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A long solenoid carrying a varying current produces a time-dependent magnetic field and induces
electric fields, even in the region exterior to the solenoid where dB/df and therefore curl E vanish.
By paying attention to (a) what it is that a “voltmeter’’ measures and (b) the simplest properties of
line integrals (.g., under what circumstances the line integral of E is path independent), it is easy
to use Faraday’s law to predict the readings of voltmeters connected to various points in a circuit
external to the solenoid. These predicted meter readings at first seem puzzling and paradoxical: in
particular, two identical voltmeters, both connected to the same two points in the circuit, will not
show identical readings. These theoretical predictions.are confirmed by simple experiments,

I. INTRODUCTION

The physical problem described below is of great value in
illustrating some of the most important properties of vector
fields in general and of electric and magnetic fields in parti-
cular. It has a solution that is by no means obvious yet one
that can be correctly derived with little more than Far-
aday’s law,

curl E= — gB/a. _ (1)

Moreover, the result can readily be verified experimental-
1y,

Consider a solenoid whose axis is perpendicular to the
plane of the paper (Fig. 1). We will be concerned with cur-
rents and electric fields in or near the plane of the paper
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that result from a time-dependent current through the sole-
noid windings. Assume that the solenoid is extremely long
and of very tight pitch, and that the plane of the paper is not
close to either end of the solenoid. Thus the magnetic field
produced is zero except within the interior of the solenoid.
Suppose, for simplicity, that the current through the sole-
noid windings is a linear function of time. Let @ denote the.
resulting flux of B through the cross section of the solenoid,
and take the positive direction for calculating @ to be into
the paper. To be specific, let '

® =at. (2)

(Thus we anticipate that if @>0, a current will flow in a
general counterclockwise sense around any conducting
path which encloses the solenoid.) Around the solenoid are
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Fig. 1. Long solenoid, perpendicular to the plane of the paper, carries a
current which varies linearly with time. We wish to predict the readings of
the two voltmeters, ¥, and V. In the text, use is made of four different
nonclosed paths, all of which have end points at A and B. Path C, passes
through ¥, C| through R,, C} through R., and C, through ¥,.

located two resistors and two identical voltmeters, as
shown in Fig. 1. The meters are high-resistance voltmeters
which draw negligible current. Let ¥, and ¥, denote the
readings of the two meters. The question is simply this:
What will be the values of ¥, and V.,?

The signs of ¥, and ¥, constitute an especially interest-
ing aspect of this problem; we must, therefore, be careful to
distinguish between the two leads of a voltmeter. The use of
labels such as “ +  and “ — ” to make this distinction is
conventional but can easily lead to confusion. Let us sup-
pose that, in accord with common practice, the leads con-
nected to the " 4+ " and * — ** terminals are red and black,
respectively, and let us use these colors to label the termi-
nals of the meters.

Lest the problem seem too easy, let me mention some
erroneous responses which are often made when the prob-
lem is first brought up. “Since the two meters are both
connected with their red leads to 4 and their black leads to
B, they are ‘both measuring the same thing,’ so it is obvious
that ¥, = F,.” A more sophisticated version is the follow-
ing. “Perhaps V,#V, if R,#R,, because the situation is
then nonsymmetric, but surely if R, = R,, symmetry re-
quires that ¥, must be equal to ¥,.” As I will show, ¥, and
V, are always of opposite sign and hence are never equal,
though they are of equal magnitude (V,= — V) if
R, =R,. This is a problem that yields quickly to clear
thinking about issues such as what it is that a “voltmeter”
really measures and attention to getting signs right; fuzzy
thinking and uncritical use of concepts such as potential
and voltage, or the asking of poorly defined questions such
as “Where is the emf located?,” are unlikely to produce the
correct solution except by chance.

Klein' has described a simple apparatus for demonstrat-
ing the effects discussed here, but his discussion of the the-
ory is presented in terms of the “internal resistance of the
generator” and the “external load,” notions which are obs-
cure in the present context. Shadowitz? gives a treatment
that is slightly more convincing. Unfortunately, it is pre-
ceded by a discussion of a simple dec circuit (in which dB/d¢
is of course zero), which is inconsistent- with Eq. (1). (That
is, heimplies that curl E5£0, which cannot be correct if B/
dt = 0.) In Shadowitz’s initial discussion of Faraday’s law,
he makes an artificial division of the electric field into con-
servative and nonconservative parts, a distinction not like-
ly to be respected by real meters, which respond to the total
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E whatever it may be. In his discussion of the situation
discussed in this paper, he unfortunately uses the word
“voltage,” a term that should be carefully defined if it is to
be used at all and one that would be safer not to use here,
because of the obvious importance of the region inside the
solenoid in which curl E#0. Moreover, the interesting
question of the signs of the voltmeter readings is given short
shrift by Shadowitz and totally ignored by Klein, Moor-
croft® has also given an interesting discussion of this prob-
lem, but he, too, divides the field into conservative and
nonconservative parts. Such an attempt to divide the elec-
tric field is unnecessary, as is the use of secondary concepts
such as “voltage,” “emf,” or “internal resistance.” Similar-
ly, though surface charges on the various conductors con-
tribute to the electric field, the distribution of these charges
is an issue that we need not explicitly deal with if we wish
simply to predict the voltmeter readings. I will discuss the
problem from an extremely simple point of view and show
how the solution follows in a straightforward fashion from
Maxwell’s equations, the geometry and topology of the
physical situation, and the most elementary properties of
vector fields and their line integrals.

II. PROPERTIES OF THE ELECTRIC FIELD
OUTSIDE THE SOLENOID

We will be especially concerned with various line inte-
grals of E; it is important to be careful to specify in each
case (a) the direction in which the line integral is to be calcu-
lated (to get the sign right) and (b) the path of integration, a
matter of great importance when curl E does not vanish at
all points in space. Let C denote a path joining two particu-
lar points (say 4 and B ). The direction in which C is tra-
versed in calculating the line integral will be indicated by
the order of the limits. Thus the symbol

B

f Edr
A

[

denotes the line integral of E along the path C, starting at 4
and ending at B. That is, in the infinite sum that this inte-
gral represents, each displacement vector dr points along C
in the direction from 4 to B. Note, incidentally, that no
matter what the curve C or the properties of the vector
field, reversing the direction of integration always changes
the sign of the line integral.

We divide the plane of the paper into two regions (Fig. 2).

4

Fig. 2. We divide space into two regions. It is only in region I (the interior
of the solenoid) that dB/dt, and hence curl E, are nonzero; it is in the
multiply connected region II (everything exterior to the solenoid) that all
observations are made.
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Region I is the interior of the solenoid and region II is
everything exterior to the solenoid. By virtue of the simpli-
fying assumption expressed by Eq. (2), any induced cur-
rents and electric fields will be time independent, after an
initial transient which rapidly decays in a time determined
by the self-inductance and total resistance of the loop
formed by R, and R,. (We restrict our attention to the
steady state. If the loop is superconducting, however, the
“transient” never decays; in this case, the results of this
paper are not applicable.) Outside the solenoid, B = 0 ex-
cept for the field produced by the time-independent current
in the external loop; thus curl E= — dB/dt vanishes
throughout region II.

Because curl E = 0 everywhere in region II, it is tempt-
ing to conclude that E is a conservative field in this region,
that the line integral of E between any two points in region
IT is path independent. This is not true, because of the to-
pology of region II. Even though curl E vanishes through-
out region II, this region is not simply connected and thus
SE-dr is not necessarily path independent. [Recall that if a
field E is irrotational (i.e., has vanishing curl) throughout a
simply connected region, then the field is conservative in
that region. That is, we can define a single-valued scalar
function ¢ such that E = — grad ¢, line integrals of E are
path independent, and any closed line integral of E is equal
to zero.] If, in the situation shown in Fig. 1, we were to
choose the “potential” to be zero at B, and then define the
meaning of “the potential at 4" in the usual way as

A
b= —J E-dr,
B

the result would be ambiguous, for this line integral de-
pends on the path. Thus it is not possible to define a single-
valued scalar potential for E, and E is not a conservative
field. However, E does have properties that are just as use-
ful for our purposes, properties that we will call “pseudo-
conservative.” What we can say about line integrals of E is
the following. By application of Stokes’s theorem and Egs.
(1) and (2), it is easy to see that § E-dr along a closed path
following the border between regions I and II in the coun-
terclockwise direction is just @. Elementary arguments
then show that for any closed path lying entirely in region
11, the line integral of E can have only one of adiscrete set of
values

§E-dr=na n=0,4+1, +2,., (3)

where n = 0 if the path does not enclose region I, n = 1 if
the path goes around region I once in the counterclockwise
direction,n = — 2ifthe path goes twice around region I in
the clockwise direction, and so on (see Fig. 3.). It follows
that the line integral of E between two points, say A4 and B,
is “pseudo-path-independent” in the following sense. Let C
and D be any two paths with end points at 4 and B, both
paths lying completely in region II. Then

B B )

J E-dr =J Eddr, (4)
A A

c D

provided Cand D together form a closed path that does not
enclose region 1.

Although it is not, strictly speaking, necessary to use the
terms “simply connected” and “multiply connected” in de-
scribing the properties of the fields, those who have en-
countered these concepts in pure mathematics may find it
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Fig. 3. For these three closed paths, the closed line integral of E in the
indicated directions has, according to Eq. (3), the values @, — 2, and 0.

esthetically pleasing to see the possibility of using them to
give an elegant description of a real physical situation.

IIT, WHAT DOES A “VOLTMETER” MEASURE?

Even in situations like these where “voltage” and “po-
tential” are concepts of dubious value, a voltmeter mea-
sures something; we must ask exactly what it is that can be
inferred from a voltmeter reading, in this application and in
more ordinary ones as well. A voltmeter (whether a con-
ventional indicating meter or an oscilloscope) is most often
an ohmic device, usually of high resistance, which gives an
indication (a deflection of a meter needle or of an electron
beam) proportional to the (small) current that passes
through it. A little thought convinces one that the volt-
meter reading (call it ') is equal to the line integral of E,
JE-dr, where the path of integration passes through the me-
ter , beginning at the red (or “ + ”) lead and ending at the
black for ** — ) lead. (I have been unable to think of any
device that is normally considered to be a voltmeter,
whether a real device or an imaginary one, one with high
resistance or low, or even nonohmic in character, for which
itis not the case that the reading is proportional to the line
integral just described. Even the imaginary miniature
worker who implements the common thought-experiment
definition of “‘potential” by carrying a tiny test charge from
one point in space to another, measuring the work re-
quired, is just measuring the line integral of E along what-
ever path is chosen.)

To see how this works out in a more elementary context,
consider the simple dc circuit shown in Fig. 4. The paths F
and G both join the points P, and P,, F passing through the
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Fig. 4. Simple battery-operated circuit.

resistor R, and G passing through the voltmeter. The volt-
meter reading ¥ is equal to the line integral of E through
the meter. In this case, dB/dt = 0 everywhere, so curl E
vanishes everywhere, and thus E is a genuinely conservative
field, and line integrals of E are path independent. There-
fore,

P, P,
V=IE&=IE¢, (5)
GPI F !

and we conclude that in this circuit, V' is equal to the line
integral of E through the resistor to whose ends it is at-
tached. I reiterate that this last statement is not obvious. A
voltmeter measures the line integral of E through the meter
itself; one must not equate this line integral with a different
line integral without justification. (In this connection, see
the remarks about inductors in Sec. VI.)

It follows immediately, from the discussion of what it is
that a “voltmeter” measures, that in the present problem,

B B

V= J‘ Edr;, V.= J- Edr. (6)
A A
P o

IV. SOLUTION OF THE PROBLEM

One relationship between V| and ¥, is obtained from Eq.
(6):

B B
E—%:JE&—JE&
A CA

(= ¥
B A
=IE&+JE¢. )
A B
C, (o

The right-hand side of Eq. (7) is equal to the line integral of
E along a closed path going once around the solenoid in the
counterclockwise direction, and so, by Eq. (3),

A - ®)

Another relationship between ¥, and V, is provided by
invoking Ohm’s law together with the assumption that the
voltmeters draw negligible currents. The latter assumption
permits us to use a single symbol, 7, to denote the current
flowing counterclockwise in the loop formed by R, and R..
By Ohm’s law, the current through a resistor is equal to the
line integral of E from one end of the resistor to the other,
divided by the resistance, due attention being paid to alge-
braic signs. In this case,
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1 1 P4
I:—-J-Edr=——- E-dr. 9
R, J4 R, Jp g ©)

<y Ci

Because C, and C| together form a closed curve not en-
closing the solenoid, as do C, and C, Eq. (4) allows us to
replace C| and C} by C, and C,, respectively, in Eq. (9).
With the use of Eq. (6), Eq. (9) thus becomes

F= V|/R|= — 2/R2- [IOJ

Finally, from Egs. (8) and (10), we have the result we have
been seeking:

1= —a

V= ——2—a. 11

2 R 4R, (11)
Note that ¥, and V, are always of opposite sign. Even
though the red leads of the two meters are connected to-
gether, as are the black leads, the meter deflections will
always be in opposite directions. If, for instance, R, = 2R,

Vi=(1/3)aand ¥, = — (2/3) . In the “symmetric” case
(Ry=R,), ¥, and V; are of equal magnitude: V', = a/2,
V,= —a/2. (The case R, =R, is not truly symmetric,

because the fact that IB/dt is directed into the paper results
in a distinction between the clockwise and counterclock-
wise directions.)

V. EXPERIMENTAL CONFIRMATION

To avoid the difficulties in comparing theory and experi-
ment that would result from using an iron-core coil, we use
an air-core solenoid; ours happens to have a length of 104
cm, a mean radius of about 5 cm, and is wound with 444
turns of 0.038-cm diameter copper wire. Its inductance is
1.8 mH and its resistance is 19 £2. A 5-{2 resistor is placed in
series with the solenoid, so that the solenoid current can be
monitored. The dimensions of the solenoid are not critical,
though these dimensions determine the required character-
istics of other apparatus. We use a triangular-wave gener-
ator at a frequency of 300 Hz, followed by a power amplifi-
er, to produce a solenoid current of approximately
triangular form; two channels of a multiple-trace oscillo-
scope serve as the voltmeters V| and V,,. This current pro-
vides a magnetic field satisfying the conditions of Eq. (2),
with & alternately positive and negative, except at the times
at which the waveform reverses slope. The choice of fre-
quency is dictated by two competing effects: the higher the
frequency, the larger the induced electric fields, but if the
frequency is too high, a triangular voltage applied to the
solenoid will not produce an approximately triangular cur-
rent. Whatever method is used to drive the solenoid, it is
important to monitor the voltage across a small resistor in
series with the solenoid, so'that one can be sure that B is
varying linearly while ¥, and V, are being observed. Figure
5 shows the results obtained with R, = 1 k2 and R, =2
k2. According to the results derived earlier, ¥, and ¥,
should be time independent when the solenoid current is
varying linearly. Thus, if the solenoid current is a triangu-
lar function of time, ¥, and ¥, are predicted to be “‘square
waves,” as observed. Moreover, V| and V, should be of
opposite phase, and the relative amplitudes should be | F,/
V\| = R,/R, = 2. These predictions are consistent with
the experimental results. From measurements such as
those shown on the top trace in Fig. 5, it is calculated that
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Fig. 5. Top trace is the voltage across a small resistor in series with the
solenoid windings and is thus proportional to the solenoid current. The
middle and lower traces show the voltages ¥, and F,, respectively; the
measured square waves have peak-to-peak voltages of approximately 4.3
and 8.4 mV, respectively.

the current through the solenoid changes at the rate of

+ 1560 A/s during the two different parts of the triangular
waveform. From this datum, the dimensions of the sole-
noid, and Eq. (11), it is predicted that ¥, and ¥, should be
square waves of 4.4 and 8.8 mV peak-to-peak, respectively,
a prediction in agreement with the observed oscilloscope
traces to within about 5%.

Note that to the extent that the magnetic field exterior to
the solenoid can be neglected, curl E is zero throughout
region II, and it thus makes no difference, in principle,
whether the voltmeter leads are or are not twisted or ar-
ranged to lie close to one another. In practice, however,
solenoids are not infinitely long; thus R, and R, should be
physically close to the solenoid and approximately midway
between the ends of the solenoid. Anomalous results may
beobserved if the red and black leads to the oscilloscope are
not physically close to one another throughout most of
their length. It is crucial, though, even in the idealized ex-
periment, that the physical configuration of the leads be
such as to preserve the topological arrangement of Fig. 1 if
Eq. (11} is to be valid. If, by accident or design, the leads are
arranged as shown in Fig. 6, for example, ¥, will be equal to
V5, in both sign and magnitude, no matter what the values
of R, and R,. Once the apparatus is set up, the investigator
will be unable to resist trying a number of arrangements of
the leads, that shown in Fig. 6 and other variations suggest-
ed by Eq. (3) and Fig. 3 (wrapping one of the red leads once
or twice around the solenoid before attaching it to point 4,
for instance) and explaining the signs and magnitudes of
the resulting waveforms in terms of the simple physics de-
scribed in this paper.

VI. “VOLTAGE” ACROSS AN INDUCTOR

The issues discussed in this paper are highly relevant to
another disturbing question that I will briefly mention,
Any introductory physics book will tell you that “the vol-
tageacrossaninductoris V', = L (dI /dt).” [Orperhapsitis

— L (dI /dt); signs are important, but that is not the point
here.] The essence of an inductor is that it contains regions
in which dB/dt #0, but that is precisely the circumstance
that requires curl E#£0, hence preventing us from defining
asingle-valued scalar potential for E and surely making the
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Fig. 6. Topology of this circuit is quite different from that-of Fig. 1, and for
this circuit, ¥, = ¥,

very meaning of “voltage” or “potential” suspect. Then
what in the world can be meant by writing ¥, = L (dI /dt)?
Or, what can we mean by equations such as those we write
to describe the transient discharge of a capacitor in a series
L — R — C circuit, L(dI/dt)+RI +Q/C=0, equa-
tions which in the case of circuits noz containing inductors
are explicitly based on the proposition that E is a conserva-
tive field, so that any closed line integral of E vanishes? I
was acutely distressed when I first asked myself these ques-
tions, and most other physicists seem to feel the same way.
Most textbook authors ignore these issues, but there are a
few"” whose discussions of inductors will enable one to
arrive at a satisfactory resolution.

VII. CONCLUSION

Of all the phenomena of physics, those associated with
Faraday’s law are among the most persistently fascinating
and puzzling. How is it that dB/Jt in one region demands
the existence of curl E in that same region, and thus re-
quires the existence of a nonvanishing E in other regions in
which B and curl E both vanish? In a search of many books
and papers on electromagnetic theory, I have been sur-
prised to find little mention of the problem discussed in this
paper, though I feel sure it must be known to many other
admirers of electromagnetic theory. I myself first learned
of this problem under trying circumstances, during an oral
examination many years ago in which I was the examinee; I
believe it was Eric Rogers and Frank Shoemaker who first
tried to lead me through the beautiful physics of this situa-
tion, I am indebted to them for introducing me to the prob-
lem and for their tolerance of my initial confusion, and to J.
Henry and M. Faraday for their wonderful discoveries.
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