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How atomic nuclei cluster
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Nucleonic matter displays a quantum-liquid structure, but in some
cases finite nuclei behave like molecules composed of clusters of
protons and neutrons. Clustering is a recurrent feature in light
nuclei, from beryllium to nickel1–3. Cluster structures are typically
observed as excited states close to the corresponding decay threshold;
the origin of this phenomenon lies in the effective nuclear interaction,
but the detailed mechanism of clustering in nuclei has not yet been
fully understood. Here we use the theoretical framework of energy-
density functionals4,5, encompassing both cluster and quantum
liquid-drop aspects of nuclei, to show that conditions for cluster
formation can in part be traced back to the depth of the confining
nuclear potential. For the illustrative example of neon-20, we show
that the depth of the potential determines the energy spacings
between single-nucleon orbitals in deformed nuclei, the localization
of the corresponding wavefunctions and, therefore, the degree of
nucleonic density clustering. Relativistic functionals, in particular,
are characterized by deep single-nucleon potentials. When com-
pared to non-relativistic functionals that yield similar ground-state
properties (binding energy, deformation, radii), they predict the
occurrence of much more pronounced cluster structures. More
generally, clustering is considered as a transitional phenomenon
between crystalline and quantum-liquid phases of fermionic
systems.

The occurrence of molecular states in atomic nuclei and the forma-
tion of clusters of nucleons were predicted in the 1930s (refs 1 and 2).
Subsequently, the description of nuclear dynamics came to be based
predominantly on the concept of independent nucleons in a mean-
field potential, but a renewed interest in clustering phenomena in the
1960s led to the development of theoretical methods dedicated to
considering clusters3. Numerous experimental studies have revealed
a wealth of data on clustering phenomena in light nuclei3, and modern
theoretical approaches use microscopic models that take single-
nucleon degrees of freedom fully into account6–8. Clustering gives rise
to nuclear molecules. For instance, in 12C the second 01 state—the
Hoyle state that has a key role in stellar nucleosynthesis—is predicted
to display a structure composed of three a-particles9,10. The binding
energy of the a-particle, formed from two protons and two neutrons, is
much larger than that of other light nuclei. Cluster radioactivity11,
discovered in the 1980s, is another manifestation of clustering in
atomic nuclei. Experimental signatures of clustering are usually indirect.
Quasi-molecular resonances are probed by scattering one cluster on
another, such as in the 12C112C system3,12, and cluster structures are
also discernible in the break-up of nuclei. Evidence has been reported
for the formation of clusters in ground and excited states of a number
of a-conjugate nuclei3; that is, nuclei with an equal, even number of
protons and neutrons, from 8Be to 56Ni.

The mechanism of cluster formation has not yet been fully
understood. As shown in Ikeda diagrams13, cluster structures are pre-
dicted to appear as excited states close to the corresponding decay
threshold. However, the origin of cluster formation lies in the effective
nuclear interaction, and signatures should also be present in the ground
state14–16. Deformation has an important role because it removes the
degeneracy of single-nucleon levels associated with spherical symmetry.

At specific deformations the shell structure can restore degeneracies
corresponding, for instance, to a 2:1 ratio of the large axis over the small
axis of a quadrupole deformed system3. Consequently, the restored
degeneracy of deformed shell closures facilitates the formation of
clusters. However, this may be a rather qualitative explanation, because
clustering phenomena cannot generally be explained by accidental
degeneracies. Clustering is an essential feature of many-nucleon
dynamics that coexists with the nuclear mean-field. Therefore,
although in most cluster models the existence of such structures is
assumed a priori and the corresponding effective interactions are
adjusted to the binding energies and scattering phase shifts of these
configurations, a fully microscopic understanding of cluster formation
necessitates a more general description that encompasses both cluster
and quantum liquid-drop aspects in light and heavier nuclei. It is
well known that deformation and closeness to the cluster-emission
threshold favour cluster formation. States close to the particle-
emission threshold cannot be isolated from the environment of
scattering states, so cluster states at the threshold belong to an open
quantum system17. The aim of this work is to further explore the origin
of clustering: to examine the conditions for cluster formation in
ground states of finite nuclei, starting from a fully microscopic descrip-
tion based on the framework of energy-density functionals (EDFs).

At present, the only comprehensive approach to nuclear structure is
based on the framework of EDFs. Nuclear EDFs enable a complete and
accurate description of ground-state properties and collective excita-
tions over the whole nuclide chart4,5. In practical implementations,
nuclear EDFs are analogous to Kohn2Sham Density Functional
Theory, the most widely used method for electronic-structure calcula-
tions in condensed-matter physics and quantum chemistry. In the
nuclear case, the many-body dynamics is represented by independent
nucleons moving in a local self-consistent mean-field potential that
corresponds to the actual density and current distribution of a given
nucleus. Both relativistic and non-relativistic realizations of EDFs are
used in studies of nuclear matter and finite nuclei. A nuclear EDF is
universal in the sense that, for a given inter-nucleon interaction, it has
the same functional form for all systems. Using a small set of global
parameters adjusted to empirical properties of homogeneous nuclear
matter and data on finite nuclei, a universal functional provides a
description of the structure of nuclei across the chart of nuclides.

A number of recent studies based on nuclear EDFs or the mean-field
approach have analysed cluster structures ina-conjugate nuclei14–16,18–20.
In Fig. 1 we display the self-consistent ground-state densities of 20Ne,
calculated with two widely used functionals that are representative of the
two classes of nuclear EDFs: the non-relativistic Skyrme SLy4 (ref. 21),
and the relativistic functional DD-ME2 (ref. 22). The equilibrium shape
of 20Ne is a prolate, axially symmetric quadrupole ellipsoid. Although
they have not been specifically adjusted to this mass region, both func-
tionals reproduce the empirical ground-state properties of this nucleus:
the experimental binding energy, 160.6 MeV; the radius of the proton
distribution, 2.90 fm (ref. 23); and the radius of the matter distribution,
2.85 fm (ref. 24), all with a typical accuracy to within roughly 1%. It is
remarkable that, although these functionals predict similar values for the
binding energy, charge and matter radii, and quadrupole deformation
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of the equilibrium shape of 20Ne, the corresponding single-nucleon
densities are qualitatively very different. The density calculated with
SLy4 displays a smooth behaviour characteristic of a Fermi liquid, with
an extended surface region in which the density very gradually
decreases from the central value of around 0.16 fm23 (Fig. 1b). The
relativistic functional DD-ME2, on the other hand, predicts an
equilibrium density that is much more localized. The formation of
cluster structures is clearly visible, with density spikes as large as
roughly 0.2 fm23, and a much narrower surface region (Fig. 1a).

Understanding the difference in the equilibrium densities of 20Ne
calculated with SLy4 and DD-ME2 is a key to the mechanism of
ground-state cluster formation in this mass region of a-conjugate
deformed nuclei. The axially symmetric deformation of the nuclear
mean-field removes the degeneracy of spherical single-nucleon levels,
and nucleons paired by spin (up and down) occupy orbitals characterized
by time-reversal degeneracy. For large deformations these levels can be
labelled by a set of asymptotic Nilsson quantum numbers25 and,
because of the relatively weak Coulomb interactions in light nuclei,
the localization of proton and neutron orbitals is similar in nuclei with
equal numbers of protons and neutrons (Z 5 N nuclei). In the specific
case of 20Ne, ten protons and ten neutrons occupy five deformed
Nilsson levels, with the energy spacing between these levels propor-
tional to the deformation of the single-nucleon potential. Figure 2
shows the partial single-nucleon densities that correspond to the
highest occupied Nilsson orbital. Even without introducing a quant-
itative measure of localization, it is obvious that DD-ME2 predicts a
much more localized density distribution (Fig. 2a). More-localized
density distributions are also obtained for the other four occupied
orbitals when calculated using DD-ME2.

Localization of densities that correspond to single-particle orbitals is
a necessary precondition for the formation of clusters, and this effect
can be traced back to the corresponding single-nucleon spectra. The
comparison of spectra calculated with the two functionals shows that
the one obtained with DD-ME2 is more spread out, and the more
pronounced energy spacings between single-particle levels are also
reflected in the more localized wavefunctions and partial densities.
Starting from degenerate spherical single-particle levels, the splitting
of the corresponding Nilsson deformed states is proportional to the
deformation, and to the depth of the potential. Given that the two
functionals predict almost identical equilibrium deformations and
radii for 20Ne, the different energy spacings in the single-nucleon
spectra must have their origin in the difference in the corresponding
potentials. In fact, the self-consistent mean-field potential of DD-ME2
is considerably deeper than that of SLy4. In the centre of the nucleus,
the depth of the DD-ME2 single-neutron potential is 278.6 MeV,
whereas the depth of the SLy4 potential is 269.5 MeV. The corres-
ponding values of the single-proton potentials are 272.8 MeV for DD-
ME2 and 264.6 MeV for SLy4. The effect of the potential depth on the
localization of wavefunctions is shown schematically in Fig. 3a, where,
as an approximation to nuclear potentials, we plot three harmonic-
oscillator potentials with different depth values—30, 45 and 60 MeV—
but the same radius, R 5 3 fm. The radial wavefunctions of the
corresponding p-states are shown in Fig. 3b. The oscillator length b
determines the position of the maximum and the dispersion of the
wavefunction26. The deeper the potential, the smaller the oscillator
length (see the expression in the legend of Fig. 4), and the more
localized the wavefunctions. In the classically forbidden region
(R . 3 fm on Fig. 3), a smaller oscillator length leads to a more rapid
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Figure 1 | Self-consistent ground-state densities of 20Ne. Two nuclear
energy-density functionals are used: a, DD-ME2 (ref. 22), and b, Skyrme SLy4
(refs 21 and 30). The densities (in units of fm23) are plotted in the x2z plane of
the intrinsic frame of reference that coincides with the principal axes of the

nucleus, with z chosen as the symmetry axis. The inserts show the
corresponding three-dimensional density plots and the density profiles (r)
along the symmetry axis (x 5 0).
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Figure 2 | Partial nucleon density distributions. Density distributions that
correspond to the highest occupied level (2 protons spin up and down, and 2
neutrons spin up and down) in 20Ne, having Nilsson quantum

numbers 1/21[220], calculated using the nuclear energy-density functionals
DD-ME2 (ref. 22) (a) and SLy4 (refs 21 and 30) (b).
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exponential decay of the wavefunction, also favouring its localization.
Hence a larger depth of the potential leads to a more pronounced
localization of the wavefunction, in both the classically allowed and
the forbidden regions, as shown in Fig. 3. In the present study we have
verified, through a series of self-consistent mean-field calculations
using a variety of non-relativistic and relativistic functionals for
20Ne, 24Mg, 28Si and 32S, that pronounced cluster structures in
deformed equilibrium shapes indeed occur only for deep single-
nucleon potentials.

The difference between the potential depths calculated with DD-
ME2 and SLy4 is characteristic for relativistic versus non-relativistic
self-consistent potentials. The depth of a relativistic potential is deter-
mined by the difference between two large fields: an attractive (nega-
tive) Lorentz scalar potential of magnitude around 400 MeV, and a
repulsive Lorentz vector potential of roughly 320 MeV (plus the
repulsive Coulomb potential for protons)4,5. In uniform matter these
potentials are determined by the choice of the nuclear-matter equation
of state; that is, by the density at which nucleonic matter saturates and
by the binding energy per nucleon at saturation. The corresponding
scalar and vector nucleon densities are related by a self-consistency
condition27 (in infinite matter the potentials are constant and propor-
tional to the corresponding densities). Moreover, the sum of these
potentials (about 700 MeV) determines the effective single-nucleon
spin2orbit force in finite nuclear systems, which naturally manifests
itself with the empirical strength. In a non-relativistic approach the
spin2orbit potential is included in a purely phenomenological way,
with the strength of the interaction adjusted to empirical energy spacings

between spin2orbit partner states. Because the relativistic scalar and
vector fields determine both the effective spin2orbit potential and the
self-consistent single-nucleon mean-field, the latter is found to be
deeper than the non-relativistic mean-field potentials for all relativistic
functionals.

More generally, fermionic systems can exhibit a crystalline phase or,
on the other extreme, a quantum liquid phase. The ‘quantality’ parameter
has been thought28 to show that nuclear matter displays a quantum-
liquid structure. This concept can be generalized by considering
nuclear clusters as transitional states between crystalline and quantum-
liquid phases (Fig. 4). The dimensionless ratio a 5 b/r0, where b is the
dispersion of the nucleon wavefunction and r0 is the typical inter-
nucleon distance (roughly 1.2 fm), is the natural parameter to quantify
nuclear clustering, in analogy with similar considerations in condensed
matter29. When a is greater than 1, nucleons are delocalized and the
nucleus has a quantum-liquid structure. The transition to a cluster
state occurs when a is about 1, so that nucleons become more localized
and form a molecular structure (Fig. 4). In the present analysis we find
that a is smaller than 1 for the relativistic functional, whereas it is
greater than 1 for the non-relativistic functional. Moreover, from its
definition in the case of a harmonic-oscillator potential (see legend of
Fig. 4), a obviously increases with the number of nucleons (nuclear
radius). Cluster states, therefore, are less likely to appear in heavier
nuclei. The present discussion is also relevant for studies of the ‘pasta’
phase (located between the Wigner crystal and nuclear-matter phases)
in the crust of neutron stars.
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