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Abstract. The framework of relativistic self-consistent mean-field models is
extended to include correlations related to restoration of broken symmetries
and to fluctuations of collective variables. The generator coordinate method is
used to perform configuration mixing of angular-momentum and particle-number
projected relativistic wave functions. The model, currently restricted to axially
symmetric shapes, employs a relativistic point-coupling (contact) nucleon-nucleon
effective interaction in the particle-hole channel, and a δ-interaction in the pairing
channel. Both bulk and spectroscopic nuclear properties are explored.

1 Introduction

The rich variety of nuclear shapes far from stability has been the subject of extensive
experimental and theoretical studies. Properties of heavy nuclei with a large number of
active valence nucleons are best described in the framework of self-consistent mean-field
models. A variety of structure phenomena, not only in medium-heavy and heavy stable
nuclei, but also in regions of exotic nuclei far from the line of β-stability and close to the
nucleon drip-lines, have been successfully described with mean-field models based on the
Gogny interaction, the Skyrme energy functional, and the relativistic meson-exchange effective
Lagrangian [1,2]. The self-consistent mean-field approach to nuclear structure represents
an approximate implementation of Kohn-Sham density functional theory, which enables a
description of the nuclear many-body problem in terms of a universal energy density functional.
This framework, extended to take into account the most important correlations, provides a
detailed microscopic description of structure phenomena associated with the shell evolution
in exotic nuclei. When compared to the shell model, important advantages of the mean-field
approach include the use of global effective nuclear interactions, the treatment of arbitrarily
heavy systems including superheavy elements, and the intuitive picture of intrinsic shapes.
The erosion of spherical shell-closures in nuclei far from stability leads to deformed intrinsic

states and, in some cases, mean-field potential energy surfaces with almost degenerate prolate
and oblate minima. To describe nuclei with soft potential energy surfaces and/or small energy
differences between coexisting minima, it is necessary to explicitly consider correlation effects
beyond the mean-field level. The rotational energy correction, i.e. the energy gained by the
restoration of rotational symmetry, is proportional to the quadrupole deformation of the
intrinsic state and can reach severalMeV for a well deformed configuration. Fluctuations
of the quadrupole deformation also contribute to the correlation energy. Both types of
correlations can be included simultaneously by mixing angular momentum projected states
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corresponding to different quadrupole moments. The most effective approach for configuration
mixing calculations is the generator coordinate method (GCM), with multipole moments used
as coordinates that generate the intrinsic wave functions.

2 The relativistic point-coupling model

In the model that we have developed in Refs. [3,4], the intrinsic wave functions are generated
from constrained self-consistent solutions of the relativistic mean-field (RMF) equations for
the point-coupling (PC) Lagrangian of Ref. [5]. For a complete discussion of the framework of
relativistic point-coupling nuclear models we refer the reader to [5], and references therein. The
specific choice of the PC Lagrangian defines the mean-field energy of a nuclear system

ERMF =

∫
dr ERMF (r)

=
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k
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where ψ denotes the Dirac spinor field of a nucleon, and the local isoscalar and isovector densities
and currents for a nucleus with A nucleons

ρS(r) =
∑

k

v2k ψ̄k(r)ψk(r), (2)

ρTS(r) =
∑

k

v2k ψ̄k(r)τ3ψk(r), (3)

jµ(r) =
∑

k

v2k ψ̄k(r)γ
µψk(r), (4)

jµTV (r) =
∑

k

v2k ψ̄k(r)γ
µτ3ψk(r), (5)

are calculated in the no-sea approximation: the summation runs over all occupied states in the
Fermi sea, i.e. only occupied single-nucleon states with positive energy explicitly contribute to
the nucleon self-energies. v2k denotes the occupation factors of single-nucleon states. In Eq. (1)
ρp is the proton density, and A0 denotes the Coulomb potential.
Here we only consider even-even nuclei that can be described by axially symmetric shapes.

In addition to the axial symmetry, parity, symmetry with respect to the operator e−iπĴy , and
time-reversal invariance are imposed as self-consistent symmetries. Time-reversal invariance
implies that spatial components of the currents vanish in the nuclear ground state. The resulting
single-nucleon Dirac equation reads

{
−iα∇+ V (r) + β

(
m+ S(r)

)}
ψi(r) = εiψi(r). (6)

The eigensolutions are characterized by the projection of the total angular momentum along the
symmetry axis (Ωi), the parity (πi), and the z-component of the isospin (ti). The single-nucleon
Dirac eigenvalue equation is solved by expanding the Dirac spinors in terms of eigenfunctions
of an axially symmetric harmonic oscillator potential.
For an axially deformed nucleus the map of the energy surface as a function of the quadrupole

moment is obtained by imposing a constraint on the mass quadrupole moment. The method of
quadratic constraint uses an unrestricted variation of the function

〈H〉 + C
2

(
〈Q̂〉 − q

)2
, (7)
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Fig. 1. The neutron single-particle levels for 32Mg, as functions of the mass quadrupole moment. The
thick dashed curve denotes the position of the Fermi energy (left panel). The binding energy curve for
32Mg, calculated from the constrained solutions of the self-consistent relativistic mean-field equations.

where 〈H〉 is the total energy, 〈Q̂〉 denotes the expectation value of the mass quadrupole oper-
ator, q is the deformation parameter, and C is the stiffness constant [8].
In addition to the self-consistent mean-field potential, for open-shell nuclei pairing corre-

lations have to be included in the energy functional. In the current version, the model is not
designed for nuclear systems very far from the valley of β-stability, and therefore a good approx-
imation for the treatment of pairing correlations is provided by the BCS formalism. Following
the prescription from Ref. [5], we use a δ-interaction in the pairing channel, supplemented with
a smooth cut-off determined by the Fermi function of single-particle energies εk [6].
In the right panel of Fig. 1 we display the mean-field binding energy curve for 32Mg as a

function of the quadrupole moment, calculated with the PC-F1 [5] effective interaction. The
constrained mean-field equation has been solved self-consistently on a regular mesh ranging
from q = −2.2 b to q = 4.0 b, with a mesh spacing of ∆q = 0.2 b. In addition to the spherical
ground state, the PC-F1 binding energy curve displays a prolate deformed shoulder at q =
1.5 b, at rather high excitation energy of ≈ 3.5MeV above the ground state. The location of
the shoulder can be related to the neutron single-particle levels calculated with the PC-F1
interaction, displayed in the left panel of Fig. 1. The ratio between the neutron spherical gap
(7.2Mev) and the gap at deformation q = 1.5 b (2.9MeV) is ≈ 2.5 for the PC-F1 interaction.
Smaller ratio would lead to a more pronounced shoulder at lower excitation energy as shown
in the calculations using the Gogny force [7].

3 Restoration of broken symmetries

3.1 Angular momentum projection

In the current version of the model the basis states |φ(q)〉 are Slater determinants of single-
nucleon states generated by solving the constrained RMF + BCS equations, as described in
the previous section. Since the axially deformed mean field breaks rotational symmetry, the
basis states |φ(q)〉 are not eigenstates of the total angular momentum. To be able to compare
theoretical predictions with empirical data, it is necessary to construct states with good angular
momentum. The projected wave functions are obtained by employing the standard projection
technique described in Ref. [8]

∣∣φJM (q)
〉
=
∑

K

P̂ JMK |φ(q)〉, (8)
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Fig. 2. Projected norm overlap kernel N J(q, q) (left panel) and angular momentum projected potential
energy curves (right panel) as functions of the mass quadrupole moment for 32Mg.

where P̂ JMK denotes the angular momentum projection operator

P̂ JMK =
2J + 1

8π2

∫
dΩDJ∗MK(Ω)R̂(Ω). (9)

The integration is performed over the three Euler angles α, β, and γ. The operator DJMK(Ω) =

e−iMαdJMK(β)e
−iKγ is the Wigner function, and R̂(Ω) = e−iαĴze−iβĴye−iγĴz is the rotation

operator. The restriction to axially symmetric (Ĵz |φ(q)〉 = 0) configurations simplifies the
problem considerably, because in this case the integrals over the Euler angles α and γ can be
performed analytically. For an arbitrary multipole operator Q̂λµ we thus find

〈φ(q)| Q̂λµP̂
J
MK |φ(q)〉 =

2J + 1

2
δM−µδK0

∫ π

0
sinβdJ∗−µ0(β) 〈φ(q)| Q̂λµe

−iβĴy |φ(q)〉 dβ. (10)

We notice that this expression vanishes for odd values of angular momentum J , i.e., the pro-
jected quantities are defined only for even values of J . The kernels 〈φ(q)| Q̂λµe−iβĴy |φ(q)〉 can
be evaluated by employing the generalized Wick theorem.
In the left panel of Fig. 2 we display the projected norms N J(q) =

〈
φJ(q)

∣∣ φJ(q)
〉
that

give the probability for angular momentum J in various intrinsic wave functions |φ(q)〉. The
spherical configuration is a pure 0+ state, hence N J=0(0) = 1 and N J=2,4,...(0) = 0. The
maxima of the projected norm overlap kernels for higher angular momenta are correspondingly
shifted to larger deformations.
For each intrinsic configuration |φ(q)〉 we calculate the projected energy

EJ(q) =
HJ(q, q)
N J (q, q) =

〈φ(q)| ĤP J00 |φ(q)〉
〈φ(q)|P J00 |φ(q)〉

. (11)

The results are displayed in the right panel of Fig. 2, together with the mean-field binding
energy curve. Since the spherical configuration is already a pure 0+ state, there is no energy
gain for Jπ = 0+ at q = 0b. Notice that the spherical point is not included in plots of EJ(q)
for J ≥ 2. Namely, for J '= 0 the quantities HJ(0, 0) and N J(0, 0) are so small that their
ratio Eq. (11) cannot be determined accurately. For higher values of the angular momentum
(Jπ = 6+, 8+ in Fig. 2) several additional configurations close to the spherical point are also
characterized by very small values of the projected norm overlap kernel. These configurations
can be safely omitted from the projected energy curves, because on the one hand the an-
gular momentum projection becomes inaccurate at these points, and on the other hand the
corresponding angular momentum projected states would not play any role in configuration
mixing calculations.
The J = 0 projected energy curve displays two almost degenerate minima at small oblate and

prolate deformations. This feature is common to all nuclei for which the mean-field calculation
predicts a spherical ground state [7]. As compared to the mean-field energy, the prolate deformed
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shoulder is more pronounced, and its excitation energy has been lowered from 3.5 to 1.2MeV by
angular momentum projection. However, in the present calculation with the PC-F1 interaction,
the gain in rotational energy is too small to deform the ground state of 32Mg. This result is
in contrast with the available experimental data and with calculations based on the Gogny
interaction [7]. The different predictions for the ground state of 32Mg can be related to the
corresponding mean-field binding energy curves and, more specifically, to the different results
for the size of theN = 20 neutron gap, obtained with the Gogny and PC-F1 effective interaction.

3.2 Particle number projection

The principal disadvantage of describing pairing correlations in the BCS approximation is
that the resulting wave function is not an eigenstate of the particle number operator. More
precisely, the BCS ground state contains admixtures of particle-number eigenstates with a
relative spread of order 1/

√
N , where N denotes the average number of valence particles. The

ideal solution, of course, is to perform particle number projection from the BCS state before
variation. This procedure is technically rather complicated and very much time consuming,
and therefore it is usual to employ the Lipkin-Nogami (LN) approximation to the exact particle
number projection. States with good angular momentum and particle number are then obtained
by performing projections from the mean-field plus LNBCS solution

∣∣φJM (q)
〉
=
∑

K

P̂ JMK P̂
Z P̂N |φ(q)〉. (12)

The particle-number projection operators read

P̂N =
1

2π

∫ 2π

0
dφne

i(N̂−N)φn , P̂Z =
1

2π

∫ 2π

0
dφpe

i(N̂−Z)φp . (13)

where N̂ is the number operator, and N(Z) denotes the number of neutrons (protons).

4 Configuration mixing

Fluctuations of quadrupole deformation represent an additional source of correlation energy.
Both types of correlations can be included simultaneously by mixing angular-momentum and
particle-number projected states corresponding to different quadrupole moments. The config-
uration mixing is performed with the generator coordinate method. A detailed review of the
GCM can be found in Chapter 10 of Ref. [8]. The method is based on the assumption that,
starting from a set of basis states |φ(q)〉 that depend on a collective coordinate q, one can build
approximate eigenstates of the nuclear Hamiltonian. The basis states used in the present version
of the model are the axially deformed mean-field plus LNBCS solutions. They break rotational
symmetry, while the particle number is only approximately restored with the Lipkin-Nogami
procedure. Therefore, the correlated wave function is constructed as a linear combination of
the angular-momentum and particle-number projected basis states

∣∣ΨJMα
〉
=
∑

j,K

fJKα (qj)P̂
J
MK P̂

Z P̂N |φ(qj)〉. (14)

The weight functions fJα (q), together with the corresponding energies of the correlated states
EJα , are determined by solving the Hill-Wheeler (HW) equation [8]

∑

j

HJ(qi, qj)fJα (qj) = EJα
∑

j

N J (qi, qj)fJα (qj), (15)
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which contains the projected norm N J(qi, qj) = 〈qi| P̂ J00P̂N P̂Z |φ(qj)〉 and the projected Hamil-
tonian kernel HJ(qi, qj) = 〈qi| ĤP̂ J00P̂N P̂Z |φ(qj)〉. The Hill-Wheeler equation represents a gen-
eralized eigenvalue problem. Thus the weight functions fJα (qi) are not orthogonal and cannot
be interpreted as collective wave functions for the variable q. The standard procedure is to
re-express Eq. (15) in terms of another set of functions, gJα(qi), defined by

gJα(qi) =
∑

j

(N J )1/2(qi, qj)fJα (qj). (16)

The functions gJα(qi) are orthonormal and play the role of collective wave functions. For com-
pleteness we also include the expressions for physical observables, such as transition probabilities
and spectroscopic quadrupole moments [7]. The reduced transition probability for a transition
between an initial state (Ji, αi), and a final state (Jf , αf ), reads

B(E2;Jiαi → Jfαf ) =
e2

2Ji + 1

∣∣∣∣∣∣

∑

qf ,qi

f
Jf∗
αf (qf ) 〈Jfqf | |Q̂2| |Jiqi〉 fJiαi (qi)

∣∣∣∣∣∣

2

, (17)

and the spectroscopic quadrupole moment for a state (Jα) is defined

Qspec(J, α) = e

√
16π

5

(
J 2 J
J 0 −J

)∑

qi,qj

fJ∗α (qi) 〈Jqi| |Q̂2| |Jqj〉 fJα (qj). (18)

Since these quantities are calculated in full configuration space, there is no need to introduce
effective charges, hence e denotes the bare value of the proton charge.
In Fig. 3 we display the pairing energy (upper left panel), and the total RMF binding

energy curve (lower left panel) of 24Mg, as functions of the mass quadrupole moment. The
Lipkin-Nogami procedure has not been implemented at this stage, and consequently pairing
correlations vanish in a broad region of deformations around the deformed first minimum of
the potential energy surface. Since the moment of inertia of a rotational band is reduced in the
presence of pairing correlations, dynamical pairing effects could be important in the description
of the ground-state band of 24Mg.
The GCM excitation energies and the resulting transition probabilities for the ground-state

band, calculated with the PC-F1 effective interaction, are shown in the right panel of Fig. 3.
The results of the AMP and PN&AMP configuration mixing calculations are compared with
the data. In the following AMP will indicate that only angular momentum projection has been
carried out before GCM configuration mixing (i.e., the model of Ref. [3] is used), and PN&AMP
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Fig. 4. Self-consistent RMF binding energy curves of 142−152Nd, as functions of the mass quadrupole
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experimental data [15] and the X(5)-symmetry predictions for the excitation energies, intraband and
interband B(E2) values (in Weisskopf units) of the ground state (s = 1) and β1 (s = 2) bands (right
panel).

will denote the results of the GCM calculations which include both the restoration of the par-
ticle number and rotational symmetry. As expected, the inclusion of dynamical pairing effects
reduces the moment of inertia, but the resulting spectrum is too much spread out compared to
experiment. This is a well known problem, related to the fact that we project particle number
and angular momentum only after variation, rather than performing the projections before vari-
ation. It has been shown that in the latter case rotational bands with larger moments of inertia
are obtained, provided that the model geometry allows for the alignment of nucleon angular
momenta. Since the full projection before variation is technically and computationally much
more complex, it has been seldom used in realistic calculations. The transition probabilities, as
well as the calculated spectroscopic quadrupole moment Qspec(2

+
1 ) = −16.56 e fm2, are in very

good agreement with the data.

5 Microscopic description of quantum shape phase transitions

We have applied the relativistic GCM to the study of nuclear quantum phase transitions
(QPT) [10]. In the case of atomic nuclei first- and second-order QPT can occur between sys-
tems characterized by different ground-state shapes. Nuclear shape phase transitions have been
the subject of numerous theoretical and experimental studies. For recent reviews we refer the
reader to [12,13].
In the left panel of Fig. 4 we plot the self-consistent RMF+LN BCS potential energy curves

(PEC) of 142−152Nd, as functions of the mass quadrupole moment. The PECs display a gradual
transition between spherical 142Nd and strongly prolate deformed 152Nd. Of particular interest
is the PEC of 150Nd which exhibits a wide flat minimum on the prolate side (γ = 0◦), with
an additional minimum at ≈ 1.8MeV excitation energy and an oblate (γ = 60◦) deformation.
The two minima are separated by a potential barrier of ≈ 4.5MeV. One notes the similarity
between the PEC of 150Nd and the projections on the γ = 0◦ (prolate) and γ = 60◦ (oblate)
axes of the original X(5) potential considered by Iachello in Ref. [14] (square well in the variable
β, and harmonic oscillator potential in γ). Although particular isotopes exhibit relatively flat
PECs over an extended range of the deformation parameter, characteristic for critical point
symmetries, simple mean-field approach cannot be used for a quantitative analysis of criti-
cal point symmetries. The concept of shape phase transition includes analytic expressions for
observables: excitation eneregies and B(E2) rates, and this is not possible on the mean-field
level.
Correlation effects related to the restoration of broken symmetries and to fluctuations of

collective coordinates are taken into account by performing configuration mixing calculations of
projected states. For 150Nd we have thus solved the GCM equations in the basis of constrained
mean-field + LN BCS Slater determinants, projected on angular momentum and particle num-
ber. The GCM results for the two lowest bands are compared in the right panel of Fig. 4 with
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the available data [15], and with the X(5)-symmetry predictions for the excitation energies,
intraband B(E2) values (in Weisskopf units) of the ground state (s = 1) and β1 (s = 2) bands,
and interband transitions between the (s = 2) and (s = 1) bands. To facilitate the comparison
with the X(5) spectrum, which corresponds to the solution around γ = 0◦ [14], the GCM results
in Fig. 4 have been obtained by performing configuration mixing calculations only on the pro-
late side. In fact, since the basis of deformed states does not include the full range of γ-values
(0◦ ≤ γ ≤ 60◦), configuration mixing must be performed only on the prolate side in order to
remain close to the phase-transitional region in which X(5) occurs. The theoretical spectra are
normalized to the experimental energy of the 2+1 state. We note the excellent agreement of the
GCM spectrum both with the data and with the X(5)-symmetry predictions.

6 Summary and outlook

The very successful relativistic mean-field framework has been extended to explicitly include
correlations related to the restoration of broken symmetries and to fluctuations of collective
coordinates. There are, of course, many possible improvements and extensions of the present
implementation of the relativistic GCM model. Perhaps the most obvious is the extension to
shapes that are not constrained by axial symmetry. The inclusion of triaxial deformations is
in principle straightforward but, because it requires an enormous increase of computational
capabilities, not feasible at present. The second major problem is that the present GCM config-
uration mixing calculations correspond to a projection after variation. A more general variation
after projection is far too complicated to be used in realistic calculations at the present stage.
A possible improvement, however, is to generate the GCM basis functions, for each value of the
angular momentum, by performing cranking RMF+LNBCS calculations with the additional
constraint 〈Jx〉 = J . This would automatically increase the moments of inertia of rotational
bands, and therefore produce spectra in better agreement with experiment. Finally, let us
emphasize again one of the conclusions of Ref. [3], namely that those correlations which are
explicitly treated in the GCM configuration mixing, should not be contained in the effective
interaction in an implicit way, i.e. by adjusting the parameters of the interaction to data which
already include these correlations. Therefore, new global effective interactions are needed, which
will not contain rotational energy corrections and quadrupole fluctuation correlations.
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