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The relativistic mean-field plus random phase and quasiparticle random phase approximation calculations,
based on effective Lagrangians with density-dependent meson-nucleon vertex functions, are employed in a
microscopic analysis of the nuclear matter compressibility and symmetry energy. We compute the isoscalar
monopole response of 90Zr, 116Sn, 144Sm, the isoscalar monopole and isovector dipoles response of 208Pb, and
also the differences between the neutron and proton radii for 208Pb and several Sn isotopes. The comparison of
the calculated excitation energies with the experimental data on the giant monopole resonances restricts the
nuclear matter compression modulus of structure models based on the relativistic mean-field approximation to
Knm#250–270 MeV. The isovector giant dipole resonance in 208Pb and the available data on differences
between the neutron and proton radii limit the range of the nuclear matter symmetry energy at saturation
!volume asymmetry" of these effective interactions to 32 MeV$a4$36 MeV.
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I. INTRODUCTION

Basic properties of nuclear ground states, excitation ener-
gies of giant monopole resonances, the structure of neutron
stars, the dynamics of heavy-ion collisions and of superno-
vae explosions, depend on the nuclear matter compressibil-
ity. The nuclear matter compression modulus Knm is defined
as

Knm"k f
2 d

2E/A
dk f

2 !
k f 0

, !1"

where E/A is the binding energy per nucleon, k f is the Fermi
momentum, and k f 0 is the equilibrium Fermi momentum.
The value of Knm cannot be measured directly. In principle, it
can be extracted from the experimental energies of isoscalar
monopole vibrations %giant monopole resonances !GMRs"&
in nuclei. Semiempirical macroscopic leptodermous expan-
sions, as well as microscopic calculations, have been em-
ployed in the analysis of available data on isoscalar GMRs.
Although macroscopic expansions, analogous to the liquid
drop mass formula, in principle, provide ‘‘model indepen-
dent’’ estimates of Knm , in reality they do not constrain its
value to better than 50%.
A more reliable approach to the determination of Knm is

based on microscopic calculations of GMR excitation ener-
gies. Self-consistent mean-field calculations of nuclear
ground-state properties are performed by using effective in-
teractions with different values of Knm . Interactions that dif-
fer in their prediction of the nuclear matter compressibility,
but otherwise reproduce experimental data on ground-state
properties reasonably well, are then used to calculate GMRs
in the random phase approximation or the time-dependent
framework. A fully self-consistent calculation of both

ground-state properties and GMR excitation energies re-
stricts the range of possible values for Knm . The correct
value of Knm should then be given by that interaction which
reproduces the excitation energies of GMRs in finite nuclei.
It has been pointed out, however, that, since Knm determines
bulk properties of nuclei and, on the other hand, the GMR
excitation energies depend also on the surface compressibil-
ity, measurements and microscopic calculations of GMRs in
heavy nuclei should, in principle, provide a more reliable
estimate of the nuclear matter compressibility %1,2&. It has
also been emphasized that the determination of a static quan-
tity Knm from dynamical properties, i.e., from GMR energies,
is potentially ambiguous. Various dynamical effects, as for
instance the coupling of single-particle and collective de-
grees of freedom, could modify, though not much, the de-
duced value of the nuclear matter compression modulus. On
the other hand, it has been shown that Knm cannot be ex-
tracted from static properties, i.e., masses and charge distri-
butions, alone %3&.
In this work, we address a different source of ambiguity,

which has become apparent only recently. Modern nonrela-
tivistic Hartree-Fock plus random phase approximation
!RPA" calculations, using both Skyrme and Gogny effective
interactions, indicate that the value of Knm should be in the
range 210–220 MeV %1,2&. In Ref. %3&, it has been shown
that even generalized Skyrme forces, with both density- and
momentum-dependent terms, can only reproduce the mea-
sured breathing mode energies for values of Knm in the in-
terval 215#15 MeV. A comparison of the most recent data
on the E0 strength distributions in 90Zr, 116Sn, 144Sm, and
208Pb, with microscopic calculations based on Gogny effec-
tive interactions by Blaizot et al. %1&, has put the value of
Knm at 231#5 MeV %4&. In relativistic mean-field !RMF"
models on the other hand, results of both time-dependent and
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RPA calculations suggest that empirical GMR energies are
best reproduced by an effective force with Knm
#250–270 MeV %5–8&. Twenty percent, of course, repre-
sents a rather large difference. The origin of this discrepancy
is at present not understood.
By using the same type of nonlinear RMF Lagrangians

with scalar self-interactions as in Refs. %5–8&, in a series of
recent papers %9–11& fully consistent relativistic RPA calcu-
lations of nuclear compressional modes have been per-
formed. The results obtained in Refs. %9,10& for the isoscalar
monopole and dipole compressional modes in 208Pb are ba-
sically in agreement with those of Refs. %5–8&. In addition to
the results obtained in the RMF!RPA framework based on
nonlinear Lagrangians with scalar self-interactions %5–8&, in
Ref. %12& we have carried out calculations of the isoscalar
monopole, isovector dipole, and isoscalar quadrupole re-
sponses of 208Pb, in the fully self-consistent relativistic RPA
framework based on effective interactions with a phenom-
enological density dependence adjusted to nuclear matter and
ground-state properties of spherical nuclei. The analysis of
the isoscalar monopole response with density-dependent
coupling constants has shown that only interactions with the
nuclear matter compression modulus in the range Knm
#260–270 MeV reproduce the experimental excitation en-
ergy of the GMR in 208Pb. In addition, the comparison with
the experimental excitation energy of the isovector dipole
resonance has constrained the volume asymmetry to the in-
terval 34 MeV$a4$36 MeV.
In a very recent relativistic RPA analysis %11&, Piekare-

wicz has pointed out that the compression modulus deter-
mined from the empirical excitation energies of the GMR
depends on the nuclear matter symmetry energy, i.e., models
with a lower symmetry energy at saturation density repro-
duce the GMR in 208Pb by using a lower value of Knm . He
suggested that the variance between the values of Knm deter-
mined from nonrelativistic and relativistic mean-field plus
RPA calculations of GMR excitation energies can be attrib-
uted in part to the differences in the nuclear matter symmetry
energy predicted by nonrelativistic and relativistic models. In
particular, in Ref. %11& it has been shown that, when the
symmetry energy of the RMF models is artificially softened
to simulate the symmetry energy of Skyrme interactions, a
lower value of Knm , consistent with the ones used in nonrel-
ativistic models, is required to reproduce the energy of the
GMR in 208Pb.
The purpose of this work is twofold. By using the RMF

!RPA based on effective interactions with density-
dependent meson-nucleon couplings, we will show the fol-
lowing: !1" The volume asymmetry of relativistic mean-field
effective interactions cannot be lowered to the range of val-
ues a4$30 MeV, for which relativistic models with Knm
$230 MeV would reproduce the excitation energy of the
GMR in 208Pb and !2" relativistic mean-field effective inter-
actions adjusted to reproduce ground-state properties of
spherical nuclei !binding energies, charge radii, differences
between the neutron and proton radii" cannot reproduce the
excitation energies of GMRs if Knm$250 MeV. Therefore,
we will reinforce our result that Knm"250 MeV is the lower
bound for the nuclear matter compression modulus in

nuclear structure models based on the relativistic mean-field
approximation. The difference between the nuclear matter
compressibility predicted by nonrelativistic and relativistic
mean-field plus RPA calculations remains an open problem.

II. EFFECTIVE INTERACTIONS WITH DENSITY-
DEPENDENT MESON-NUCLEON COUPLINGS

AND THE RELATIVISTIC RPA

The relativistic random phase approximation !RRPA" will
be used to calculate the isoscalar monopole and isovector
dipole strength distributions in 208Pb. The RRPA represents
the small amplitude limit of the time-dependent relativistic
mean-field theory. A self-consistent calculation ensures that
the same correlations which define the ground-state proper-
ties also determine the behavior of small deviations from the
equilibrium. The same effective Lagrangian generates the
Dirac-Hartree single-particle spectrum and the residual
particle-hole interaction. In Ref. %13&, it has been shown that
a RRPA calculation, consistent with the mean-field model in
the no-sea approximation, necessitates configuration spaces
that include both particle-hole pairs and pairs formed from
occupied states and negative-energy states. The contributions
from configurations built from occupied positive-energy
states and negative-energy states are essential for current
conservation and the decoupling of the spurious state. In ad-
dition, configurations which include negative-energy states
give an important contribution to the collectivity of excited
states. In two recent studies %8,14&, we have shown that a
fully consistent inclusion of the Dirac sea of negative-energy
states in the RRPA is crucial for a quantitative comparison
with the experimental excitation energies of isoscalar giant
resonances.
The second requisite for a successful application of the

RRPA in the description of dynamical properties of nuclei is
the use of effective Lagrangians with nonlinear meson self-
interactions, or Lagrangians characterized by density-
dependent meson-nucleon vertex functions. Even though
several RRPA implementations have been available for al-
most 20 years, techniques which enable the inclusion of non-
linear meson interaction terms in the RRPA have been devel-
oped only recently %15,7,9&. In Ref. %12&, the RRPA matrix
equations have been derived for an effective Lagrangian with
density-dependent meson-nucleon couplings.
Already in Ref. %5& we used Lagrangians with nonlinear

meson self-interactions in time-dependent RMF calculations
of monopole oscillations of spherical nuclei. The energies of
the GMR were determined from the Fourier power spectra of
the time-dependent isoscalar monopole moments 'r2((t). It
has been shown that the GMR in heavy nuclei as well as the
empirical excitation energy curve Ex#80A$1/3 MeV are best
reproduced by an effective force with Knm
#250–270 MeV. This result has been confirmed by the
RRPA calculation of Ref. %8&. In particular, the best results
have been obtained with the NL3 effective interaction %16&
(Knm"272 MeV). Many calculations of ground-state prop-
erties and excited states, performed by different groups, have
shown that NL3 is the best nonlinear relativistic effective
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interaction so far, both for nuclei at and away from the line
of ) stability.
Even though models with isoscalar-scalar meson self-

interactions have been used in most applications of RMF to
nuclear structure in the past 15 years, they present well
known limitations. In the isovector channel, for instance,
these interactions are characterized by large values of the
symmetry energy at saturation $37.9 MeV for NL3. This is
because the isovector channel of these effective forces is
parametrized by a single constant: the *-meson nucleon cou-
pling g* . With a single parameter in the isovector channel, it
is not possible to reproduce simultaneously the empirical
value of a4 and the masses of N+Z nuclei. On the other
hand, extensions of the RMF model that include additional
interaction terms in the isoscalar and/or the isovector chan-
nels were not very successful, at least in nuclear structure
applications. The reason is that the empirical dataset of bulk
and single-particle properties of finite nuclei can only con-
strain six or seven parameters in the general expansion of an
effective Lagrangian %17&. Adding more interaction terms
does not improve the description of finite nuclei. Rather,
their coupling parameters and even their forms cannot be
accurately determined.
Models based on an effective hadron field theory with

medium-dependent meson-nucleon vertices %18–20& present
a very successful alternative to the use of nonlinear self-
interactions. Such an approach retains the basic structure of
the relativistic mean-field framework, but could be more di-
rectly related to the underlying microscopic description of
nuclear interactions. In Ref. %21&, we have extended the rela-
tivistic Hartree-Bogoliubov !RHB" model %22& to include
density-dependent meson-nucleon couplings. The effective
Lagrangian is characterized by a phenomenological density
dependence of the ,-, -- and *-meson-nucleon vertex func-
tions, adjusted to properties of nuclear matter and finite nu-
clei. It has been shown that, in comparison with standard
RMF effective interactions with nonlinear meson-exchange
terms, the density-dependent meson-nucleon couplings sig-
nificantly improve the description of symmetric and asym-
metric nuclear matter, and of ground-state properties of N
+Z nuclei.
The RRPA with density-dependent meson-nucleon cou-

plings has been derived in Ref. %12&. Just as in the static case,
the single-nucleon Dirac equation includes the additional re-
arrangement self-energies that result from the variation of the
vertex functionals with respect to the nucleon field operators;
the explicit density dependence of the meson-nucleon cou-
plings introduces rearrangement terms in the residual two-
body interaction. Their contribution is essential for a quanti-
tative description of excited states. By constructing families
of interactions with some given characteristic !compressibil-
ity, symmetry energy, effective mass", it has been shown how
the comparison of the RRPA results on multipole giant reso-
nances with experimental data can be used to constrain the
parameters that characterize the isoscalar and isovector chan-
nels of the density-dependent effective interactions. In par-
ticular, the analysis of Ref. %12& has shown that the GMR in
208Pb requires the compression modulus to be in the range
Knm#260–270 MeV, and that the isovector giant dipole

resonance !GDR" in 208Pb is only reproduced with the vol-
ume asymmetry in the interval 34 MeV$a4$ 36 MeV.
However, in Ref. %12& we have not analyzed the influence of
the symmetry energy on the range of allowed values of Knm .
In that work, we have also not tried to correlate the RRPA
results for the isovector GDR with data on neutron radii,
although it has been shown in Ref. %21& that RHB calcula-
tions with the density-dependent effective interaction DD-
ME1 (a4"33.1 MeV) reproduce the available data on dif-
ferences between the neutron and proton radii for 208Pb and
several Sn isotopes.

III. NUCLEAR MATTER COMPRESSIBILITY
AND SYMMETRY ENERGY

By performing fully consistent RMF plus RRPA calcula-
tions of nuclear ground-state properties and excitation ener-
gies of giant resonances, in this section we will try to corre-
late the nuclear matter symmetry energy and the nuclear
matter compression modulus of relativistic mean-field effec-
tive interactions.
In Ref. %11&, Piekarewicz has used the RMF effective in-

teractions with isoscalar-scalar meson self-interactions, and
with compression moduli in the range Knm
#200–300 MeV, to compute the distribution of isoscalar
monopole strength in 208Pb. He has pointed to a correlation
between the volume asymmetry and the nuclear matter com-
pression modulus of relativistic mean-field models. The main
result of his analysis is that, when the symmetry energy is
artificially softened, in an attempt to simulate the symmetry
energy of Skyrme interactions, a lower value for the com-
pression modulus is obtained, consistent with the predictions
of nonrelativistic Hartree-Fock plus RPA calculations.
As we have already emphasized in the preceding section,

the RMF models with isoscalar-scalar meson self-
interactions are characterized by large values of the symme-
try energy at saturation density. When adjusting such an ef-
fective interaction to properties of nuclear matter and bulk
ground-state properties of finite nuclei !binding energy,
charge radius", if a4 is brought below #36–37 MeV by sim-
ply reducing the single coupling constant g* in the isovector
channel, then it is no longer possible to reproduce the rela-
tive positions of the neutron and proton Fermi levels in finite
nuclei, i.e., the calculated masses of N+Z nuclei display
large deviations from the experimental values. The binding
energies are only reproduced if a density dependence is in-
cluded in the *-meson coupling, or a nonlinear *-meson self-
interaction is included in the model. If the interaction, how-
ever, is adjusted to a single nucleus, as it was done in Ref.
%11& for the calculation of the isoscalar monopole strength in
208Pb, then even the standard RMF interactions contain
enough parameters to obtain almost any combination of sym-
metry energy and nuclear matter compressibility.
In the present analysis, we have used effective interac-

tions with density-dependent meson-nucleon vertex func-
tions. For the density dependence of the meson-nucleon cou-
plings, we adopt the functionals used in Refs. %19–21&. The
coupling of the , meson and - meson to the nucleon field
reads
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gi!*""gi!*sat" f i!x " for i", ,- , !2"

where

f i!x ""ai
1!bi!x!di"2

1!ci!x!di"2
!3"

is a function of x"*/*sat , and *sat denotes the baryon den-
sity at saturation in symmetric nuclear matter. The eight real
parameters in Eq. !3" are not independent. The five con-
straints f i(1)"1, f ,! (1)" f-! (1), and f i!(0)"0 reduce the
number of independent parameters to three. Three additional
parameters in the isoscalar channel are g,(*sat), g-(*sat),
and m,—the mass of the phenomenological , meson. For
the *-meson coupling, the functional form of the density
dependence is suggested by Dirac-Brueckner calculations of
asymmetric nuclear matter %23&:

g*!*""g*!*sat"exp%$a*!x$1 "& . !4"

The isovector channel is parametrized by g*(*sat) and a* .
Usually, the free values are used for the masses of the - and
* mesons: m-"783 MeV and m*"763 MeV. In principle,
one could also consider the density dependence of the meson
masses. However, since the effective meson-nucleon cou-
pling in nuclear matter is determined by the ratio g/m , the
choice of a phenomenological density dependence of the
couplings makes an explicit density dependence of the
masses redundant.
Obviously, the framework of density-dependent interac-

tions is more general than the standard RMF models, and it
encloses models with nonlinear meson self-interactions in
the isoscalar-scalar, isoscalar-vector, and isovector-vector
channels. The eight independent parameters, seven coupling
parameters and the mass of the , meson, are adjusted to
reproduce the properties of symmetric and asymmetric
nuclear matter, binding energies, and charge radii of spheri-
cal nuclei. For the open-shell nuclei, pairing correlations are
treated in the BCS approximation with empirical pairing
gaps !five-point formula".
In order to investigate possible correlations between the

nuclear matter symmetry energy and the compression modu-
lus, we have constructed three families of interactions, with
Knm"230, 250, and 270 MeV, respectively. For each value
of Knm , we have adjusted five interactions with a4"30, 32,
34, 36, and 38 MeV, respectively. These interactions have
been fitted to the properties of nuclear matter %the binding
energy E/A"16 MeV !5%", the saturation density *sat
"0.153 fm$3 !5%", the compression modulus Knm !0.1%",
and the volume asymmetry a4 !0.1%"&, and to the binding
energies !0.1%" and charge radii !0.2%" of ten spherical nu-
clei: 16O, 40Ca, 90Zr, 112,116,124,132Sn, and 204,208,214Pb, as
well as to the differences between the neutron and proton
radii !10%" for the nuclei 116Sn, 124Sn, and 208Pb. The val-
ues in parentheses correspond to the error bars used in the
fitting procedure. Note that, in order to fix an interaction with
particular values of Knm and a4, a very small error bar of
only 0.1% is used for these two quantities. For each family
of interactions with a given Knm and for each a4, in Fig. 1

we plot the differences, expressed as a percentage, between
the calculated and experimental binding energies %24&. The
corresponding deviations of charge radii are shown in Fig. 2.
The results are rather good. Most deviations of the binding
energies are $0.2%, and the differences between the calcu-
lated and experimental charge radii %25& are $0.3%, except
for 40Ca. It should be emphasized that, by using the standard
RMF models with only isoscalar-scalar meson self-
interactions, it is simply not possible to construct a set of
interactions with this span of values of Knm and a4 and the
same quality of deviations of masses and charge radii from
experimental values.
For the three sets of interactions with Knm"230, 250, and

270 MeV, in Fig. 3 we display the corresponding nuclear
matter symmetry energy curves for each choice of the vol-
ume asymmetry a4. The symmetry energy can be param-
etrized,

S2!*""a4!
p0
*sat
2 !*$*sat"!

.K0
18*sat

2 !*$*sat"
2!••• . !5"

The parameter p0 defines the linear density dependence of
the symmetry energy, and .K0 is the correction to the in-
compressibility.
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FIG. 1. The deviations !in percent" of the theoretical binding
energies of ten spherical nuclei, calculated with the three families of
interactions with Knm"230, 250, and 270 MeV, from the empirical
values %24&. The legend relates the different symbols to the volume
asymmetries of the corresponding effective interactions.
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In finite nuclei, among other quantities, the symmetry en-
ergy directly determines the differences between the neutron
and the proton radii. In a recent study of the neutron radii in
nonrelativistic and covariant mean-field models %26&, the lin-
ear correlation between the neutron skin and the symmetry
energy has been analyzed. In particular, the analysis has
shown that there is a very strong linear correlation between
the neutron skin thickness in 208Pb and the individual param-
eters that determine the symmetry energy S2(*): a4 , p0, and
.K0. The empirical value of rn$rp in 208Pb (0.20
#0.04 fm from proton scattering data %27&, and 0.19
#0.09 fm from the / scattering excitation of the isovector
giant dipole resonance %28&" places the following constraints
on the values of the parameters of the symmetry energy:
a4#30–34 MeV, 2 Mev/fm3$p0$4 Mev/fm3, and
$200 MeV $.K0$$50 MeV.
For the three sets of interactions with Knm"230, 250, and

270 MeV, in the two lower panels of Fig. 4 we plot the
coefficients p0 and .K0 as functions of the volume asym-
metry a4. As we have shown in Ref. %12&, in order to repro-
duce the bulk properties of spherical nuclei, larger values of
a4 necessitate an increase of p0. It is important to note that
only in the interval 32 MeV$a4$36 MeV, both p0 and
.K0 are found within the bounds determined by the value of
rn$rp in 208Pb. The increase of p0 with a4 implies a tran-
sition from a parabolic to an almost linear density depen-
dence of S2 in the density region *$0.2 fm$3 !see Fig. 3".

This means, in particular, that the increase of the asymmetry
energy at saturation point will produce an effective decrease
of S2 below *#0.1 fm$3. In Refs. %29,12& it has been shown
that, as a result of the increase of p0 with a4, the excitation
energy of the isovector GDR decreases with increasing
S2(*sat)0a4, because this increase implies a decrease of S2
at low densities characteristic for surface modes. This effect
is illustrated in the upper panel of Fig. 4, where we plot the
calculated excitation energies of the isovector GDR in 208Pb
as functions of a4, for each set of interactions with Knm
"230, 250, and 270 MeV. The calculated centroids of the
Lorentzian folded strength distributions are shown in com-
parison with the experimental value of 13.3#0.1 %30&. The
RRPA excitation energies of the isovector GDR decrease lin-
early with a4, and the experimental value favors, for all three
families of interactions, the interval 34 MeV$a4$36 MeV
for the volume asymmetry.
The results of fully consistent RRPA calculations of the

isoscalar monopole response in 208Pb are shown in the upper
panel of Fig. 5, where we plot the excitation energies of the
GMR for the three families of interactions with Knm"230,
250, and 270 MeV, respectively, as functions of the volume
asymmetry a4. The shaded area denotes the experimental
value: E"14.17#0.28 MeV %4&. For each interaction, in the
lower panel we plot the corresponding result for the differ-
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FIG. 3. S2(*) coefficient !5" of the quadratic term of the energy
per particle of asymmetric nuclear matter, calculated with the three
families of effective interactions with Knm"230, 250, and 270
MeV. The legend relates the different curves to the volume asym-
metries of the corresponding effective interactions.
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ence of the neutron and proton radii in 208Pb, in comparison
with, at present, the best experimental value: 0.20#0.04 fm
from proton scattering data %27&. The calculated radii practi-
cally do not depend on the compressibility but, of course,
display a strong linear dependence on the volume asymmetry
a4. The comparison with the experimental estimate limits the
possible values of the symmetry energy at saturation to
32 MeV$a4$36. This interval for a4 is somewhat wider
than the range deduced from the isovector GDR but, never-
theless, both quantities exclude values a4$30 MeV and a4
138 MeV. Coming back to the GMR !upper panel of Fig.
5", we notice that only the set of interactions with Knm
"270 MeV reproduces the experimental excitation energy
of the GMR for all values of the volume asymmetry a4. With
Knm"250 MeV, only for the two lowest values of a4 the
RRPA results for the GMR excitation energy are found
within the bounds of the experimental value. Knm
"250 MeV is obviously the lower limit for the nuclear mat-
ter compression modulus of the relativistic mean-field effec-
tive interactions. This result is completely in accordance with
our previous results obtained with relativistic effective forces
with nonlinear meson self-interactions %5,8&, and with
density-dependent interactions %12&. The calculation abso-
lutely excludes the set of interactions with Knm"230 MeV,
for any value of a4. The calculated energies are simply too
low to be compared with the experimental value.
In Fig. 6, we compare, for all three families of interac-

tions, the calculated excitation energies of the GMR for

144Sm, 116Sn, and 90Zr, with the experimental values
15.39#0.28 MeV, 16.07#0.12 MeV, and 17.89
#0.20 MeV, respectively %4&. The isoscalar monopole re-
sponse in these nuclei has been calculated by using the
newly developed relativistic quasiparticle random phase ap-
proximation !RQRPA", formulated in the canonical single-
nucleon basis of the RHB model %31&. For the interaction in
the particle-hole channel, effective Lagrangians with nonlin-
ear meson self-interactions or density-dependent meson-
nucleon vertex functions can be used, and pairing correla-
tions are described by the pairing part of the finite range
Gogny interaction. In agreement with the results obtained for
208Pb, also for the lighter nuclei, 144Sm, 116Sn, and 90Zr, the
comparison with the experimental GMR excitation energies
excludes the set of interactions with Knm"230 MeV. The
RQRPA results point to Knm#250 MeV as the lowest value
of the nuclear matter compressibility, for which relativistic
mean-field effective interactions reproduce the empirical
GMR excitation energies.
In Fig. 7, we plot, for the three sets of interactions with

Knm"230, 250, and 270 MeV, respectively, the calculated
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FIG. 4. The isovector GDR excitation energy of 208Pb !upper
left panel", parameter p0 of the linear density dependence of the
nuclear matter asymmetry energy !lower left", and the correction to
the incompressibility .K0 !lower right", as functions of the volume
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FIG. 5. The RRPA excitation energies of the GMR in 208Pb as
functions of the volume asymmetry a4, calculated for the three sets
of interactions with Knm"230, 250, and 270 MeV. The theoretical
centroids are shown in comparison with the experimental excitation
energy of the monopole resonance: E"14.17#0.28 MeV %4&. In
the lower panel, the corresponding results for the difference of the
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differences between the neutron and proton radii of Sn iso-
topes, as functions of the mass number, in comparison with
the available experimental data %32&. Similar to the result
obtained for 208Pb, the calculated values practically do not
depend on the nuclear matter compressibility. While all the
interactions reproduce the isotopic trend of the experimental
data, and we also notice that the error bars are rather large,
nevertheless the comparison excludes values a4$30 MeV
and a4138 MeV.
For the volume asymmetry a4"32 MeV, i.e., at the lower

limit of the range of values allowed by the relativistic mean-
field calculations of the differences between the neutron and
proton radii, and the RRPA calculation of the isovector giant
dipole resonance in 208Pb, we have generated an additional
interaction with Knm"240 MeV. As our final test, in Fig. 8
the RRPA/RQRPA excitation energies of the GMR in 90Zr,
116Sn, 144Sm, and 208Pb, calculated for a4"32 MeV and
Knm"230, 240, 250, and 270 MeV, are compared with the
experimental values from Ref. %4&. The comparison clearly
demonstrates that, even when the asymmetry energy is soft-
ened, relativistic effective interactions with Knm%250 MeV
do not reproduce the experimental excitation energies of the
giant monopole resonances.

IV. SUMMARY AND CONCLUSIONS

In this work, we have employed the fully consistent rela-
tivistic mean-field plus RPA and QRPA models, based on
effective Lagrangians with density-dependent meson-
nucleon vertex functions, in a microscopic analysis of the
nuclear matter compressibility and symmetry energy. In a
number of previous studies !time-dependent RMF, relativis-
tic RPA", we have shown that, by using standard RMF effec-
tive Lagrangians with nonlinear isoscalar-scalar meson self-
interactions, the experimental data on GMRs in heavy nuclei,
as well as the empirical excitation energy curve Ex
#80A$1/3 MeV, are best reproduced by an effective force
with Knm#250–270 MeV %5–8&. The best results have been
obtained with the well known effective interaction NL3 %16&
(Knm"272 MeV). It is well known, however, that the stan-
dard RMF Lagrangians, with meson self-interactions only in
the isoscalar channel, are characterized by large values of the
symmetry energy at saturation !volume asymmetry" a4. In
fact, if the effective interaction in the isovector channel is
parametrized by the single *-meson-nucleon coupling con-
stant, it is not possible to simultaneously reduce the value of
a4 below #36–37 MeV, and still reproduce the experimen-
tal binding energies of N+Z nuclei.
In the present analysis, we have used effective interac-

tions with density-dependent meson-nucleon couplings.
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lated for the three sets of interactions with Knm"230, 250, and 270
MeV. The theoretical centroids are shown in comparison with the
experimental excitation energies of the monopole resonances from
Ref. %4&.
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RMF models based on an effective hadron field theory with
medium-dependent meson-nucleon vertices %18& provide a
much better description of symmetric and asymmetric
nuclear matter, and of ground-state properties of N+Z nuclei
%19–21&. In order to investigate possible correlations be-
tween the volume asymmetry and the nuclear matter com-
pression modulus, we have constructed three sets of effective
interactions with Knm"230, 250, and 270 MeV, and for each
value of Knm we have adjusted five interactions with a4
"30, 32, 34, 36, and 38 MeV, respectively. The interactions
have been fitted to reproduce the nuclear matter saturation
properties, as well as the ground states of ten spherical nu-
clei.
By employing the fully consistent RMF plus RRPA/

RQRPA framework with density-dependent effective interac-
tions, we have computed the isoscalar monopole response of
90Zr, 116Sn, 144Sm, the isoscalar monopole and the isovector
dipole response of 208Pb, as well as the differences between
the neutron and proton radii for 208Pb and several Sn iso-
topes. The comparison of the calculated excitation energies
with the experimental data on the GMR and isovector GDR
in 208Pb has shown that !i" only for Knm"250–270 MeV the

RRPA calculation reproduces the experimental excitation en-
ergy of the GMR for most values of the volume asymmetry
a4, !ii" Knm"250 MeV represents the lower limit for the
nuclear matter compression modulus of the relativistic mean-
field effective interactions, !iii" the isovector GDR constrains
the volume asymmetry to the interval 34 MeV$a4
$36 MeV. In comparison with the available experimental
data, the calculated differences between the neutron and pro-
ton radii indicate that the volume asymmetry should be in the
range 32 MeV$a4$36 MeV, and reinforce our conclusion
that a4 cannot be lowered to a range of values for which
relativistic models with Knm$230 MeV would reproduce the
excitation energy of the GMR in 208Pb. The disagreement
between the nuclear matter compression moduli predicted by
nonrelativistic and relativistic mean-field plus RPA calcula-
tions cannot be explained by the differences in the volume
asymmetry of the nonrelativistic and relativistic mean-field
models.
The present analysis has confirmed our earlier results that

the nuclear matter compression modulus of structure models
based on the relativistic mean-field approximation should be
restricted to the interval Knm#250–270 MeV.
In addition, we have also shown that, for the relativistic

mean-field models, the isovector GDR and the available data
on differences between the neutron and proton radii limit the
range of the nuclear matter symmetry energy at saturation to
32 MeV$a4$36 MeV. It appears that the GDR favors the
high end of this interval, but we stress the fact that in the
present analysis we have not taken into account the influence
of the effective mass on the calculated excitation energy of
the GDR. This is, however, an effect which really goes be-
yond the mean-field approximation. Rather, more accurate
data on the neutron radii in heavy nuclei would provide very
useful information of the isovector channel of the effective
RMF interactions. On the other hand, as it has been shown in
Ref. %1&, there is no correlation between the effective mass
and the excitation energy of the GMR. The choice of the
effective mass, therefore, cannot influence the nuclear matter
compressibility extracted from the GMR.
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Ring, Nucl. Phys. A621, 853 !1997".

%6& D. Vretenar, P. Ring, G.A. Lalazissis, and N. Paar, Nucl. Phys.
A649, 29c !1999".

%7& D. Vretenar, A. Wandelt, and P. Ring, Phys. Lett. B 487, 334
!2000".

%8& Z.Y. Ma, N. Van Giai, A. Wandelt, D. Vretenar, and P. Ring,

80 100 120 140 160 180 200 220
A

74

76

78

80

82

84

86
A1/

3 E 
(M

eV
)

K=230 MeV
K=240 MeV
K=250 MeV
K=270 MeV
EXP

a4=32 MeV

FIG. 8. The RRPA/RQRPA excitation energies of the GMR in
90Zr, 116Sn, 144Sm, and 208Pb, calculated for a4"32 MeV and
Knm"230, 240, 250, and 270 MeV, in comparison with the experi-
mental values from Ref. %4&.
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