state Proton state
nl j NL3 Full Exp nl j NL3 Full Exp

2 f 5/2 0.08 -0.96 -0.58 3s1/2 -4.22 -6.27 -6.83
3p1/2 -0.26 -1.25 -0.92 1h11/2 -5.33 -7.33 -6.84
1h9/2 -0.46 -1.21 -1.02 2d3/2 -5.29 -7.08 -7.19
3p3/2 -0.57 -1.50 -1.73 2d5/2 -7.05 -8.56 -8.67
2 f 7/2 -1.33 -2.12 -2.58 1g7/2 -9.95 -10.77 -9.63
Ep -0.59 -1.44 -1.03 Ep -6.73 -8.32 -7.92
2d3/2 -8.76 -8.03 -7.31 1g9/2 -16.12 -16.06 -15.71
1h11/2 -7.65 -7.33 -7.55 2p1/2 -17.11 -16.65 -16.07
3s1/2 -8.33 -7.71 -7.64 Eh -16.28 -16.15 -15.77
2d5/2 -10.48 -9.47 -8.96
1g7/2 -12.31 -10.84 -9.74
Eh -10.65 -9.55 -8.81
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either by explicitly coupling the single-nucleon states to col-
lective RPA modes, or by using dispersion relations that con-
nect the real and imaginary parts of the optical-model poten-
tial. In the present work we have studied a phenomenological
scheme which allows the inclusion of the dynamical effects
of coupling of single-nucleon motion to surface vibrations in
self-consistent relativistic mean field calculations. The
scheme is based on a linear ansatz for the energy dependence
of the scalar and vector components of the nucleon self-
energy for states close to the Fermi surface. This defines a
generalized Dirac eigenvalue problem, which can be solved
self-consistently together with the Klein-Gordon equations
for the meson fields. Thus, rather than calculating the first-
order correction to the single-nucleon spectra, the assump-
tion of linear energy dependence for the mass operator en-
ables a self-consistent calculation of both the global ground
state properties !masses, radii" and the single-nucleon levels
around the Fermi surface. The model that we have studied
might be especially useful in studies of shape-coexistence
phenomena in nuclei far from the valley of % stability. Be-
cause of the simple linear energy dependence of the effective
single-nucleon potential, the method can be easily extended
to constrained calculations in deformed nuclei.
In the present work the method has been tested on the

spherical, doubly closed-shell nuclei 132Sn and 208Pb. The
ground-state properties of these nuclei are well described by
the standard NL3 effective interaction of the relativistic

mean-field model. With the inclusion of linear energy depen-
dent terms in the scalar and vector components of the
nucleon self-energy for states close to the Fermi surface, the
parameter set of the effective Lagrangian has to be read-
justed in order to reproduce both the global ground state
properties and the densities of single-nucleon states. The re-
sulting single-nucleon spectra have been compared with ex-
perimental data, as well as with previous nonrelativistic first-
order perturbation calculations for 208Pb. It has been shown
that the energy dependent effective mass considerably im-
proves the calculated single-nucleon spectra. By allowing the
simultaneous description of binding energies, radii and
single-nucleon spectra, the self-consistent method studied in
this work presents a natural phenomenological extension of
the relativistic mean-field model. Work is in progress on the
derivation of the energy dependent effective mass by cou-
pling single-nucleon states to surface vibrations calculated in
the relativistic random phase approximation, and on the ex-
tension of the model to deformed nuclei.

ACKNOWLEDGMENTS

This work was supported in part by the Bundesministe-
rium für Bildung und Forschung under Project No. 06 TM
979. D.V. and T.N. would like to acknowledge the support
from the Alexander von Humboldt-Stiftung.

#1$ B.D. Serot and J.D. Walecka, Adv. Nucl. Phys. 16, 1 !1986";
Int. J. Mod. Phys. E 6, 515 !1997".

#2$ P. Ring, Prog. Part. Nucl. Phys. 37, 193 !1996".
#3$ W. Pöschl, D. Vretenar, G.A. Lalazissis, and P. Ring, Phys.

Rev. Lett. 79, 3841 !1997".
#4$ G.A. Lalazissis, D. Vretenar, W. Pöschl, and P. Ring, Nucl.
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