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Abstract. Nucleon localization and formation oficlusters in nucleonic matter and
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finite nuclei are explored in a framework based on nueléar energy density functionals.
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The liquid-cluster transition is investigated andsdifferent measures of localization are

N
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discussed. The formation and evolutionfof a-clusters, in excited states of both N = Z

N
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and neutron-rich nuclei are analyzed. Effects of the spin-orbit coupling are discussed
in relation to the confining potential.
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1. Introduction

Localization of strongly interacting matter (baryons) and correlations that lead to
formation of cluster structures in nucleonic matter, stellar matter, and finite nuelei
is a topic at the forefront of experimental and theoretical research in,nuclear physics
and in astrophysical modelling [1, 2, 3, 4, 5, 6, 7]. The most simple.system, infinite
nuclear matter, consists of protons and neutrons only, and does not take into account
electromagnetic interactions. At equilibrium (saturation) demsitynit is/a quantum
liquid, however in dilute symmetric and asymmetric nuclear matter<€orrelations induce
formation of nucleon clusters. Matter in compact stellar objeets, e.gi neutron stars,
is characterized by the interplay of strong and electromagnetie,interactions between
the constituent hadrons and leptons, that leads to the formation of various phases
of inhomogeneous matter, including cluster structures and themuclear “pasta” phase
[8, 9, 10] with neutrons and protons arranged in,a varietyyof complex geometrical
structures, e.g. cylindrical and planar, resemblingdifferent types of pasta. Finite nuclei,
especially relatively light systems, exhibit a coexistence - 6f the nucleonic liquid phase
and nucleon clusters, predominantly *Hemuclei (asparticles).

Clustering phenomena present a unique. charaeteristic of nuclear structure and
dynamics from light even-even systems with, equal number of protons and neutrons to
heavy and superheavy elements, and*frem stable nuclei to exotic neutron-rich systems
far from the valley of [-stability. Seme of the earliest models of nuclear structure
were, in fact, formulated in #erms of aggregates of nucleon clusters [11, 12, 13, 14].
Later it was suggested that although nucleonic matter in nuclei at low energies behaves
like a quantum liquid, cluster structures should be observed as excited states close
to the corresponding threshold\energy for cluster emission [15, 16]. Closeness to the
continuum and geometric/Shape transitions (intrinsic deformations) in light nuclei favour
the formation of clusters."Their origin, however, lies in the effective nuclear interaction
[17]. Very recently it has been shown, using lattice effective field theory, that in light
even-even nuclei withrequalbnimbers of protons and neutrons, a first-order transition at
zero temperature occurs from a Bose-condensed gas of a-particles to a nuclear liquid [18].
The transition<is-determined by the strength of the o — « interaction, which depends
on the strength and_loecality of the nucleon-nucleon interactions. In an earlier study
based on nuelear energy density functionals [19], we demonstrated that conditions for
nucleondocalization and formation of clusters can be related to the depth of the effective
potentialithat confines protons and neutrons in a nucleus. To gain a full understanding
of the mechanism of cluster formation, a consistent theoretical framework will have
tobe developed in the future that encompasses both cluster and quantum liquid-drop
aspectsptaking into account the principal characteristics of nuclei as finite, self-bound
and. open quantum systems: a relatively small number of constituent particles that
self-consistently generate the confining potential, geometric shape transitions, surface
effects, and coupling to the continuum.

Page 2 of 20



Page 3 of 20

©CoO~NOUTA,WNPE

AUTHOR SUBMITTED MANUSCRIPT - JPhysG-101858.R1

Localization and clustering in atomic nucles 3

2. Localization and clustering in nucleonic matter

Neutrons and protons in finite nuclei and extended nucleonic matterfexhibit several
phases.  Symmetric nuclear matter, in particular, is an idealised infinite and
homogeneous medium of equal number of structureless protons and neutrons interacting
by low-energy nuclear forces, and no Coulomb force. At equilibrium, nuelear matter
behaves like a quantum (Fermi) liquid characterised by a saturation/densityof py =~ 0.16
nucleon/fm? and binding energy Ep &~ 16 MeV /nucleon. The guantum liquid nature
of nuclei and nuclear matter was discussed by B. Mottelson[20], whe'used a previously
introduced quantality parameter [21]:
h2

IR (1)
The quantality Ay is defined as the ratio of the' zero-point kinetic energy of the
confined particle to its potential energy. The kinétic energy h*/mr? corresponds to
the momentum p = A/7, and the reduced mass m/2. The equilibrium inter-particle
distance is 7, and |Vy| denotes the depth of the potentia’. The transition between a
solid phase (small kinetic energy compared.to the petential at equlibrium) and a liquid
(relatively large kinetic energy in comparison te the depth of the potential) occurs for
MAyviot =~ 0.1. For small Ay the inter-particle interaction dominates and the equilibrium
state of the many-body system will'be a eéonfiguration in which each particle is localized
with respect to its neighbours, whereas for Ayi,; > 0.1 the ground state is a quantum
liquid in which the individual particles are delocalized and the low-energy excitations
(quasi-particles) have infinite mean free path [22]. In the case of nuclear matter 7 is of
the order of 1 fm, the strength of the hare nucleon-nucleon interaction |V,| ~ 100 MeV,
mec? ~ 940 MeV is the nucléon mass.and, therefore, Ay ~ 0.4 is a characteristic value
for the nuclear quantum liquid phase.

At subsaturationddensities /correlations in strongly interacting matter lead to
clustering phenomena 23] and, eventually, to a gas phase with nucleons and light
clusters. As a result of strong correlations bound states are formed at low density and,
when nucleonic bound states can be considered as bosons, that is, when formed from an
even number/of nucleons, Bose-Einstein condensation may occur at low temperatures
in nuclear matter. In thespin singlet (S = 0) channel the interaction is not attractive
enough tesform a bound state. A bound proton-neutron pair, the deuteron, materializes
in the triplet (§\= 1) channel. However, as shown in Ref. [24], in the low-density limit
the transition to triplet pairing does not take place because four-nucleon correlations
dominate. An chemical equilibrium, at low temperatures in the low-density limit nuclear
matter is characterised by condensation of a-particles (bound states of two protons and
two neutrons) that are much more strongly bound than deuterons. The formation of
well 'defined clusters is predicted at densities well below the saturation point. With
increasing density clusters dissolve because of a reduction of their binding caused by the
Pauli blocking that leads to the Mott effect for vanishing binding [25, 26].
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3. Liquid-cluster transition in finite nuclei

When temperature decreases and density increases, a system of particles interacting
through a short-range force undergoes a transition to a quantum liquid state [27].
Quantum effects become important when the typical dispersion of ;the constituent
particles, that is, the thermal de Broglie wavelength of a particle A =/h/p e fi/v2mkT
becomes comparable to the average inter-particle spacing. In a tramsition to a
quantum liquid state the constituent particles are delocalized andsthe system reaches a
homogeneous density (mean-field phase). Both the bosonic/fermioni¢mature of a many-
body system and the inter-particle interaction determine charaeteristi¢c properties of a
quantum liquid [27]. In a finite isolated system in which temperaturé eannot be assigned
unambiguously, the de Broglie wavelength can be defined for the motion of particles as
Aap = 2mh/\/2m(E — V). For E ~ 0 and V = -V}, g#hede Broglie wavelength can be
related to Mottelson’s quantality parameter [23]:

/\dB = Wf\/ 2AMot (2)

- 4
The quantality parameter is defined for infinite homogeneous systems and, therefore, in

the nuclear case it does not include any massior size dependence. To analyze localization
of single-nucleon wave functions in finite nuelei one needs to consider a quantity that is
sensitive to both the nucleon number.and size of a nucleus. In Ref. [19] we introduced
the dimensionless parameter a.:

Ar
Q= —— 3
loc = ( )
where 7 is the average inter-nucleon distance, and Ar the spatial dispersion of the wave
function:

Ar =/ (r?) — {)? (4)

For large values of ‘@jo. the orbits of individual nucleons will be delocalized and the
nucleus in the Fermi liquid phase. When oy, is very small nucleons can be localized on
the nodes of a crystal-like structure. For aj,. &~ 1 the spatial dispersion of the single-
nucleon wave funetion is of the same size as the inter-nucleon distance and, therefore,
localization facilitates a transition from the quantum liquid phase to a hybrid phase of
cluster states. For finite systems like nuclei this transition, of course, cannot be sharp
and cluster statesieoexists with mean-field type states. The transition from the quantum
liquid to the claister phase is controlled by the specific dynamics and length scale of the
systemunder consideration [19, 18] and, in particular, finite size effects are important.

When(the confining nuclear potential is approximated by a 3-dimensional isotropic
harmonic oscillator, the localization parameter «,. takes the form:

b VhR

alOC_T_OZW’

(5)

Page 4 of 20
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where b is the oscillator length and rq = 1.25 fm. Using the simple liquid drop
parameterization for the radius R=roA'/3 one obtains [28]:

\/ﬁAl/G
(2mVprd)1/4

Qo increases with A and, therefore, one expects that cluster states are preferably

Aloc =

~ 0.67AYS . (6)

formed in lighter nuclei. According to this simple expression based on a harmonic
oscillator potential, the transition from coexisting cluster and mean-field states to a
Fermi liquid state should occur for nuclei with A =~ 20 — 30. For heaviersystems . is
larger than 1 and, thus, heavy nuclei consist of largely delocalizedmucleons characterized
by a large mean-free path. The mass dependence of Eq. (6) for ey, has been verified by
a fully self-consistent mean-field calculation [28] based omglobal nuelear energy density
functionals. While a harmonic oscillator potential cansbe used te qualitatively analyze
(de)localization of single-nucleon states, microscopicand semi-empirical energy density
functionals include many-body short- and long-range ¢errelations through their explicit
dependence on nucleonic densities and, therefore, cam, acgount for the formation and
stability of cluster-like substructures in nuclei [29],

Two functionals were used in the study of Refir|28] to calculate the localization
parameter for selected orbitals, as well as the values of ay,. obtained by averaging the
microscopic dispersions Eq. (3) for.all occupied proton and neutron orbitals in the
self-consistent ground-state solution.n It was shown that, although both functionals
reproduce empirical ground-state properties, e.g. the binding energy and charge radius,
with a typical accuracy of 1%, the functional that produces a deeper self-consistent
mean-field confining potential systematically predicts smaller values of ay,. in lighter and
medium mass nuclei and, consequently, generates equilibrium densities that are much
more localized, often with proﬁ)unced cluster structures. This result is in agreement
with the discussion above related to the definition of the quantality parameter Ay, and
confirms the findingsiof Refy[i9], where it has been shown that conditions for cluster
formation can in part betraged back to the depth of the confining nuclear potential,
that is, to the effective muclear interaction. The depth of the potential determines
the energy spacings between single-nucleon orbitals in deformed nuclei, the localization
of the corregponding wave functions and, therefore, the degree of nucleonic density
clustering.

4. Clusters in light a-conjugate nuclei

The coexistence of nuclear mean-field states and cluster structures in light nuclei is
illustrated/by the Tkeda diagram [16, 30, 31, 32, 4]. In a number of cases ground-
state nucleonic densities display pronounced localization [29, 19], and this facilitates the
formation of clusters as excited states close to the corresponding decay threshold [32, 4].
Such states cannot be isolated from the continuum of scattering states and, therefore,
clusters close to the threshold belong to an open quantum system [33]. It is also well
known that nuclear shape deformation plays an important role in cluster formation



©CoO~NOUTA,WNPE

AUTHOR SUBMITTED MANUSCRIPT - JPhysG-101858.R1

Localization and clustering in atomic nucles 6

because it removes the degeneracy of single-nucleon levels associated with spherical
symmetry [30, 34, 35]. For instance, « clusters can be associated with isolated single-
particle levels in light deformed a-conjugate systems (N = Z even-even nuclei). Because
of both time-invariance symmetry and isospin symmetry, two protons and twomeutrons
in such a level have similar wave functions, and the localization of theséfunctions leads
to an a-like structure arrangement [36, 37]. The saturation propertyiof imter-nucleon
forces, effective when both spin and isospin are coupled to zero, produces aiparticularly
strong binding of the « cluster and a central density that is by almest a‘third larger
than central densities in most nuclei. =

The role of deformation can be exemplified by performingself-consistent mean-field
calculations based on nuclear energy density functionals (EDFS)y with constraints on
the mass multipole moments of a nucleus. The corresponding single-nucleon Kohn-
Sham equations (Schrodinger for non-relativistic functionals, or Dirac for relativistic
EDF's, with the Hamiltonian defined as the functional derivative of the corresponding
EDF with respect to density) are solved in thefintrinsie frame of reference attached
to the nucleus, in which the shape of the nucleus'can be arbitrarily deformed. The
result are static symmetry-breaking product many-body states, and in the examples
below we consider configurations that are ebtained by breaking both the axial and
reflection symmetries. Even though the many-bodysystem is determined by a very large
number of microscopic states, these camrbe. organised in a collection of basins on the
deformation energy surface, that are robust to small external perturbations [38]. In the
present illustrative calculation nuclear shapes are characterized by mass quadrupole and
octupole moments that can be related to the polar quadrupole deformation parameters
(B2,7), and the axial and triaxial octupole parameters (Bsg, 832), respectively. In the
examples considered in thigseetion different shapes correspond to global or local minima
on the (5,7, B30, f32) energy hypersurface.

Figure 1 displayssthe Self-consistent intrinsic densities of 2°Ne, calculated using
the relativistic HartreesBogoliubov model (RHB) [40] based on the energy density
functional DD-ME2 {39]. “For the examples considered in the present work, pairing
correlations have been taken into account by employing an interaction that is separable
in momentum’spacey.and is completely determined by two parameters adjusted to
reproduce the empiri¢al bell-shaped pairing gap in symmetric nuclear matter [41]. The
reflection-asymmetric axial density shown in the upper panel is obtained by imposing
constraints on both the axial quadrupole and octupole deformation parameters (5, and
B30, respeetively. Bs = 0.55 corresponds to the equilibrium quadrupole deformation, and
B3¢ = 0.50..The intrinsic density exhibits the structure of an %O core plus the a-cluster.
In the lower panel we plot the corresponding axially and reflection symmetric equilibrium
nucleon'density distribution of 2°Ne. This quadrupole deformed shape is characterized
by twe.regions of pronounced localization at the outer ends of the symmetry axis and
an oblate deformed core, that is, a quasimolecular a-'2C-a structure.

The identification of cluster structures from nucleonic density distributions, as
shown in Ref. [29], often misses important aspects of many-body dynamics, such as

Page 6 of 20
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a)

b)

Figure 1.
densities of
asymmetric.

: ped for the analysis of bonding structures in molecules [42],
@’ Refs: [29, 43] to a-clustering in light nuclei. The nucleon localization
within aldistance™@ from a given nucleon at point 7 with the same spin o (=1 or |) and
isospin '¢.(= n or p) quantum numbers [29]:

L\

Ry (7,0) ~ = | Tyo — =
! 3<q 4 pgo Pqo

) 62+ 0O(8?), (7)

€ Pyos Tgos fqa, and ﬁpqg denote the particle density, kinetic energy density, current
, and density gradient, respectively, that are completely determined by the self-
consistent mean-field single-particle states. A small conditional probability indicates a
ich degree of localization of the reference nucleon. The corresponding dimensionless
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and normalized expression for the localization measure can be expressed by the following
relation:

TqoPgo — }1|§pqo|2 - J?U i
an(ﬂ = [1+ TF ) (8)

quTqU

With the Thomas-Fermi kinetic energy density T(;l;F = %(67‘(‘2)2/ 3 péé?’ in the deneminator,

the function C,,(7) is normalized and provides a dimensionless measure of nucleon

localization. For homogeneous nuclear matter 7 = 7..F, the sefond and.third term in

the numerator vanish, and C,, = 1/2. In the other liinit Cyo (F).a2'1 indicates that the
probability of finding two nucleons with the same spin and isespin at<the same point 7
is very small. This is precisely the case for the a-cluster of four particles: p T, p |, n 1,
and n |, for which all four nucleon localization functions Cyer L

In Fig. 2 we plot the proton localization function C, (left panel) and total intrinsic
nucleon density (right panel) in the x — z plane for ®Ne, calculated with the relativistic
energy density functional DD—ME?. For this(case timg—reversal states are equally
occupied and the current density j,, in Eq. (8) vanishes. The localization functions
are identical for spin-up and spin-down @mueleons and,since the Coulomb contribution
is small, the neutron and proton localizationyfunctions are also very similar. One
notices that even though the single-nucleon,density already indicates the formation
of ar clusters in the axially symmetrie.configurations, it is the localization function that
clearly identifies the regions with Cy;(7) &1 on the elongation axis: the a-'%0 structure
in the upper panel, and a ring atithe center for the a-2C-a structure in the lower panel.
This result is similar to the one obtained in Ref. [29] using a Skyrme energy density
functional, and where it was also emphasized that C,, () provides an excellent measure
of correlation and localization becausé it includes the dependence on the kinetic energy
of the relative motion of spinsparallel nucleons at a particular point in space.

The pronounceddensity peaks enhance the probability of formation of a-clusters in
excited states close to the.energy threshold for a-particle emission [16, 30, 33, 35]. This
is illustrated in Hig. 3 “where we display various cluster shapes in a-conjugate nuclei,
obtained in triaxial and reflection-asymmetric self-consistent calculations based on the
functional DD-ME2" "Densities that correspond to positive-parity projected intrinsic
states are arranged in order of increasing energy. The lowest configurations correspond
to equilibrium density distributions [35]. In analogy to the original Ikeda diagram [16],
these microscopic self-consistent density distributions emphasize the coexistence of the
nuclear mean-field and cluster structures that appear near or above the «a dissociation
threshold energy.

Exotic structures of a clusters (chains and rings) can be stabilized in a rotating
nucleus by a competition between the nuclear attractive and centrifugal forces [44]. A
microscopic study of this phenomenon can be performed, for instance, by using cranked
self-consistent mean-field methods. The cranked self-consistent equation in the rotating
intrinsic frame is obtained variationally: 6 < H —w - J >= 0, where H is the total
Hamiltonian in the laboratory frame, w is the rotational frequency, and J the angular

Page 8 of 20
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Figure 2. Protor loealization function (left) and total density (in nucleon/fm3, right)
in the z — 2z plane for 2°Ne. The top and bottom panels correspond to the reflection
asymmetric (octupole) and reflection symmetric (quadrupole) shapes, respectively,
shown in Fig. 1.

momentum. Withinthis generalframework a variety of models based on energy density
functionals or effective nuelear interactions have been used to analyze the stability of
chain and ring configurations in relation to angular momentum. Among a number of
interesting recent studies, it has been shown that in a region of angular momentum
(13h — 18h) Ahe chain of four a clusters is stabilized in %O [45, 46]; the stability of
rod-shaped structures hasbeen analyzed for Mg [47] and carbon isotopes [48]; and
a systematic investigation of extremely deformed structures in N ~ Z nuclei of the
A =~ 40 mass région has been performed [49].

Figs. 1,3 exhibit localized, crystal-like cluster structures, characteristic for
the self-comsistent mean-field method used to calculate nuclear deformation energy
hypersurfaces. The corresponding self-consistent solutions contain the energy of spurious
center-of-mass motion of each cluster that needs to be subtracted from the total energy.
By restoring symmetries broken by the mean-field (translational, rotational, and parity
in the case of octupole deformations), and allowing for configuration mixing, solutions
that correspond to non-localized clusters are obtained. Non-localized clustering has
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160 24Mg 325

Figure 3. Intrinsic densities of deformation-constrained configurations in N = Z
nuclei. For each nucleus the density in the bottom row corresponds to the equilibrium
configuration, and excited configurations are displayed in order of increasing energy.
Adapted from reference[35].

extensively been investigated using an angular-momentum-projected version of the
Tohsaki-Horiuchi-Schuck-Ropke (THSR) wave function [50, 51, 52, 6]. In light nuclei at
low densities asglike elusters display a strong tendency to condense in the same orbital
with respect to their center-of-mass motion. The best known example is the second
0" state in 2@ at 7.65 MeV [53] — the Hoyle state that plays a key role in stellar
nucleosynthesis . and can be considered as a weakly interacting gas of 3 a particles. It
is located. at an excitation energy that is ~ 300 keV above the threshold at which 2C
dissociates into 3 « particles, and it is quasi-bound by the Coulomb barrier. In fact, the
wave function of this state can be described with 70% probability as a product state
of « particles, all in the lowest 0S5 state [54, 55, 6]. One could consider this state as
anra-boson condensate [56] taking into account, of course, that it belongs to a finite
system with a small number of particles. In fact, microscopic calculations indicate that
the relative positions of the clusters are correlated and, therefore, the Hoyle state can
only qualitatively be interpreted as a boson condensate [57].

Page 10 of 20
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The formation of an a-condensate can occur at an excitation energy that
corresponds to the threshold at which all o particles become unbound. Cluster gas
states near the na dissociation threshold energy and « particle condensation in heavier
a-conjugate nuclei is a topic of great current interest, both theoretical and experimental
[58, 4, 59, 23, 60, 51]. An interesting question is how many « particles can be bound in a
dilute finite nuclear system, that is, what is the critical number of o besons imcondensed
states beyond which the system becomes unbound [61]7 Starting from 2C, for instance,
and adding more « clusters, the total energy of the Na gas state increases because of
the competition between the short-range attractive o —a nuclear potenﬁal and the long-
range repulsive Coulomb potential. With increasing the number of charged o bosons
the repulsive potential becomes dominant, the system expands andithe average distance
between « particles increases. The Coulomb potential barrier confining the « clusters
gradually decreases and, at some critical value N, /the self-trapped system becomes
unbound. In the phenomenological study of Ref. [64} it has beén shown that N states
with J = 0% in a-conjugate nuclei from 2C to “°Cajecenr at excitation energies below
20 MeV, and the critical number of a bosons is N & 10. y

More generally, we emphasize the role of the saturation property of inter-nucleon
interactions in the mechanism of cluster formation in finite nuclei and in dilute nuclear
matter. In excited configurations of light deformedmuclei the nucleon density is reduced
along the deformation axis with réspectito.the equilibrium. This favors the formation
of clusters because it locally enhances the nucleonic density toward its saturation value,
therefore increasing the binding of the system. For a relatively light nucleus, and
especially for a-conjugate systems, the most effective way to increase the density locally
is the clustering of nucleons/into « particles. Because of saturation the interaction
between a-clusters is weak and excited states near the na threshold energy can be
described as a gas of a-clusters. In‘fact, when the density of nucleonic matter is reduced
below its equilibrium values, saturation causes a Mott-like transition to a hybrid phase
composed of clusters of a-particles. This effect has been investigated in self-consistent
mean-field calculationsief even-even N = Z nuclei, with a restriction to spherically
symmetric configurations[62, 35]. It has been shown that by expanding an n — « nucleus
the corresponding total.energy as a function of the nuclear radius goes over a maximum
before reaching the asymptotic low density limit of a gas of a-particles.

This transitionds illustrated in Fig. 4, where we display the result of a constrained
self-conSistent mean-field calculation of %0, using the relativistic functional DD-ME2.
The equilibrium mean-field solution reproduces the empirical binding energy and charge
radius of 180."A constraint on the nuclear radius is used to gradually reduce the nucleon
density by/inflating the spherical nucleus. As the size of the nucleus becomes larger
the total energy of the system increases with respect to the equilibrium configuration.
When the density is reduced to p/peq = 1/3, the system undergoes a Mott-like phase
fransition [25, 62, 35] to a configuration of 4 a-particles. As shown in Fig. 4, this
transition occurs at a radius of r. = 3.33 fm, with the corresponding ratio of the critical
radius to the ground-state radius r./rys &~ 1.3. Experimental evidence for a-particle



©CoO~NOUTA,WNPE

AUTHOR SUBMITTED MANUSCRIPT - JPhysG-101858.R1
Localization and clustering in atomic nucles 12
0.068
a) I
0.051

. 0034

.0.017
pifm?) [ %

b) 0.13
' \ 0.097

. 30,064

- ‘ N
'0.032
p(fm=3)

Figure 4. Self-consistent intrinsic. nucleon density of 60 for a radius constrained to
3.32 fm (a) and 3.34 fm (b)."Reprinted from reference [34].

clustering (simultaneous emisgion) in excited expanding Na source nuclei °0, 2Ne and
2\g, was recently reported ir\a study of fragmentation of quasi-projectiles from the
nuclear reaction *°Ca on *?C [63].

5. Clustering in neutron-rich nuclei

In addition to N = Z systems, a particularly interesting topic is the formation of
clusters in unstable neutron-rich nuclei. In a number of light N > Z nuclei low-
energy clustér structures can be described by molecular bonding of a-particles by the
excess neutrons [30, 31, 4,'5, 64]. The conditions for the formation of molecular states
include #he presence of strongly bound a-cores, a weakly attractive a@ — a potential
which becomes repulsive at small distances, and additional weakly-bound single-particle
orbifals oecupied by valence neutrons [65]. Decomposing the total nucleon density into
the o clusters and the density of additional valence neutrons, one obtains a picture
of nuelear'molecular states. For covalent bonding, a negative-parity neutron orbital
perpendicular to the a — « axis is called a m-orbital, whereas a o-orbital denotes a
positive-parity orbital parallel to the @ — a direction [65, 5, 66]. While “molecular
orbits” of valence neutrons characterize cluster structures at threshold energies (covalent
bonding), at higher excitation energies excess neutrons tend to form atomic orbits

Page 12 of 20
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gg Figure 5. Nucleon? densities for an excited configuration of *C: (a) 3D density of
20 the valence neutrons; (b) contour plots of the density of the valence neutrons and the
a1 a + o 4.of core density in the (Oxz) plane; (c) 3D density of the o + e + o core.

42

43

44 e e . .

45 around individual clusters (ionic bonding) [4, 5].

46 Even though detailed spectroscopic properties of molecule-like structures in
j; neutron-rich nuglei can only be described using structure models that take into account
49 correlationsyrelated 40 the restoration of symmetries broken by the nuclear mean field,
50 such as/the antigymmetrized molecular dynamics (AMD) approach [4, 5], basic concepts
g; can already be/illustrated in a simple self-consistent mean-field calculation based on
53 global functionals. As an example we consider cluster structures in excited states of
54 neutron-rich carbon isotopes [35]. A study based on the microscopic molecular-orbit
gg (MO) e+ a+a+n+n-+... model [67] has shown that valence neutrons in the 7-orbit
57 mcrease the binding energy and stabilize the linear chain of 3 « against the breathing-
gg like breakup. In Figs. 5 and 6 we show the excess-neutron molecular orbits in excited
60 configurations of *C and 1°C, calculated using the self-consistent microscopic approach

based on the relativistic energy density functional DD-ME2. The plot of the density of
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Figure 6. Saine as}l the caption to Fig. 5 but for an excited configuration of '6C.

an excited configuration of 14 in terms of the 3 « clusters and the two valence neutrons
is shown in Fig 5./ In thiscase correlations between the valence neutrons tend to favor a
reflection asyminetric chain configuration: o —2n—a —«, with the two valence neutrons
forming a m-bond between two « clusters. This configuration is predicted at somewhat
lower excitationfenergy than the reflection symmetric chain a—n—a—n—a. A reflection-
symmetrie configuration with four valence neutrons: a — 2n — a — 2n — « is favored in
16C, as'shown Fig 6. Similar results have also been obtained with the antisymmetrized
molectlar dynamics (AMD) model in Ref. [68], and we note that strong evidence for
linear-chaifi cluster states in *C has very recently been observed in a 'Be+4-a resonant

scattering €xperiment reported in [69].

6. Spin-orbit coupling in bound fermion systems

The localization of nucleons in finite nuclear systems and, therefore, the conditions

for the formation and coexistence of cluster structures and the nuclear mean-field can

Page 14 of 20
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be related to the depth of the confining single-nucleon potential [19]. This potential
determines the energy spacings of the corresponding single-nucleon spectré and, in
particular, the energy gaps between major shells. In the following ‘a connection«is
established with another important effect that characterizes spectroscepic properties
of bound quantum systems such as atoms, nuclei, hypernuclei, quarkonia;  etc.,
and which arises from the spin-orbit coupling. Depending on the specific system
under consideration, the spin-orbit interaction is large in nuclei, 'small in\quarkonia,
perturbative in atoms. In nuclei the strong coupling between the, orbital angular
momentum and spin of a nucleon accounts for the empirical magic ﬁmbers, and the
energy spacings between spin-orbit partner states can be aslarge as the gaps between
major shells.

Nucleons are Dirac particles and, in the relativistie,mean-field approximation
[70, 71}, the single-nucleon dynamics is governed by the Dirac equation:

[@-p+V + B(m+ S)] i = By (9)

where 1) denotes the single-nucleon Dirac spinor: 4

¢
() )

and m is the nucleon mass . Herewe. only consider spherical nuclei and assume time-
reversal symmetry (pairwise occupiedistates with Kramers degeneracy), which ensures
that the only non-vanishing components ofithe vector fields are the time-like ones and
thus there is no net contribution from nucleon currents. The local self-consistent vector
V' and scalar S potentials are uniquely. determined by the actual nucleon density and
scalar density of a given nucleusy respectively. In the standard non-relativistic reduction
of the single-particle Dirac equation, the single-particle mean-field equation takes a
Schrodinger-like form whiehg in addition to the confining potential, exhibits the spin-
orbit potential explicitly:

1
2M(r)
where M (r) =mu+ (S(x) — V(r)) /2 is the nucleon effective mass, U(r) = V(r) + S(r),
and the spin-orhit petential:

LS = ﬁ%)%% (V(r) - SG)) -5 (12)

The_effective muclear spin-orbit potential, therefore, originates from the difference

—

p

Bt U(r) + V5 (r)| 9 = €0, (11)

between the vector potential V' (short-range repulsion) with typical strength of ~ 350
MeVy, and /the scalar potential S (medium-range attraction), typically of the order of
—400 MeV in nucleonic matter and finite nuclei. The sum of these two fields V4.5 ~ —50
MeViprovides the confining single-nucleon potential and, therefore, determines the
energy spacings between major shells. The large difference V' — S ~ 750 MeV, on
the other hand, governs the splitting between spin-orbit partner states in finite nuclei,
which are also of the order of MeV. In fact, when considering the ratio between the
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Figure 7. The ratio between the principal energy spacings and the spin-orbit splittings
(fine structure) as a function of the ratio n between the mass of the particle and the
effective potential that determinessthe, spin-orbit force in a given quantum system.
Adapted from reference [72].

energy spacings hwy characterized by principal single-particle quantum numbers and
the energy splitting of spin-erbifypartners, it can be shown that [72]:

hewy 1
=2 SK|y-1+
’ |A < VES > | 7 +477

where K = v/—2mUyRy[th, Uy = U(r = 0) = V(0) + S(0) is the depth of the potential,

Ry = rgAY3 (ry ~41.2 fm) is'the nuclear radius, [ denotes the orbital angular momentum,

7 (13)

and
m

=
Since for«the nucleon mass m ~ 940 MeV and V — S ~ 750 MeV: n = 1.25, and it
follows from Eq (13) that the ratio x is of the order 1 — 5, that is, in nuclei the energy

(14)

splitting between spin-orbit partner states is comparable in magnitude to the spacings
between major oscillator shells.
In Fig. 7 we plot the ratio between the principal energy spacings and the spin-orbit
splittings for different systems of bound fermions, as a function of the parameter n:
1
x:)n—1+m. (15)
In general, n is the ratio between the mass of the particle and the effective potential
whose gradient determines the spin-orbit force in a given quantum system. In nuclei the
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near equality of the mass of the nucleon and the difference between the large répulsive
vector and attractive scalar potentials explains the fact that the spin-orbit splittings are
comparable to the energy spacing between major oscillator shells. Thé'same universal
functional form also applies to other bound quantum systems, regardlessof whether the
spin-orbit potential originates from the strong or electromagnetic interaction, and for
which the ratio between the principal energy spacings and the spinsorbit splittings is
orders of magnitude larger than in the nuclear case [72].

A special case arises when the mass of the particle is closé to (V. —5)/2. This
implies n ~ 1/2 and, thus, z = 0. The energy spacings between bound states are
then characterized by very large spin-orbit coupling (giant‘LS). Such’ states could be
generated in particular situations when the strength of the effective potential whose
gradient determines the spin-orbit force can be treated as am external parameter.

The spin-orbit parameter 1 can be related to the guantality Aoy Eq. (1) by defining
an effective coupling strength:

L Ugr
Qeff= hOCO - 4 (16)

where Uy is the depth of the confining potential and rg its effective range. It can then
be easily shown that the following relation:helds to a good approximation:

UAMot@gff ~1. (17)

By increasing the depth of the potential, the quantality parameter decreases reflecting
an enhanced localization. In this case the spin-orbit parameter 7 is also reduced because
of the increase of the gradient of theeffective potential, and this leads to an enhancement
of the energy spacings between spin-orbit partner states.

N
7. Summary and outlook

Nucleon localization, conditions for formation of cluster structures in the nuclear
medium, their compositiony stability and decay properties present a recurrent theme
in nuclear physics, and nueleon clustering plays a key role in understanding the process
of stellar nucleosynthesis./In this article we discussed some recent issues in a microscopic
theoretical description of the generic phenomenon of cluster formation in finite nuclei
based on the eoncept of nucleon localization.

Extended nueleonic matter at equilibrium behaves like a Fermi liquid, whereas in
the low=density| limit, in chemical equilibrium and at low temperatures, four-nucleon
correlations'lead to a condensation of a-particles. Finite nuclei, as self-bound and
open quantum systems, exhibit both quantum liquid-drop and cluster features. As
a measureé of nucleon localization and cluster-liquid transition, we have analyzed a
dimensionless ratio between the spatial dispersion of the single-nucleon wave function
and the average inter-nucleon distance. It has been shown that conditions for nucleon
localization and formation of clusters can be related to the depth of the effective
confining potential, that is, to the effective nuclear interaction. In addition to nucleon
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densities, an alternative localization function has been explored that explicitly includes
a dependence on the kinetic energy density and density gradients. We have particularly:
emphasized the role of the saturation property of the inter-nucleon interaction insthe
mechanism of cluster formation in finite nuclei, and the effect of deformation in the
formation of clusters as excited states has been illustrated by perfotming fully self-
consistent mean-field calculations, with constraints on the multipolé“moments of the
nucleon density distribution. An interesting topic that we have briefly illustrated is
the formation of molecular bonds of a-clusters by excess neutrons in neutron-rich light
nuclei. The localization of nucleons is particularly reflected in the energ\y spacings of the
corresponding single-nucleon spectra, and a relation has been, established between the
localization (quantality) parameter and a quantity that characterizes the large energy
spacings between spin-orbit partner states in nuclei.

Even though in recent years important advancesthave been made in understanding
localization and clustering phenomena, many openfissues remain to be explored, both
theoretically and experimentally. These include, in particular, spectroscopy above the a-
decay threshold in light nuclei, the occurrence of cluster stitictures in neutron-rich nuclei
far from the valley of [-stability, exotic €luster structures stabilized by the rotation of
the deformed nuclear system, cluster gas states and a-cluster condensation, formation
of nucleon clusters in heavy nuclei, clustering im nuclear reactions including those
important for astrophysical applicationsjmand the development of ab initio theoretical
methods that can describe both the formation of the nuclear mean-field and clustering
characteristics of many-nucleémdynamics in finite nuclei.
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