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Abstract

In this project I will look into the phenomenon of precession, in particular into
the motion of the spinning top, and further onto how precession allows the

Levitron top achieve stable levitation over a magnetic base.
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Chapter 1

Introduction

1.1 Context and Motivation

In this project, I am going to be considering the spinning motions of rigid
bodies. I will begin by discussing the kinematics of the motion of rigid bodies,
and then go on to look at their equations of motion. I am most interested in
the phenomenon of precession.

The Spinning Top is a toy that can be spun on an axis, balancing on a
point. It is one of the oldest recognisable toys found on archaeological sites, and
it seems to have originated independently in cultures all over the world. The
action of the spinning top is reliant on a gyroscopic e�ect for its motion. This
e�ect can sometimes suggest counter-intuitive ideas, and it certainly amazed
physicists Niels Bohr and Wolfgang Pauli!

Figure 1.1: Pauli & Bohr marvel at the spinning top1

All rotating objects can undergo precession. The gyroscope is a device which
is used for measuring or maintaining orientation. The classic image of a gyro-
scope is a relatively large rotor suspended in light supporting rings, known as
gimbals, which have frictionless bearings and ensure that the central rotor is

1image obtained from www.damtp.cam.ac.uk/user/tong/dynamics/three.pdf
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isolated from external torques. The gyroscope is capable of extreme balanced
stability when at high speeds, and can maintain the direction of the high speed
rotation axis of the central rotor.

Figure 1.2: A gyroscope2

The angular momentum of the rotor maintains its magnitude in absence of
external torques, and the orientation also remains almost �xed, regardless of
the motion of the platform on which it is mounted.

The classical gyroscope has several applications, with the gyrocompass being
arguably the most important. Gyrocompasses were �rst developed around 1906.
They make use of a fast-spinning wheel in addition to friction forces in order
to exploit the Earth's rotation and enable true north to be found. They are
widely used as navigation devices on ships and aircrafts, and were particularly
important in the early 1900's when they had signi�cant military uses.

There are many more examples of gyroscopic motion: The wheels of bicycles,
the spin of the Earth in space and even the behaviour of a boomerang all exhibit
this type of motion.

The Levitron is an �amazing anti-gravity top� which is exceptional in that
Earnshaw's theorem seems to indicate that its operation is impossible, and the
majority of scientists thought that it would never be able to work. Precession
is in fact responsible for the Levitron being able to apparently ��oat� in mid-air
over a magnetic base. I will be looking closely into the Levitron and attempting
to explain the principles behind its operation in this project.

2image obtained from http://commons.wikimedia.org/wiki/File:3D_Gyroscope.png

5



Chapter 2

Rigid Bodies and the Kinematics of their
Motion

A rigid body can be described as a system of mass points subject to the
constraint that the distance between any 2 points of the system must remain
permanently �xed. In this chapter we will be considering the nature of rigid
body motion.

2.1 Independent Coordinates of a Rigid Body

It is convenient to consider a coordinate system whose axes point along �xed
directions in the body. We shall call this the �body-�xed� system. The origin is
chosen to be some point held �xed in the body.

A rigid body of N particles has up to 3N degrees of freedom, however, there
is the constraint that the distance between the particles must remain �xed:

| ri − rj |= rij = cij (2.1)

where rij is the distance between the ith and jth particles and cij is a
constant.

Figure 2.1: A rigid body has �xed distances between its points3

For N particles, 1
2N(N - 1) constraint equations exist, but these constraint

equations are not all independent. If we �x a point in a rigid body, we only
need to specify distances to any three non-collinear points. Once these �rst three
points are �xed, any additional particle in the body gives 3 new coordinates, but
also three new constraint equations, so the net increase in degrees of freedom is
zero. There is therefore a maximum of 9 degrees of freedom for a rigid body.

The �rst three particles we chose have �xed distances between them:

r12 = c12 r23 = c23 r13 = c13.

3image obtained from http://www.damtp.cam.ac.uk/user/tong/dynamics/three.pdf
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So now the number of degrees of freedom is reduced to six.

We now know that six coordinates are required to completely specify the
position of an unconstrained rigid body in 3-dimensional space: three of these
are cartesian coordinates which we need to specify position of the centre of mass
of the body axes and three are angles needed to specify the orientation of the
body axes relative to a co-incident external set of axes.

Additional constraints on the body could reduce the number of independent
coordinates further.

Many di�erent ways exist of specifying the orientation of one cartesian sys-
tem of axes with respect to another. A popular and useful method is to specify
the direction cosines of a set of primed axes relative to unprimed axes. If we set
the external axes to be labelled as x, y, z axes, the x′ axis in the body frame
can then be de�ned by its three direction cosines.

Convention is to label the three unit vectors along x, y, z as i, j and k, and
the unit vectors in the body system as i', j' and k'. We then de�ne the direction
cosines for x′ as:

cosθ11 = cosθi′i = i′· i

cosθ12 = cosθi′j = i′· j (2.2)

cosθ13 = cosθi′k = i′· k.

The relation between unit vectors in the two systems can be expressed as:

i′= cosθ11i + cosθ12j + cosθ13k

j′= cosθ21i + cosθ22j + cosθ23k (2.3)

k′ = cosθ31i + cosθ32j + cosθ33k.

An arbitrary vector, v, can be expressed in the two systems as:

v = xi + yj + zk = x′i′ + y′j′ + z′k′ (2.4)

and the relationship between primed and unprimed coordinates is:

x′= cosθ11x + cosθ12y + cosθ13z

y′= cosθ21x + cosθ22y + cosθ23z (2.5)

z′ = cosθ31x + cosθ32y + cosθ33z

with similar inverse relations.

Because the primed axis are �xed in the body, the nine direction cosines
will change in time as the body rotates. The direction cosines can be thought
of as generalised coordinates describing the orientation of the body, however,
they cannot all be independent since we know that only three coordinates are
required to specify an orientation. The relations between the direction cosines
are due to the basis vectors being orthogonal to each other in each of the two
coordinate systems, and all having unit magnitude:
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i · j = j · k = i · k = 0

i · i = j · j = k · k = 1 (2.6)

with similar relations for i′, j′ and k′. Combining the set of equations (4.3)
with the dot-product relations, we can then de�ne six orthogonality relations
between the direction cosines:

3∑
q=1

cosθpqcosθp′q = 0 p,q = 1, 2, 3, p 6= p′

3∑
q=1

cos2θpq = 1. (2.7)

We can use the Kronecker delta function, δpq , de�ned by

δp′p = 1 p = p′

= 0 p 6= p′

to reduce the orthogonality relations to:

3∑
p=1

cosθpqcosθp′q = δp′p. (2.8)

Due to there being six orthogonality parameters between the nine direction
cosines, the number of independent coordinates has now been reduced to just
three.

The direction cosines are therefore convenient and useful to use as a method
of specifying the relative orientation of a cartesian coordinate system to another
coincident system, but they cannot be used as generalized coordinates to set up
a Lagrangian. We must instead choose some set of three independent functions
of the direction cosines. Although not unique, the Euler angles are a popular
choice for this set, and we will look at these in more detail later.

2.2 Orthogonal transformations

A general linear transformation equation can be written as

x′ = Ax (2.9)

where A is the matrix of transformation which can be considered as an
operator which transforms the unprimed system into the primed system. The
vector remains unchanged; A acts on the coordinate system only, yielding the
coordinates of the vector components in the new, primed frame. A has matrix
elements aij.

Denoting the x, y, z axes instead as the x1, x2, x3 axes will prove to be
advantageous here. In matrix form, the linear transformation can be written as:
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 x′1
x′2
x′3

=
 a11 a12 a13

a21 a22 a23

a31 a32 a33

 x1

x2

x3

 (2.10)

to give three transformation equations. The set of equations (2.5) is a special
case of a linear transformation, as there is not independence of all the direction
cosines. We can re-derive the connection between the cosine coe�cients in terms
of our new aij notation.

We are able to express each of the primed coordinates as a summation:

x′i =
3∑
i=1

aijxj i = 1, 2, 3. (2.11)

The actual vector x remains unchanged in both the old and new coordinate
systems, and so magnitude of the vector x (given in terms of the sum of squares
of the components) therefore also remains unchanged in both systems:

3∑
i=1

x′i
2 =

3∑
i=1

x2
i . (2.12)

Using the transformation equation (2.11), this now becomes

3∑
i=1

(
3∑
i=1

aijxj

)(
3∑
i=1

aikxk

)
=

3∑
i=1

3∑
j,k=1

aijaikxjxk. (2.13)

We can rearrange the summations and write this expression as

3∑
j,k=1

(
3∑
i=1

aijaik

)
xjxk (2.14)

which is equal to the right hand side of equation (2.12) if and only if

3∑
i=1

aijaik = δjk for j, k = 1, 2, 3 (2.15)

where δjk is the Kronecker delta. If we express the aij components in terms of
the cosine coe�cients, we now obtain a set of equations identical to equations
(2.8).

Equation (2.15) is known as the orthogonality condition. The transition
between coordinates �xed in space and coordinates �xed in the rigid body is
achieved by means of an orthogonal transformation.

2.21 Transformation Matrix Properties

We will now think about what will happen when we perform two succes-
sive orthogonal transformations. Physically, this corresponds to the rigid body
undergoing two successive displacements.
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We can denote the �rst transformation as B :

x′ = Bx. (2.16)

In matrix form,  x′1
x′2
x′3

 =

 b11 b12 b13

b21 b22 b23

b31 b32 b33

 x1

x2

x3

. (2.17)

We will denote the second transformation from x′ to the next coordinate set
x′′ by A:

x′′ = Ax′= ABx (2.18)

Or in matrix form: x′′1
x′′2
x′′3

 =

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 x′1
x′2
x′3



=

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 b11 b12 b13

b21 b22 b23

b31 b32 b33

 x1

x2

x3

. (2.19)

We can also use component form to show that the application of B on system
x is:

xk =
∑
j

bkjxj (2.20)

and the application of A on x′′ is:

x′′i =
∑
k

aikx
′
k

so combining these two equations above gives:

x′′i =
∑
k

aik
∑
j

bkjxj (2.21)

which is the same as

x′′i =
∑
j

(∑
k

aikbkj

)
xj . (2.22)

If we set

cij =
∑
k

aikbkj (2.23)

then we are able to rewrite equation (2.21) as:
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x′′i =
∑
j

cijxj . (2.24)

We can therefore de�ne an orthogonal transformation C = AB where the
elements of the square matrix C are given by the equation (2.23). This tells us
that the successive transformation of orthogonal matrices A and B is completely
equivalent to a third linear transformation C.

It is worth noting that this matrix multiplication is generally not commuta-
tive:

AB 6= BA. (2.25)

Matrix multiplication is, however, associative:

(AB)C = A(BC). (2.26)

In the addition of two transformation matrices:

C = A + B (2.27)

and the elements of the matrix are cij = aij + bij .

The inverse transformation is one by which the new, primed system is trans-
formed into the old, unprimed system, as shown by the following equation:

xi =
∑
j

a′ijx
′
j (2.28)

where a′ij are the elements of the inverse transformation matrix A−1 .

This must be consistent with the set of equations:

x′k =
∑
i

akixi. (2.29)

We can then substitute the xi from (2.28) into (2.29) to obtain:

x′k =
∑
i

aki
∑
j

a′ijx
′
j

=
∑
j

∑
i

akia
′
ij

xj (2.30)

which, since the x′components are independent, can only possibly be correct if:∑
i

akia
′
ij = δkj . (2.31)

If we let A and A−1 be the matrices with elements denoted by aki and a
′
ij

respectively, we see that equation (2.31) can instead be written as:
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AA−1 = 1 (2.32)

where 1 is known as the identity transformation:

1 =

 1 0 0
0 1 0
0 0 1

. (2.33)

Because x = 1x, no change is produced in the coordinate system.

It can be shown that A and A−1 are commutative:

A = 1A= (AA−1)A = A(A−1A) = A1 = A (2.34)

and therefore

AA−1 = A−1A = 1. (2.35)

The transpose, AT of matrix A can be obtained by interchanging the rows
and columns:

A =

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 AT =

 a11 a21 a31

a12 a22 a32

a13 a23 a33

. (2.36)

For an orthogonal transformation, it can be shown that A−1 = AT . We
can prove this by �rst considering the sum:∑

k,i

aklakia
′
ij .

If we �rst sum over k, we obtain the expression:

∑
i

∑
k

aklaki

 a′ij .

If instead we sum over i �rst, we get:

∑
k

∑
i

akia
′
ij

 akl.

We can then use the earlier obtained orthogonality condition to reduce the
�rst sum to ∑

i

δila
′
ij = a′lj .

The second sum can also being reduced, using equation (2.31):
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∑
k

δkjakl = ajl.

This indicates that the elements aij of A and a′ji of the reciprocal A−1 are
related by the equation

a′ij = aji (2.37)

and we have thus proved that A−1 = AT for orthogonal matrices. We can
then substitute this result into the equation (2.35) to get the relation

ATA= 1 = AAT. (2.38)

2.22 Further Properties of Transformation Matrices

We already know that if A is an orthogonal transformation matrix, then
x′= Ax. If we then transform the coordinate system by another matrix, B, the
vector x′ in this new coordinate system would now be:

Bx′= BAx = Bx(B-1B)x = (BAB-1)Bx (2.39)

where Bx′ is the vector x′ in the new coordinate system, and Bx is the
vector r in the new system. The matrix A′= (BAB-1) is the transformation
matrix A under the new coordinate system B. Any transformation of a matrix
having this form is known as a similarity transformation.

The determinant of a matrix is notated as:

det(A) = | A |. (2.40)

For two square matrices, A and B, the following rule applies for their deter-
minants:

| AB | = | A || B | (2.41)

If A is an orthogonal transformation matrix, then since the determinant of
a unit matrix is 1 and the orthogonality condition indicates that AAT = ATA
= 1, it becomes apparent that

| A || AT | = | AT || A | = 1, (2.42)

implying that interchanging columns or rows of an orthogonal matrix does
not have an e�ect on the determinant, i.e. | A |=| AT | . This then tells us that
we can write:

| A |2 = 1 (2.43)

which then allows us to conclude that | A | = ±1 : there are only 2 possi-
bilities for the determinant of an orthogonal matrix: +1 or -1.

Finally, we can show that the value of a determinant is invariant under a
similarity transformation, by �nding the determinant of both sides of a simi-
larity transformation equation. For orthogonal matrices A and B, where A′=
(BAB-1), this gives:
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| A′ |= | B || A || B-1 |= | A | (| B || B−1|) = | A |. (2.44)

2.3 The Euler Angles

As discussed earlier, we only require three independent parameters to de-
scribe the orientation of a rigid body. There are many choices of generalised
coordinates that could be used to describe an arbitrary rotation of a coordi-
nate system from one orientation to another, but Eularian angles are the most
common and useful choice.

The transformation from an initial cartesian coordinate system to another
can be achieved by means of three successive rotations performed in a speci�c
sequence, with the three successive angles of rotation being de�ned as the Eu-
larian angles.

Figure 4.2: The rotations which de�ne the Eularian angles4

The initial system of axes, xyz , is initially rotated anticlockwise by an angle
φ about the z-axis, giving a transformation matrix D:

D =

 cosφ sinφ 0
−sinφ cosφ 0

0 0 1

 . (2.45)

This transformation results in a new system of axes, which will be labelled
the ξηζ axes. The new set of axes are then rotated anticlockwise about the ξ
axis by an angle θ. This transformation is given by the matrix C:

C =

 1 0 0
0 cosθ sinθ
0 −sinθ cosθ

 (2.46)

This produces the intermediate set of axes, to be labelled the ξ′η′ζ ′axes.
The intersection of the xy and ξ′η′ planes is the ξ′ axis, and it is called the line
of nodes.

The ξ′η′ζ ′ axes are then rotated anticlockwise by an angle ψ about the ζ ′

axis, this transformation is given by the matrix B:

B =

 cosψ sinψ 0
−sinψ cosψ 0

0 0 1

. (2.47)

4image obtained from http://tabitha.phas.ubc.ca/wiki/index.php/Rigid_Bodies
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This gives the �nal set of axes, the x ′y ′z ′system.

The Eularian angles φ, θ and ψ therefore specify the relative orientation of
the x ′y ′z ′ system to the xyz system completely, and the the complete transfor-
mation matrix A,where

x′ =Ax (2.48)

is simply the product of the three successive matrices:

A = BCD (2.49)

where

A =

 cosψcosφ− cosθsinφsinψ cosψsinφ+ cosθcosφsinψ sinψsinθ
−sinψcosφ− cosθsinφcosψ −sinψsinφ+ cosθcosφcosψ cosψsinθ

sinθsinφ −sinθcosφ cosθ

. (2.50)

2.4 Euler's Theorem on the Motion of a Rigid Body

At any instant, the orientation of a body can be speci�ed by an orthogonal
transformation matrix, R. Orientation will change as time progresses, and the
matrix is therefore a function of time, R(t).

We can choose the body-�xed axis to be coincident with the space axis at
t = 0, so that R(0) = 1 where 1 is the identity matrix as before. Physically,
the motion must be continuous, so R(t) is a continuous function of time and it
evolves continuously from the identity transformation.

Euler's theorem states that any transformation in the 3-dimensional real

space which has at least one �xed point can be described as a simple rotation

about a single axis. This axis, through the �xed point, means that the result of
several consecutive rotations can be replaced by a single rotation. The axis of
rotation is una�ected by the operation and so any vector lying along the axis of
rotation must have identical components in both the initial and �nal axis.

2.41 Proof of Euler's Theorem

To prove Euler's theorem, we must show that there exists a vector v having
the same components in both initial and �nal systems i.e. there must exist
vector v unchanged by transformation R.

v′ = Rv = v. (2.51)

This is a special case of the more general equation,

v′ = Rv = λv (2.52)
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where λ is an unspeci�ed constant, which is allowed to be complex. The values
of λ which allow equation (2.52) to be solved are called the eigenvectors of the
matrix. The vector solutions are known as the eigenvectors of R.

We are now able to state an alternative form of Euler's theorem:

The real orthogonal matrix specifying the physical motion of a rigid body with

one point �xed always has eigenvalue ± 1.

We can therefore rewrite equation (2.52) as

(R − λ1)v = 0 (2.53)

and restate it with v = (X1 X2 X3)T (where we have chosen to denote the
coordinates x, y, z as X1, X2, X3) to give 3 homogeneous simultaneous equations
with 4 unknowns:

(r11− λ)X1 + r12X2 + r13X3 = 0

r21X1 + (r22−λ)X2 + r23X3 = 0 (2.54)

r31X1 + r32X2 + (r33 −λ)X3 = 0.

From this set of equations (2.54), we are unable to exactly specify X1 , X2

and X3 , but they do allow us to �nd ratios of the components. This corresponds
to the situation where only the direction of the eigenvector can be �xed and the
magnitude remains unknown, i.e. if v is an eigenvector then so is tv where t is
any scalar constant.

We only have non-trivial solutions to the set of equations (2.54) when the
determinant of the coe�cients is zero:

|R - λ1|=

∣∣∣∣∣∣
r11 − λ r12 r13

r21 r22 − λ r23

r31 r32 r33 − λ

∣∣∣∣∣∣ = 0 (2.55)

Equation (2.55) is known as the characteristic equation of the matrix. The
values of λ which allow the characteristic equation to be satis�ed are the required
eigenvalues.

We are now once again able to restate Euler's theorem: the characteristic

equation must have the root λ = ±1. Generally, we will have 3 roots with 3
eigenvectors. The components of the eigenvectors may be labelled Xik , where
the �rst subscript indicates which particular component is being considered, and
the second subscript indicates which of the three eigenvectors is involved.

The set of equations (2.54) would then have typical members written as∑
j

rijXjk = λkXik. (2.56)

We can then expand this for each k:
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r11X1k+ r12X2k + r13X3k = λkX1k

r21X1k+ r22X2k + r23X3k = λkX2k (2.57)

r31X1k+ r32X2k + r33X3k = λkX3k.

We are now able to put this into matrix form:

X =

 X11 X12 X13

X21 X22 X23

X31 X32 X33

 (2.58)

and

λ =

 λ1 0 0
0 λ2 0
0 0 λ3

 (2.59)

to give a new expression for the matrix equation:

RX = Xλ. (2.60)

This allows us to write

X−1RX = λ (2.61)

by simply multiplying equation (2.60) by X−1 on the left hand side. Here, we
are trying to diagonalise R by a similarity transformation equation. The
elements of the diagonal matrix obtained by transforming R will then be the
eigenvectors we are looking for. Euler's theorem for rigid body motion with
one point �xed can thus be proved by using the orthogonality properties of R.

We are trying to solve the characteristic equation, so we will begin by con-
sidering

(R − 1)RT = 1 − RT (2.62)

RTR = 1 = RRT (2.63)

and then take the determinant of both sides of equation (2.62):

| R − 1 || RT | = | 1 − RT |. (2.64)

In order to describe rigid body motion, the matrix R must correspond to a
proper rotation, i.e.

| R | = | RT | = +1 (2.65)

and we can therefore rewrite equation (2.64) as

| R - 1 | = | 1 − R |. (2.66)
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We can set D = R - 1, and then rewrite the above equation again as:

| D | = | −D |. (2.67)

If D is an n x n matrix, then it has the well-known property that

| −D | = (−1)n| D | (2.68)

and so for our 3 x 3 matrix,

| −D | = − | D | (2.69)

and therefore equation (2.67) can now be written as

| D | = − | D |. (2.70)

Obviously this can only be true for | D |= 0 and therefore, |R - 1|= 0 . We
can then solve the characteristic equation (2.55) with λ = +1:

|R - λ1|= |R - (+1)1|= 0. (2.71)

This implies that λ= +1 is an eigenvalue of R. We shall now seek to �nd
the remaining two eigenvalues. The determinant of the matrix λ is the product
of the three eigenvalues λ1λ2λ3. The determinant of a matrix is una�ected by
a similarity transformation. X−1RX = λ is a similarity transformation and
therefore the determinant of R is equal to the determinant of λ:

| R |= λ1λ2λ3 . (2.72)

We already know that | R | = +1 and that one of the eigenvectors, λ3 say, is
equal to +1, and we are left with the equation:

λ1λ2 = +1. (2.73)

We know that R is real, and so if λ is a solution to the characteristic equation,
then its complex conjugate λ* is also a solution.

It is a property of complex numbers that ‖ c ‖=‖ c*‖for c ε C. From this we
know that all the eigenvalues have unit magnitude.

All three eigenvalues of the real orthogonal matrix with determinant +1 may
be real. There is the trivial solution that λ1 = λ2 = λ3 = 1. There is also the
possibility for there to be one real root and two complex roots. The real root
is λ3= +1 and the two complex roots must be complex conjugates and have
product +1, to give the correct determinant. There is thus one and only one
+1 eigenvalue in any non-trivial physical transformation. This is the statement
of Euler's theorem.

We can obtain the direction cosines of the axes of rotation by �nding the
eigenvector associated with λ = +1 in equation (2.53) and scaling it to unit
length. We can �nd the angle of rotation, φ, without too much di�culty. We
are able to use a similarity transformation to transform R to a coordinate system
where the z-axis lies along the axis of rotation. The matrix R′ represents the
rotation through the angle φ about the z-axis. It has the form
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R′ =

 cosφ sinφ 0
−sinφ cosφ 0

0 0 1

. (2.74)

The trace of R′ is then

1 + 2cosφ. (2.75)

Under a similarity transformation, the trace is always invariant. This must
therefore also be the value of the trace of R :∑

i

rii = 1 + 2cosφ. (2.76)

We can then solve for φ.

Chalses' theorem immediately follows from Euler's theorem, and it states
that the most general displacement of a rigid body is a translation plus a rotation.

2.5 In�nitesimal Rotations

A �nite rotation about the z-axis has a rotation matrix of the form

A =

 cosφ sinφ 0
−sinφ cosφ 0

0 0 1

. (2.77)

Two rotations performed one after the other, i.e. the addition of two rota-
tions, corresponds to the product of the two matrices, AB. Non-commutativity
of matrix multiplication allows us to conclude that A,B are not commutative in
addition and thus cannot be considered as vectors. This leads to the conclusion
that the sum of �nite rotations is dependent on the order in which the rotations
are carried out. The same is not true if we consider in�nitesimal rotations.
Goldstein de�nes an in�nitesimal rotation as: �an orthogonal transformation of

coordinate axes in which the components of a vector are almost the same in both

sets of axes - the change is in�nitesimal� .
An in�nitesimal transformation of a vector x′ is given by

x′ = (1 + ε)x (2.78)

where the vector 1 is the identity matrix and ε is in�nitesimal.

It can be shown that two in�nitesimal transformations ε1and ε2 are com-
mutative, by the equivalence of

(1 + ε1)(1 + ε2) = 12+ε11 + 1ε2 + ε1ε2 ≈ 1 + ε1 + ε2

(1 + ε2)(1 + ε1) = 12+ε21 + 1ε1 + ε2ε1 ≈ 1 + ε2 + ε1 (2.79)
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We can de�ne A ≡ 1+ε as the transformation matrix, and the inverse of
this is

A-1= 1− ε (2.80)

since

AA-1 = (1 + ε)(1− ε) = 1−ε2 ≈ 1. (2.81)

For small angles, sinφ ≈ dφ and cosφ ≈ 1. From this we can obtain the matrix
of in�nitesimal rotation:

1+ε =

 1 dφ 0
−dφ 1 0

0 0 1

. (2.82)

And the in�nitesimal matrix ε is therefore

ε =

 0 dφ 0
−dφ 0 0

0 0 0



= dφ

 0 1 0
−1 0 0
0 0 0

. (2.83)

Since the in�nitesimal transformation is de�ned to be a rotation, orthogonality
of rotation matrices requires

AT = A-1 (2.84)

but A-1 = 1− ε, so

(1+ε)T = 1T + εT = 1+εT (2.85)

and so

ε = -εT (2.86)

which is the de�nition of an antisymmetric matrix.

Given that ε is an antisymmetric matrix, the diagonal elements are therefore
equal to zero and there can only possibly be three distinct elements in ε.

The matrix ε must therefore be of the form

ε =

 0 dΩ3 −dΩ2

−dΩ3 0 dΩ1

dΩ2 −dΩ1 0

 (2.87)

where dΩ1, dΩ2 and dΩ3 are quantities associated with the three independent
parameters responsible for specifying the rotation of the body.
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When the in�nitesimal rotation matrix is applied to the vector x, the di�er-
ential change in x is given by

dx =x′ − x = (1+ε)x−x = εx. (2.88)

In matrix form, this is

dx =

 0 dΩ3 −dΩ2

−dΩ3 0 dΩ1

dΩ2 −dΩ1 0

 x
y
z



=

 ydΩ3 − zdΩ2

zdΩ1 − xdΩ3

xdΩ2 − ydΩ1


and so

dx = (ydΩ3−xdΩ2)i + (zdΩ1−xdΩ3)j + (xdΩ2−ydΩ1)k

= x × dΩ (2.89)

This implies that (
dx
dt

)
rotation = x ×

(
dΩ
dt

)
= x × ω (2.90)

The vector ω here is the angular velocity of the body. It is de�ned as the
instantaneous angular rate of rotation of the body,

ω = dΩ
dt . (2.91)

2.6 Rate of Change of a Vector

If we set R as an arbitrary vector involved in describing motion of a rigid
body with time, how the vector will vary in time as the body is in motion will be
dependent on the coordinate system of observation. Only the e�ects of rotation
of the body axes will result in the components of R with respect to the body
axes di�ering from the components of R with respect to the space axes.

This allows us to write:

(dR)body = (dR)space + (dR)rotation. (2.92)

But as we saw before,

(dR)rotation = R × dΩ. (2.93)
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The di�erential dR observed in the space set therefore is related to the same
di�erential when observed in the body set by the following equation:

(dR)space = (dR)body + dΩ × R. (2.94)

We can then obtain the rate of change of the vector R with respect to time:(
dR
dt

)
space =

(
dR
dt

)
body + ω× R. (2.95)

This can be written as an operator equation due to the arbitrary nature of R :(
d
dt

)
space =

(
d
dt

)
body + ω × . (2.96)

Caution should be taken when taking the time derivative of a vector with
respect to one coordinate system, as components can only be taken along a
di�erent set of coordinate axes after di�erentiation has been carried out.

It will prove useful to be able to use the Euler angles and their time deriva-
tives to express the angular velocity vector, ω.We can consider the general
in�nitesimal rotation associated with the angular velocity vector to be made up
of three sequential in�nitesimal rotations with the angular velocities ωφ = φ̇,

ωθ = θ̇ and ωψ = ψ̇. The angular velocity vectors do not have symmetrically
placed directions: ωφ is along the space z-axis, ωθ points along the line of nodes
and ωψ is along the body z′-axis. In order to obtain ω as the sum of the three
angular velocities we need to use the orthogonal transformations described in
section (2.3) to get the components of the vectors ωφ, ωθ and ωψ along any set
of axes we desire.

We shall obtain the components of ω for the set of body axes, as this will
be the most useful coordinate system to consider.

Being parallel to the space z-axis, ωφ requires the complete orthogonal trans-
formation A = BCD to be applied to obtain its components along the body
axes:

(ωφ)x′ = φ̇sinθsinψ (ωφ)y′ = φ̇sinθcosψ (ωφ)z′ = φ̇cosθ. (2.97)

Since the direction of ωθ lies along the line of nodes, which coincides with the
ξ′-axis, we can �nd the components of ωθ along the body axes by applying the
last orthogonal transformation in the sequence, B (2.47):

(ωθ)x′ = θ̇cosψ (ωθ)y′ = −θ̇sinψ (ωθ)z′ = 0. (2.98)

The vector ωψ lies along the z′-axis and so does not require an orthogonal
transformation. We now are able to add the separate angular velocity
components with respect to the body axes and we obtain:

ωx′ = φ̇sinθsinψ + θ̇cosψ

ωy′ = φ̇sinθcosψ -θ̇sinψ (2.99)

ωz′ = φ̇cosθ + ψ̇.
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Chapter 3

Equations of Motion of Rigid Bodies

In this chapter we will look into the nature of rigid body motion, using the
ideas and techniques explained in the previous chapter. We will be using the
Euler angles as generalised coordinates and will apply other tools previously
described to obtain the equations of motion for rigid bodies.

3.1 Angular Momentum of a Rigid Body About a Fixed Point

In general rigid body rotation, every particle lies a �xed distance from the
origin and a �xed angle to the rotation axis. The velocity vi of a rigid body
about a �xed point is therefore

vi = ω × ri (3.1)

where ri is the radius vector of the ith particle, relative to the �xed point.
Thus the total angular momentum of the rigid body about the �xed point, given
by

J =
∑
i

mi(ri × vi) (3.2)

can now be written as

J =
∑
i

mi(ri × (ω × ri )). (3.3)

We can expand the triple cross product to obtain

J =
∑
i

mi(ri 2ω - (ri · ω) ri ). (3.4)

Since J lies in the same plane as r, it rotates as r rotates.

The components of J are given by

Jx = ωx
∑
i

mi(r2i−x2
i ) - ωy

∑
i

mixiyi - ωz
∑
i

mixizi

Jy = ωy
∑
i

mi(r2i−y2
i ) - ωx

∑
i

miyixi - ωz
∑
i

miyizi (3.5)

Jz = ωz
∑
i

mi(r2i−z2
i ) - ωx

∑
i

mizixi - ωy
∑
i

miziy .

Angular momentum of the body is therefore linearly related to its angular
velocity.
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The linear transformation can be written in matrix form: Jx
Jy
Jz

 =

 Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

 ωx
ωy
ωz

 (3.6)

so that Jx = Ixxωx + Ixyωy + Ixzωz and similarly for Jy and Jz.

The elements Ixx, Iyy and Izz are known as the moment of inertia coe�-

cients. For a rigid body made up of discrete particles,

Ixx =
∑
i

mi(r2
i - x

2
i ). (3.7)

with similar relations for Iyy and Izz. For continuous bodies,

Ixx =
´
dV

ρ(r)(r2−x2)dV (3.8)

where ρ(r) is the mass density of the body.

The rest of the elements of the elements are known as products of inertia

and they have the form given by

Ixy = −
∑
i

mixiyi. (3.9)

J and ωare vectors that are independent of our choice of axes. The relation
between them can therefore be expressed as

J = I · ω (3.10)

where I is de�ned as the moment of inertia tensor.

3.2 Tensors

A tensor acts on a vector to produce a new vector which is linearly related
to the old one but will, in general, have a di�erent direction. The action of a
tensor on a vector a can be denoted by

b = T · a (3.11)

which can be written as b1
b2
b3

 =

 T11 T12 T13

T21 T22 T23

T31 T32 T33

 a1

a2

a3

 (3.12)

or
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Ti =
∑
j

Tijaj . (3.13)

Familiar methods of multiplying two vectors are by means of a dot product
or cross product, but there is a third type of multiplication, a dyadic product,
which will be useful here.

A dyadic product, denoted ⊗, produces a tensor:

a ⊗ b =

 a1b1 a1b2 a1b3
a2b1 a2b2 a2b3
a3b1 a3b2 a3b3

 . (3.14)

A tensor of this type is known as a tensor of the 2nd rank. A tensor of zero
rank has only one component, which is invariant under orthogonal transforma-
tion. A scalar is a tensor of zero rank. A tensor of �rst rank is completely
equivalent to a vector.

The most important property of a vector is the way its components transform
under a rotation of the coordinate axes; keeping its geometrical or physical
meaning invariant.

3.3 Moment of Inertia Tensor

The kinetic energy of energy about a point is given by

T = 1
2

∑
i

miv
2
i (3.15)

where vi is the velocity relative to a �xed point and vi= ω × ri.

This allows us to write the kinetic energy as

T = 1
2

∑
i

mivi · (ω × ri) (3.16)

which is equivalent to

T = ω
2 ·

∑
i

mi · (ri· vi) (3.17)

and so the rotation kinetic energy corresponding to equation (3.10) has the
form:

T = 1
2 ω · I · ω (3.18)

If we set n to be a unit vector in the direction of ω, we are then able to de�ne
ω = ωn , and can rewrite the kinetic energy in the form

T = 1
2ω

2 n · I · n = 1
2Iω

2 (3.19)
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where we de�ne I, the moment of inertia about the axis of rotation, as

I = n · I · n =
∑
i

mi(r2
i - (ri · n)2). (3.20)

The direction of the axis of rotation has an e�ect on the value of the moment
of inertia. The direction of ω changes in time with respect to the body, and so
the moment of inertia must also be a function of time. It is possible to keep the
moment of inertia constant by constraining the body to allow it to rotate only
about a �xed axis. If this constraint is applied then the form of kinetic energy
in equation (3.19) is very close to the form we need to set up the Lagrangian
for the system. The last step required is to express ω as the time derivative of
some angle. This is usually possible without too much di�culty.

3.4 The Principal Axis

We seek to show that any rigid body has three principal axes that can be
chosen so that they are always mutually orthogonal. The equation (3.9) de�ning
the products of inertia shows that the components of the inertia tensor are in
fact symmetrical, that is

Iij = Iji. (3.21)

This indicates that the only six coordinates of the tensor are independent.

We have already seen the relationship between a rigid body's angular mo-
mentum and angular velocity in equation (3.10), where I is now known to be a
tensor of the second rank, known as the moment of inertia tensor. If the angular
momentum of a body is parallel to its angular velocity, then the rigid body is
described as being dynamically balanced :

J = I · ω = Iω (3.22)

where I is some scalar number. The angular velocity ω must point along a
principal axis of the moment of inertia tensor for this to be true. The value of
I is then called the principal moment of inertia.

The eigenvectors of the tensor I provide the principal axes, while the eigen-
values give the principal moments. We know that the eigenvectors satisfy the
linear set of equations: Ixx − λ Ixy Izx

Ixy Iyy − λ Iyz
Izx Iyz Izz − λ

  ωx
ωy
ωz

 = 0. (3.23)

Here, the symmetry of I has explicitly been displayed.
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Non-trivial solutions for ω will exist only for the case where the determinant
vanishes: ∣∣∣∣∣∣

Ixx − λ Ixy Izx
Ixy Iyy − λ Iyz
Izx Iyz Izz − λ

∣∣∣∣∣∣ = 0. (3.24)

The characteristic equation is cubic in λ, and there will be three solutions:
the desired principal moments I1, I2 and I3. The eigenvectors can then be
obtained by substituting each eigenvalue back into the set of linear equations
in turn. Only two of the equations we get will be independent and we can
then use these to work out the direction of the corresponding eigenvector. Unit
eigenvectors, ei, ej and ek will be used to specify the directions of the principal
axes, as the magnitudes of the eigenvectors are not determined.

Symmetry of the moment of inertia tensor means that its eigenvalues and
eigenvectors have similar properties to those of a real symmetric matrix. The
eigenvalues of any symmetric matrix are real. The principal moments are there-
fore also real.

If ei and ej are the eigenvectors corresponding to di�erent principal mo-
ments, then these eigenvectors (principal axes) are orthogonal:

ei · ej = 0. (3.25)

If there is a repeated root of the characteristic equation then the rigid body
has degenerate principal moments and any vector that is in the plane of ei and
ej can be a principal axis and any pair of suitable vectors in this plane can be
chosen as principal axes. If a body has an axis of symmetry then that axis is a
principal axis and rotations around that axis will be dynamically balanced. We
can thus use the symmetries of a rigid body in order to recognise the principal
axes: If there is an axis of symmetry through the origin of the body then this
axis is a principal axis for rotations about the origin. Another principal axis is
the normal to a plane of re�ection symmetry through the origin.

We can use these properties along with the property that any rigid body
has three principal axes that can always be chosen so that they are mutually
orthogonal, to determine the three principal axes for many rigid bodies. If the
coordinate axes are chosen to lie along the directions of the principal axes, then
the principal moments can be found more easily, they are just the moments of
inertia about our three principal axes.

There is another method that can be used to approach the idea of principal
axes. Earlier, we de�ned the moment of inertia about a given axis as I = n ·
I · n . If we let the direction cosines of the axis be α, β and γ, and the unit
vectors be denoted by i, j and k, then

n = αi + βj + γk. (3.26)

We can then write I as
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I = Ixxα
2 + Iyyβ

2 + Izzγ2+ 2Ixyαβ + 2Iyzβγ + 2Izxγα, (3.27)

once again using the symmetry of I explicitly.

It is useful to de�ne a new vector ρ as

ρ = n√
I

(3.28)

and its magnitude is related to the moment of inertia about the axis whose
direction is provided by n. The equation of some surface in ρ space is a function
of the three variables ρ1, ρ2 and ρ3:

1 = Ixxρ
2
1 + Iyyρ

2
2 + Izzρ233+ 2Ixyρ1ρ2 + 2Iyzρ2ρ3 + 2Izxρ3ρ1. (3.29)

This is the equation of the inertia ellipsoid. It is possible to transform to
a set of cartesian axes so that the ellipsoid equation takes on the normal form
with the principal axes of the ellipsoid along the new coordinate axes:

1 = I1ρ
′
1
2 + I2ρ

′
2
2 + I3ρ

′
3
2 . (3.30)

Equation (3.30) is the same as equation (3.29) when the inertia tensor is
diagonal. The coordinate transformation which turns the ellipsoid equation
into normal form is therefore the same as the previously discussed principal
axis transformation. The lengths of the inertia ellipsoid axes are determined by
the principal moments of inertia. The inertia ellipsoid will be an ellipsoid of
revolution if two of the roots of the characteristic equation are equal because
the inertia ellipsoid will therefore have two equal axes.

In the case of all principal moments being equal, the inertia ellipsoid is in
fact a sphere.

3.5 Euler's Equations of Motion

Six generalised coordinates are required to describe the motion of an uncon-
strained rigid body: 3 cartesian coordinates to describe the translational motion
and three Euler angles to describe the rotational motion.

Kinetic energy can be written as the combination of the translational energy
of the centre of mass and the rotational energy about the centre of mass:

T = 1
2Mv2 + 1

2Iω
2. (3.31)

If we work in the principal axes, rotational energy has the form

1
2I1ω

2
x + 1

2I2ω
2
y +

1
2I3ω

2
z (3.32)

and if one point in the body is �xed then the kinetic energy only contains
rotational terms. If the forces are conservative, we can write the Lagrangian as

L = T - V = 1
2 (I1ω2

x + I2ω
2
y + I3ω

2
z) - V (θ,φ,ψ) (3.33)
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with Euler angles being used to express the components of ω .

The components of the tensor I form a diagonal matrix:

I =

 I1 0 0
0 I2 0
0 0 I3

 (3.34)

and I1,I2,I3 are the principal moments of inertia.

When we are considering the motion of a rigid body with one point �xed, it
is useful to use Euler's equations of motion rather than the Lagrange equations
of motion. We can derive the Euler equations of motion by considering the
de�nition of torque. In an inertial frame, torque is equal to rate of change of
angular momentum:

dJ
dt = τ . (3.35)

In this case, the time derivative is referring to the space axes. In a body-�xed
frame, this equation of motion becomes(

dJ
dt

)
body

+ ω × J = τ . (3.36)

The component of the equation of motion along the x principal axis is then

dJx

dt + ωyJz − ωzJy = τx (3.37)

In this body-�xed frame, the tensor I only depends on the positions of atoms
in the body, and due to the rigidity condition on the body, these particles do
not move and I is therefore constant.

The equation J = I · ω can then be used to re-write the equation of motion
as

I · ω̇ + ω × (I · ω) = τ . (3.38)

This allows us to reduce the equation (3.37) to

I1ω̇x − ωyωz(I2 − I3) = τx.

3.6 Force Free Motion of a Rigid Body

If we consider a rigid body subject to no net forces or torques, the centre
of mass of the body must be either at rest or moving uniformly. Without loss
of generality, we are able to consider the frame where the centre of mass is
stationary. In this case, rotation about the centre of mass is the sole motion
from which the angular momentum arises.

29



Euler's equations are thus the equations of motion of the system, and without
the presence of net torques they become:

I1ω̇x = ωyωz(I2 − I3)

I2ω̇y = ωzωx(I3 − I1) (3.39)

I3ω̇z = ωxωy(I1 − I2).

These equations will also apply to the motion of a rigid body with no net
torques and with one point �xed.

3.61 Poinsot's Construction

Poinsot's construction is a geometric description of the motion which we are
able to derive without needing a complete solution to the problem above. It
is a perfectly adequate method of completely describing force-free rigid body
motion.

Earlier, we de�ned a vector ρ, equation (3.28), whose components are mea-
sured by the principal axes of a body, with the coordinate system also oriented
along the principal axes of the body. We can de�ne a function in this space:

F (ρ) = ρ · I · ρ (3.40)

and the surfaces of constant F are ellipsoids, with the inertia ellipsoid being
de�ned by the surface with F = 1. The vector ρ is parallel to the axis of rotation
and it moves accordingly as the rotation axis changes in time. There is always a
point on the inertia ellipsoid that is de�ned by the tip of ρ, and if the gradient
of F is evaluated at this point then it gives the direction of the normal vector
to the inertia ellipsoid.

Earlier we saw that I has diagonal form in the principal axes. This makes it
simple for us to evaluate the partial derivative of F with respect to ρ1:

∂F
∂ρ1

= 2I1ρ1. (3.41)

We can also de�ne ρ as

ρ = ω
ω
√
I

(3.42)

which then allows us to write

∂F
∂ρ1

= 2
ω
√
I
I1ωx = 2

ω
√
I
Jx (3.43)

and similar results follow for the other components of the gradient of F :

∂F
∂ρ2

= 2
ω
√
I
Jy

∂F
∂ρ3

= 2
ω
√
I
Jz. (3.44)
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The angular velocity vector ω always moves so that the normal correspond-
ing to the inertia ellipsoid is always in the same direction as the angular mo-
mentum, J. In this case, it is the inertia ellipsoid which moves in space, while
the direction of J is �xed to preserve the relationship between the angular mo-
mentum and angular velocity.

The distance between the origin of the ellipsoid and its tangent plane at ρ
must always be �xed. This �xed distance is given by

ρ·J
J = ω·J

ωJ
√
I
= 2T

J
√
Iω2 (3.45)

and is the projection of ρ on J.

This can also be written as

ρ·J
J =

√
2T
J (3.46)

where the angular momentum J and the kinetic energy T are just constants
of motion. The normal to the plane has a �xed direction along the angular
momentum vector J, and so the tangent plane is known as the invariable plane.
The motion of the force-free rigid body can be pictured as being such that
the inertia ellipsoid rolls, on the invariable plane, without slipping, with the
ellipsoid's centre always remaining a constant height above the plane. The
point of contact of the ellipsoid with the plane is de�ned by the position of ρ.
Because ρ is along the instantaneous axis of rotation, the body is momentarily
at rest in this direction.

The non-plane curve traced on the surface of the inertia ellipsoid with �xed
centre by its point of contact with the �xed plane on which it rolls is known
as the polhode. The curve traced out on the invariable plane by the point of
contact between the plane and the inertia is known as the herpolhode.

The values of the kinetic energy T and the angular momentum J determine
the direction of the invariable plane and the height of the inertia ellipsoid above
the plane. The direction of ρ furnishes the direction of the angular velocity in
space and the orientation of the inertia ellipsoid, which is body-�xed, provides
the instantaneous direction of the body.

3.62 Symmetric Rigid Bodies

If the body we are considering is symmetrical, the inertia ellipsoid is an
ellipsoid of revolution and the polhode is a circle on the axis of symmetry. The
vector ω then moves on the surface of a cone correspondingly, and its direction
is said to precess in time about the symmetry axis of the body.

If we allow the axis of symmetry of a rigid body to be the z principal axes of
the moment of inertia tensor, then the other two principal axes can be chosen
to be any two orthogonal vectors in the plane orthogonal to the z principal axis.

31



The principal moments about these two axis are equal:

I1 = I2 (3.47)

and the equations of motion for a symmetric body can then be simpli�ed to

I1ω̇x = (I1 − I3)ωzωy

I2ω̇y = −(I1 − I3)ωzωx (3.48)

I3ω̇z = 0.

The third equation shows us that the rate of rotation around a symmetry
axis is constant and we are therefore able to treat it as one of the initial known
conditions. The two remaining equations are a pair of coupled linear di�erential
equations for ωx and ωy. We are able to de�ne a constant

Ω = I1−I3
I1

ωz, (3.49)

known as the angular frequency. It is then possible to rewrite the equations for
ωx and ωy as

ω̇x + Ωωy = 0

ω̇y − Ωωx = 0. (3.50)

There are various methods we could employ to solve these equations. One
technique is to �nd the time derivative of the �rst equation:

ω̈x = Ωω̇y (3.51)

and to then use the second equation to substitute for ω̇y:

ω̈x = - Ω2ωx. (3.52)

A typical solution for ωx can be written as

ωx = Asin Ωt (3.53)

where A is some constant and if we substitute this solution for ωx into the �rst
of the set of equations (3.48) we can solve for ωy to obtain:

ωy = Acos Ωt. (3.54)

The magnitude of the vector ωxi + ωyj is constant and it rotates uniformly
about the z-axis of the symmetrical body with angular frequency Ω. The mag-
nitude of the total angular velocity ω of the body is also constant and in the
body-�xed frame ω precesses about the symmetry axis with the same frequency,
Ω. It is worth noting that the body axes are themselves rotating in space, at
the greater frequency ω.

Equation (3.49) tells us that smaller the di�erence between I1 and I3 is, the
slower the precession frequency Ω will be in comparison with the frequency of
rotation, ω. The kinetic energy and the magnitude of the angular momentum
can be used to evaluate the constants A and ωz:
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T = 1
2I1A

2 + 1
2I3ω

2
z

J2 = I2
1A

2 + I2
3ω

2
z . (3.55)

Here, A is actually the amplitude of precession. It is possible to solve these
equations for both A and ωz in terms of T and L.

3.7 The Heavy Symmetrical Top with One Point Fixed

A heavy symmetrical top is a symmetrical body, pivoted at a point on its
axis of symmetry, moving in a gravitational �eld. In the previous section, we
chose the z-axis of the body-�xed system to the the symmetry axis of the body.
The symmetry axis is also one of the principal axes of the body.

The constraint that one point of the top must be �xed reduces the number
of degrees of freedom of the system to 3, and the Euler angles are able to
completely specify the motion of the body.

Figure 3.1: The orientation of a spinning top is completely speci�ed by the

Euler Angles5.

5.71 The Lagrangian and the Generalised Momenta

The centre of gravity of the body lies along its symmetry axis, and if we
denote the distance from here to the �xed point by R, we can then write the
potential energy of the body as

V = MgRcosθ. (3.56)

5image adapted from http://teacher.pas.rochester.edu/PHY235/LectureNotes/Chapter11.htm
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The kinetic energy of the symmetrical body can be written as

T = 1
2I1(ω2

x + ω2
y) +

1
2I3ω

2
z . (3.57)

We can write this in a di�erent form, using Euler angles, by using the set of
equations (2.99), obtaining

T = 1
2I1(θ̇2 + φ̇2sin2θ) + 1

2I3(ψ̇ + φ̇cosθ)2 (3.58)

because the cross terms in ω2
x and ω2

y cancel each other out.

We can then write the Lagrangian for the system:

L = T - V = 1
2I1(θ̇2 + φ̇2sin2θ) + 1

2I3(ψ̇ + φ̇cosθ)2 - MgRcosθ. (3.59)

The corresponding generalized momenta are then:

pφ = ∂L
∂φ̇

= (I1sin
2θ + I3cos

2θ)φ̇ + I3ψ̇cosθ (3.60)

pθ =
∂L
∂θ̇

= I1θ̇ (3.61)

pψ = ∂L
∂ψ̇

= I3 ˙(ψ + φ̇cosθ) = I3ωz. (3.62)

It can be seen that the Lagrangian does not involve the Euler angles φ
and ψ explicitly. This indicates that these coordinates are ignorable and the
generalised momenta corresponding to these angles are constant in time and the
system has only one degree of freedom, θ.

5.72 The Energy Equation

As well as the generalised momenta for φ and ψ, the total energy E of the
conservative system will also be conserved:

E = T + V = I1
2 (θ̇ + φ̇2sin2θ) + I3

2 ω
2
z +MgRcosθ. (3.63)

Since the momenta pψ and pφ are constants of motion, we can de�ne two
constants a and b,

a = I3ω3
I1

, b =
pφ
I1

(3.64)

which we can use to write

φ̇= b−acosθ
sin2θ . (3.65)

We can also obtain an equivalent expression for ψ̇ :

ψ̇ = I1a
I3
− cosθ b−acosθsin2θ . (3.66)
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If we know θ as a function of time then it is possible to integrate the equations
to give the dependence of φ and ψ in time.

We can use equation (3.65) and equation (3.66) to eliminate φ̇ and ψ̇ from the
equation for the total energy, leaving a di�erential equation that is dependent
only on θ. First we need to be aware that ωz is constant in time, as shown by
equation (3.62), and equal to I1

I3
a. We can then de�ne a constant of motion, the

reduced energy, E′ as:

E′≡ E − 1
2I3ω

2
z . (3.67)

It is then possible for us the rewrite the total energy equation as

E′ = I1
2 (θ̇2 + φ̇2sin2θ) + MgRcosθ. (3.68)

If we de�ne two constants as

α = 2E′

I1
, β = 2MgR

I1
(3.69)

then we can substitute in equation (3.65) into equation (3.68) and rearrange
the terms to give

sin2θ θ̇2 = sin2θ(α− βcosθ)− (b− acosθ)2. (3.70)

To simplify the analysis, we will set u = cosθ and then it is possible to rewrite
the above equation as

u̇2 = (1− u2)(α− βu)− (a− bu)2 = f(u). (3.71)

We are also able to reduce the equations (3.65) and (3.66) to

φ̇ = b−au
1−u2 (3.72)

and

ψ̇ = I1a
I3
− u(b−au)

1−u2 (3.73)

We can immediately take the square root of equation (3.71) and integrate it to
get a quadrature:

t =
u(t)´
u(0)

du√
(1−u2)(α−βu)−(b−au)2

(3.74)

We could �nd similar integrals for φ and ψ, but we do not need to perform
these integrations to get a general idea of the motion. The equation for f(u) is
cubic and the roots of the cubic polynomial provide the turning angles of θ, at
which the sign of θ̇ changes. .When u is large, βu3 becomes the dominant term
of f(u), and so f(u) � ∞ as u � ∞, and f(u) � −∞ as u � −∞.

When u is equal to ±1, f(u) = −(b∓a)2 ≤ 0, except in the instance when u =
±1 is a root of f(u), which physically corresponds to a vertical top. Physically,
the top can only be in motion when u̇2 is positive and u must lie in the interval
u = -1 to u = +1, so, since u = cosθ, we see that θ must lie between -π and +π.
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A plot of the function f(u) looks like Figure (3.2):

Figure 3.2: A plot of the function f(u)6

For any real top, f(u) therefore has two roots u1 and u2, that lie between
-1 and +1. The top must move so that cosθ always stays within this region.

5.73 Motion of the Spinning Top

The motion of the top can be depicted by tracing the curve of the intersection
of the �gure axis (the locus of the �gure axis) onto a unit sphere about the �xed
point. The locus lies between the co-latitude bounding circles θ1 = arc cosu1

and θ2 = arc cosu2. Any point on the locus has polar coordinates which are
identical to the Euler angles for the body system. The value of the root b− au
determines the locus curve shape.

Figure 3.3: The di�erent types of motion depend on the direction of precession

at the extrema 7

6image obtained from http://www.damtp.cam.ac.uk/user/tong/dynamics/three.pdf
7image obtained from http://teacher.pas.rochester.edu/PHY235/LectureNotes/Chapter11.htm
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There are three possibilities for the motion, and they are dependent on the
sign of φ̇, as determined by equation (3.72) at the roots u = u1 and u = u2.
Motion as depicted in Figure 3.3(a) occurs if φ̇ > 0 at both u = u1 and u = u2.
If φ̇ > 0 at u = u1, but φ̇ < 0 at u = u2, then the type of motion as shown in
Figure 3.3(b) will occur. Figure 3.3(c) shows the path of motion that will come
about if φ̇ > 0 at u = u1, but φ̇ = 0 at u = u2.

Motion in φ is known as precession, whilst motion in θ is called nutation,
and can be visualised as the �gure axis nodding up and down between the
bounding angles θ1 and θ2 as it goes around.

The motion as shown in Figure 3.3(c) is not as unlikely as it may seem. If
we spin the top and let it go at some angle θ0, we have the initial conditions
t = 0, θ = θ0 and θ̇ = φ̇ = 0. Also, we should remember that the quantity

pφ = I1φ̇sin
2θ + I3ωzcosθ = I3ωzcosθ0 (3.75)

is constant. We now have su�cient information to describe the qualitative
motion of the top. It will initially begin to fall under gravity, and so θ
increases. As the top is falling, φ̇ must turn and increase so that pφ always

remains constant. The direction of precession, φ̇ must be in the same direction
as ωz, and we get the type of motion as shown by Figure 3.3(c).

When θ̇ and φ̇ are initially equal to zero, and if we assume that the ini-
tial kinetic energy of rotation is large compared with the maximum change in
potential energy:

1
2I3ω

2
z >�> 2MgR, (3.76)

then we are able to quantitatively predict how the top will move. The
precession and the nutation will only be small disturbances to the rotation of
the top about its �gure axis. In this case, we would call the top a �fast top�.
For a fast top, the angular momentum is along the axis of spin of the top.

5.74 Uniform Precession

If θ̇ is equal to zero, and if φ̇ is constant, then the top will precess without
bobbing up and down. This situation requires f(u) to have a single real root u0

lying between -1 and +1. This root must satisfy the following equations:

f(u0) = (1− u2
0) (α− βu0) - (b− au0)2 = 0 (3.77)

and

f ′(u0) = -2u0(α− βu0) - β(1− u2
0) + 2a(b− au0) = 0. (3.78)

Combining these two equations, we �nd that

β
2 = aφ̇− φ̇2u0. (3.79)
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Substituting in the relation I1a = I3ωz and the de�nition for β as seen in
equations (3.69), this gives us the equation

MgR =φ̇(I3ωz − I1φ̇cosθ0). (3.80)

For a �xed value of ωz and �xed θ0, giving the top exactly the right initial
shove φ̇ will allow the top to spin without nutation. The quadratic nature of
equation (3.80) in φ̇ indicates that there are two frequencies with which it is
possible for the top to precess without nutation, known as �slow� precession and
�fast� precession. We can also see that equation (3.80) can never be satis�ed by
φ̇ = 0, so an initial shove must always be given to the top for it to be able to
precess uniformly. The �fast� and �slow� precessions will only exist if equation
(3.80) can actually be solved. This requires

ωz >
2
I3

√
MgRI1cosθ0. (3.81)

For a given θ0, the top therefore has to be spinning fast enough to have
uniform solutions, otherwise it will topple over.

5.75 The Sleeping Top

We can start a top spinning with its axis vertical, with

θ = θ̇ = 0. (3.82)

When it is spinning quietly about the vertical, we call it a sleeping top. In
this situation, f(u) has a root at θ = 0 (or u = +1), so that f(1) = 0. We
can use equations (3.64) and (3.69) to check that a = b and α = β here. The
function has two roots of u = +1,

f(u) = (1− u)2(α(1 + u)− a2) (3.83)

and a root of u2 = α2

α−1 . If u2 is greater than 1, then ωz will be greater than a
critical angular velocity ω′, where

ω′ = 4I1MgR
I23

(3.84)

and the graph of f(u) looks like Figure 3.4(a). This motion is stable and the
only possible motion is for u = 1, so the top just continues to spin about the
vertical.

If u2 < 1 , then ωz < ω′ and f(u) looks like Figure 3.4(b) and the top is
unstable.
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Figure 3.5: A plot of f(u) for the stable and unstable sleeping top8

Practically, the top will spin about the vertical until friction gradually re-
duces the frequency of rotation to below the critical angular velocity and the
top will then start to wobble as it slows down and will eventually fall.

8image obtained from http://www.damtp.cam.ac.uk/user/tong/dynamics/three.pdf
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Chapter 4

The Levitron

4.1 Introduction to the Levitron

The Levitron is a popular mechanical toy invented by Mr. R Harrigan and
developed by Mr. W Hones. It consists of a small, magnetic spinning top and a
permanently magnetized ceramic base plate. The magnetic forces and torques
couple uniquely with the gyroscopic motion of the spinning top, allowing stable
levitation to occur. The top is seen to �oat above the base in mid-air, precessing
and nutating about an equilibrium point until air resistance slows the top down
su�ciently and the top then becomes unstable and falls.

Figure 4.1: The Levitron9

Knowledgeable physicists were adamant that Harrigan was wasting his time
with the Levitron, because stable magnetic levitation for permanent static mag-
netic dipoles is forbidden by Earnshaw's theorem, but in this chapter I will
discuss the mechanics of the device and attempt to explain the mechanical prin-
ciples which allow it to work, providing a strict set of conditions are satis�ed.

4.2 An Overview of How the Levitron Works

The heavy, symmetrical top is a rigid body, with mass m and angular mo-
mentum J. The mass of the top can be altered by adding small washers to it.
The centre of mass of the top is located at r = (x, y, z). The top can be thought
of as a magnetic dipole, with vector moment µ which is located at the centre of
mass and points along the symmetry axis.

A magnetic �eld B(r) is provided by the base plate, and its gradients provide
a repulsive force which opposes the gravitational force, mg, on the top. This

9image obtained from http://www.vnix.nl
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repulsive force is responsible allowing the top to achieve stability whilst spinning
above the base; it acts on the vector moment in the presence of the spin J.

It is not su�cient to just stabilize the top against �ipping. If we assume that
the magnetic dipole moment of the top, µ, is always oriented approximately
vertically, in the downwards −z direction and the repulsive �eld B(r) is also
approximately vertical, but pointing in the +z direction, then the magnetic
energy −µ · B(r) is approximately equal to −µBz. The total potential energy
V is given by:

V = −µ · B(r) + mgz (4.1)

V = µBz +mgz. (4.2)

The �rst of two conditions that must be satis�ed for stable levitation to oc-
cur is that the upward repulsive force, which is approximately equal to µ∂zBz ,
must balance the force of gravity on the top to allow it to �oat in equilibrium.
The potential energy must have a critical point at the equilibrium point, and the
second condition for stable levitation is that this critical point must be a mini-
mum. This is actually impossible, by Earnshaw's theorem10 since both gravity
and Bz are both harmonic potential �elds. The energy minimum condition can-
not be satis�ed in both the vertical and horizontal directions simultaneously
and instead there is a saddle point.

It is, however, still possible for the top to �oat stably in a time-independent
potential �eld. If we take the potential to be the sum of the gravity and the
magnetic energy of µ averaged over its precession around B then the average
energy makes use of the magnitude B of B rather than the z-component. A
minimum of the potential then exists for a narrow range of mass m only. The
range is narrow because it is the small deviations of B from vertical near the
axis which are responsible for allowing the potential to posses a minimum. The
form of B(r) varies with temperature, and is responsible for dictating the range
of m. The mass required to allow the top to stably levitate may need to be
frequently adjusted.

We need to make a correction to the adiabatic averaging underlying the static
stability, as it is not exact. The �rst adjustment is to introduce an additional
force called geometric magnetism which has the form v × Beff (r) where v =
ṙ is the velocity at which the top is moving through the magnetic �eld, and
Beff (r) is the e�ective �eld constructed from component derivatives of B(r).

Three speeds must be very di�erent to allow the top to �oat stably in the
static potential �eld. The spin angular velocity of the top must be the fastest,

10Earnshaw's Theorem states that it is not possible to achieve stable suspension of an object

against gravity, using any combination of electric charges and �xed magnets. The proof is

fairly straight forward: The static force as a function of position F(x) which acts on a body

due to the combination of gravitational, electrostatic and magnetic �elds will always have

divergence equal to zero, 5 · F(x) = 0. The force at a point of equilibrium is zero. In the

case of stable equilibrium, the force must point inwards towards the equilibrium point on

some small sphere around the point. Gauss's theorem implies, however,
´
S

F(x) · dS =
´
V

5 ·F

dV , and since the divergence of the force over the volume inside is equal to zero, the radial

component of the force over the surface must also be equal to zero.
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the precession angular velocity of the top, and the rate at which B changes in
the frame of the top must be the slowest.

If the top and base were both made from metal, the top would fall faster,
because eddy currents would be induced, which would be an additional source
of dissipation (energy is also dissipated by resistance from the air) and the top
would fall more quickly.

4.3 Conditions for Stable Equilibrium

We are able to write the potential energy of top is given in equation (4.1).
The magnetic torque on the top is equal to µ × B and the spin of the top
changes as the result of this torque,

J̇(t) = µ(t) × B(r(t)). (4.3)

We can make two assumptions for the top which will allow us to simplify the
problem. Assuming that the top is small allows us to approximate its magnetism
as a point dipole., located at coordinates x. The second assumption is that the
top is �fast�, so that the angular momentum is along the axis of spin of the top,
and this also coincides with the magnetic moment axis. The condition for a fast
top is that the spin must be much faster than the precession and we shall see
later that this condition is indeed satis�ed.

We can write an equation for the magnetic �eld so that it is expressed in
terms of its magnitude B and direction b as seen from the spinning top's frame:

B(r(t)) ≡ B(t)b(t). (4.4)

We are now able to write a new equation for the spin as:

J̇(t) = Ω(t)b(t)× J(t) (4.5)

where Ω is the angular precession frequency with which the top rotates about
the instantaneous direction of the magnetic �eld as seen in the body-�xed
frame:

Ω = −µBJ . (4.6)

As seen in the previous chapter, saying that the precession is fast is di�erent
to saying that the top is fast, and here the condition that the precession is fast
is equivalent to the expression | Ω |�| ḃ |, and here the adiabatic invariant J · b
must be approximately conserved, and this relation is known as an adiabatic
slaving of J to b. The component

µB ≡ µ(t) · b(t) (4.7)

must then also be an adiabatic invariant, and this allows us to rewrite the
potential energy as:

V = V (r) = −µBB(r) +mgz. (4.8)
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Later, we will examine this approximation more closely.

With the assumptions made above, the top can how achieve stable levitation
above the base if V (r) has a possesses a minimum there. This requires the
following three conditions to be satis�ed:

(i) equilibrium: ∇V (r) = 0

(ii) vertical stability: ∂2
zV (r) > 0 (4.9)

(iii) horizontal stability : ∂2
xV (r) > 0 and ∂2

yV (r) > 0.

I am only going to be considering the situation where the minimum lies on
the vertical symmetry axis of the base and neglecting the possibility of any
o�-axis minima.

Since the centre of mass of the top is not located inside the base, the base
does not contribute any currents to B(r). B is curl and divergence free, so we
are able to write the �eld as

B(r) = −∇Φ(r) (4.10)

with

∇2Φ(r) = 0 . (4.11)

The potential Φ is stationary at x = y = 0 in horizontal planes, and has
circular symmetry to second order in x and y, which is true for the Levitron
with a square base.

If we de�ne

R ≡ (x, y) (4.12)

and

R = | R |. (4.13)

then we can write the potential close to the axis as

Φ(r) = Φ(0, 0, z) + 1
2∂

2
xΦ(0, 0, z)R2 +... . (4.14)

Conveniently, we can use the notation

φn(z) = ∂nz Φ(0, 0, z). (4.15)

Laplace's equation (4.11) must be satis�ed by equation (4.14), and this gives

Φ(r) = φ0(z)− 1
4φ2(z)R2 + ... . (4.16)

The adiabatic energy equation (4.8) makes use of the magnitude of the vector
B, and we can use equations (4.10) and (4.11) with (4.16) to write B(r) to the
second order in R:
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B(r) = φ1sgnφ1

[
1 + R2

8

(
φ2

2
φ2

1
− 2φ3

φ1

)]
..., (4.17)

without explicitly writing the z dependence of the φn.

In the �rst of the set of equations (4.9), horizontal equilibrium on the axis
is guaranteed by symmetry. For the system to also be in vertical equilibrium,
gravity must be balanced by the repulsive magnetic force determined by the
gradients of the magnitude of the �eld provided by the base plate, which is

mg = µB∂zB = µBφ2sgnφ1. (4.18)

The gravitational force mg is always positive, and so we can combine this
fact with the second and third stability equations of set (4.9) to give three new
conditions:

(i) equilibrium: µBφ2sgnφ1 > 0

(ii) vertical stability: µBφ3sgnφ1 < 0 (4.19)

(iii) horizontal stability: µBsgnφ1(2φ3
φ2

2
φ1

) > 0.

We cannot possibly satisfy these conditions when µB > 0 because then (ii)
will imply that φ1 and φ3 have opposite signs, and clearly equation (4.19(iii))
is then disobeyed. It is then a necessity that µB < 0, which in practice means
that the projection of µ along B is anti-parallel to B, and we get three new
conditions for stable equilibrium:

(i) equilibrium: φ1 and φ2 have opposite signs

(ii) vertical stability: φ1 and φ3 have the same signs (4.20)

(iii) horizontal stability: φ2
2 − 2φ3φ1 > 0.

The di�erence between B and B gives rise to the term φ2
2 in (iii), and it allows

both equations (ii) and (iii) to be simultaneously satis�ed, con�rming that the
adiabatic potential in equation (4.8) does actually permit the top to achieve
stable levitation over the base in spite of Earnshaw's seemingly contradictory
theorem.

4.4 The Magnetic Field on the Axis

The Levitron has a square base which, with the exception of an unmagnetized
central hole, is uniformly magnetized. The purpose of the hole is to allow a
region which is almost �eld-free, so that the top can be spun by hand before it
is lifted on a plastic plate to a position where it is able to �oat in equilibrium.
We can consider the base to be a planar distribution of dipole sources which
are vertically oriented, with density ρ(R) and the following formula gives us the
potential of a dipole:
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φ0(z) = z
˜
base

d2R ρ(R)

(R2+z2)
3
2

(4.21)

where R = 0 corresponds to the centre of the hole. We can assume that
the dipoles in the base point up, then ρ is positive. The dipoles in the spinning
top must then point down, so µz is negative, and we can authenticate this
assumption by seeing that the an upright top will repel the top of the base
when held close; unlike dipoles will repel.

The analysis of stability for the top will almost be the same regardless of
whether the base is a square with a hole in the centre or just a circular disc.
It is simpler to carry out analysis for the case when the base is a uniformly
magnetized disc, so this is what we will do. If the disc has a radius a and ρ is
constant, then equation (4.21) gives:

φ0(z) = 2πρ
(

1− z√
a2+z2

)
. (4.22)

The condition given in equation (4.20(i)) requires φ1 and φ2 to have opposite
signs. Equation (4.18) makes it seem as if magnetic repulsion can balance gravity
at any height above the base if an appropriate mass is chosen. When φ3 > 0,
z < 1

2a and when φ3 < 0, z > 1
2a and so vertical stability is guaranteed by by

condition (4.20(ii)) for z > 1
2a. The function φ

2
2−2φ3φ1 from equation (4.20(iii))

is directly proportional to 2a2−5z2 and so for the top to be horizontally stable,

we need z to be less than a
√

2
5 . Stable equilibrium can therefore occur in the

range

1
2 <

z
a <

√
2
5 . (4.23)

It is also possible to �nd the range of masses which are allowed by the above
condition (4.23). We can de�ne three new coordinates,

α = x
a β = y

a γ = z
a (4.24)

which are all dimensionless. We can also de�ne energy and mass by the
following relations:

V ≡ V a
2π|µB |ρ , M ≡ mga2

2π|µB |ρ . (4.25)

We can combine equations (4.8), (4.17) and (4.22) to �nd that the potential
energy close to the axis is equal to

V (α, β, γ) = Mγ + 1

(1+γ2)
3
2

+ 3(α2+β2)(2−5γ2)

8(1+γ2)
7
2

. (4.26)

The condition for equilibrium (4.18) determines the range of masses, M , which
are allowed by condition (4.23), giving

M = 3γ

(1+γ2)
3
2
. (4.27)
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M has a maximum M+ when γ = 1
2 , which is the lower stability limit for

γ. If the mass is greater than this maximum, stable equilibrium is simply not
possible, and the top will not be able to �oat. The maximum is equal to

M+ = 48

5
5
2
= 0.85865010... (4.28)

The upper stability limit for γ is equal to
√

2
5 and the mass has a minimum

M− here:

M− = 75
√

2

7
5
2

= 0.818146658... . (4.29)

If the mass is less than the minimum, vertical stability can actually be
achieved, but the condition for horizontal equilibrium is not satis�ed and so
stable equilibrium can only occur when the mass is in the interval between M−
and M+. This interval is small - it is approximately only 5% of the mean stable
mass.

It is possible to �nd a mass which yields the �most stable motion� of the top,
and this is MS = 0.847837.

If we no longer consider the base to be a magnetized disc but instead the
more accurate model of a uniformly magnetized square slab with sides of length
2a and with an unmagnetized hole of radius w in the centre, then we get a new
equation:

φ0(z) = 2πρ z√
z2+w2 − 8ρarcsin

{
z√

2(z2+a2)

}
. (4.30)

If we carry out stability analysis on this function for the Levitron, which has
the relation that w

a ≈
1
4 , we obtain the result that the top is able to achieve

stable levitation in the region

3.976 < z
w < 4.360 (4.31)

which we can see is very narrow. We must make sure that we choose the
mass of the top carefully so that equation (4.18) has a solution which lies in the
stable range. A change dm in the mass of the top results in a change in the
height of equilibrium dγ and we can use equation (4.18) to �nd that this gives

dγ = −dmm |
φ2
φ3
| (4.32)

where | φ2
φ3
| is known as an amplification factor which decreases in the

stable interval from in�nity to a minimum value. When we use the base model
of a square slab with a hole in as before, and w

a ≈
1
4 , this minimum value is

7.05. Even the lightest of the washers which we can add to the top to increase
its mass will result in the height of levitation changing by around one tenth of
the interval of stability.

One feature of the Levitron which may seem puzzling is the need to con-
stantly adjust the weight of the top over short periods of only a few minutes.
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This has been shown experimentally to be due to handling of the top and ambi-
ent temperature changes resulting in temperature variation which has an e�ect
on the mass of the top required to allow stable levitation to occur.

4.5 Adiabatic and Geometric Magnetism

In the Levitron, we know that in addition to gravity, magnetism also con-
tributes to the motion of the top. From the equation for the potential energy
of the top (4.1), we �nd the sum of these forces on the top to be

F = −mgk + FM (4.33)

where k is the unit vector in the upward z−direction and FM is the magnetic
force, which we can rewrite to get:

F= −mgk +∇µ(t) ·B(r). (4.34)

It is possible to split µ into its components which are parallel to and per-
pendicular to the B �eld at any instant, to get

µ(t) = µBb(t) + µ⊥(t) (4.35)

where µ⊥ is the perpendicular component. We can now write the magnetic
force as:

FM ≡ FA+FG (4.36)

with FA being the adiabatic component of the magnetic force, and FG being
the geometric component. We can write this as

FM = µB∇B(r) + µ⊥(t) · ∇B(r) (4.37)

where µ⊥ and B are connected by the dot product.

Since we have assumed that both the top and the precession are fast, the
equation of motion (4.5) for J will also be satis�ed by µ. Separating this into
to parallel and perpendicular components of µ, we obtain

µ̇ = µ̇Bb + µBḃ + µ̇⊥

= Ωb × µ⊥ (4.38)

We need to make some adiabatic approximations. It is necessary to allow the
precession of the top to be about a direction which is slightly di�erent from the
instantaneous �eld direction b(t).We also need to make the approximation that
we can set the precession averaged velocity µ̇⊥ to zero, but not the component
µ⊥. We now �nd the parallel and perpendicular components of equation (4.38)
give:

µ̇B ≈ 0 (4.39)
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and

µ⊥ ≈ −
µB
Ω b× ḃ. (4.40)

Equation (4.39) is the conservation of the adiabatic invariant, and the com-
ponent FA in equation (4.36) becomes the adiabatic force of the lowest order
that would be obtained from equation (4.8). This leads to the conditions ob-
tained earlier for static stability.

Using equation (4.40) as well as the assumption that the top is fast and
therefore J is parallel to µ, we are able to write the geometric component of
magnetic force, FG (which is a post-adiabatic force) as

FG = −µBΩ (b× ḃ) · ∇B(r)
= JB

B (b× ḃ) · ∇B(r) (4.41)

where JB ≡ J · b. As the top moves through the inhomogeneous �eld B(r), it
causes a change ḃ:

ḃ = (v · ∇)b(r). (4.42)

The force FG is dependent on both the position of the top and its velocity:

FG = −JBB3 [B× (v · ∇)B] · ∇B(r). (4.43)

It is possible to use vector algebra to rewrite equation (4.43) as

FG = v ×Beff (r) (4.44)

with the vector v = ṙ, and where Beff is dependent on the components of B,
as dictated by

Beff = −JBB3 (Bx∇By ×∇BZ +By∇BZ ×∇Bx +Bz∇Bx ×∇By (4.45)

The geometric magnetism force, FM has the same dependence on velocity
as the Lorentz force, it seems as if the top carries a unit charge in response to
the e�ective �eld Beff . The geometric post-adiabatic magnetism force acts as
a reaction to the fast spin J(t) of the top on the slow motion r(t) of its centre
of mass.

In all the calculations, we have regarded the precession to be fast, so that
it is slaved to the slow variable r and J then reacts magnetically on r. We can
instead show that the precession can be considered to be geometric because J is
actually slaved to the spin of the top - the motion of the axis of the top is slow
when compared to the spin. When we average the precession over the nutation
of the body axes, we can consider it to be a geometric reaction which results
from a monopole source of magnetism �xed at the point of precession. For the
Levitron, this �xed point is simply the centre of mass of the top, but in the
regular spinning top it would be the point where the top is in contact with the
surface while spinning.
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4.6 The E�ect of Geometric Magnetism on Stability

We can use the previously seen equations (4.33), (4.37) and (4.44) to write
an equation of motion for the top when it is subjected to the force of gravity as
well as the two magnetic forces. We obtain

mr̈ = −mgk + µB∇B(r) + v ×Beff (r). (4.46)

Using the adiabatic force FA from equation (4.63) with earlier obtained
equations (4.12), (4.13) and (4.17), we get

∇B = sgnφ1

[
1
4

(
φ2

2
φ1
− 2φ3

)
R + φ2k

]
. (4.47)

The e�ective magnetic �eld on the axis in equation (4.45) can be used with
equations (4.10) and (4.16) to give

Beff = JBsgnφ1
φ2

2
4φ2

1
k. (4.48)

This tells us that geometric magnetism does not have an e�ect on vertical
motion; only the static gravitational force and the adiabatic magnetism force
will a�ect the motion vertically. The geometric magnetism is instead responsible
for a�ecting the horizontal motion of the top, and we can write a linear equation
for the horizontal acceleration:

R̈ = g
4

(
φ2
φ1
− 2φ3

φ2

)
R + JBsgnφ1

φ2
2

4mφ2
1
Ṙ× k (4.49)

where there are coe�cients which are dependent on the height of the top, and
we have made use of equation (4.18) to eliminate µB . De�ning u(t) as

u(t) ≡ x(t) + iy(t) (4.50)

will allow us to write equation (4.49) as

ü = A(z)u+ iB(z)u̇, (4.51)

in scalar form. This has the general solution:

u(t) = u+e
iν+(z)t + u−e

iν−(z)t (4.52)

where

ν±(z) = 1
2 (B ±

√
B2 − 4A). (4.53)

We need ν± to be real for the top to be stable horizontally, which in turn
requires B2 > 4A. With equation (4.49), this gives the condition

J2
B

m2g > G(z) ≡ 32 | φ1
φ3
|3
(
φ1φ3
φ2

2
− 1

2

)
. (4.54)
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If the condition (4.20(iii)) is satis�ed, then the condition (4.54) is also satis-
�ed, since G(z) will be negative. If G(z) is positive then condition (4.20(iii)) will
not be satis�ed and horizontal stability cannot be achieved. Condition (4.54)
shows that if the top is spun fast enough, geometric magnetism can indeed pro-
vide post-adiabatic stabilization. If we set the top to have a vertical axis with
radius of gyration d and spin frequency ω, we are able to evaluate the last part
of equation (4.54) with the potential of a disc of radius a from equation (4.22).
The horizontal motion will then be stable if γ = z

a satis�es the condition:

J2
B

m2ga3 = 4π2ω2d4

ga3 > G(z)
a3 = 16(5γ2−2)(γ2+1)3

γ5 . (4.55)

This is equivalent to the condition:

γ −
√

2
5 <

81π2ω2d4

686ga3 .. (4.56)

Physical measurements for the Levitron are a ≈ 5cm, d = 1.13cm, and

hand spinning gives a spin frequency ω ∼ 20Hz. Stability requires γ −
√

2
5 <

0.0062. The total range of stable spin rates is approximately 18Hz ≤ ω ≤ 40Hz,
and is achievable by hand-spinning. The lower spin limit corresponds to the
sleeping top condition. Geometric magnetism only contributes a small (about
5%) increase to the stable interval of γ when spun at ω = 20Hz, but would
contribute up to a 20% increase if the top were spun at ω = 40Hz.

4.7 Adiabatic Conditions

Practically, the ratio of the moments of inertia is somewhere between 1
2 and

1; we can assume that all of the principal moments of inertia of the top are
approximately the same size, and we then have the following condition for the
top to be fast:

2πω �| Ω |

where 2πω is the spin angular velocity and | Ω | is the precession angular
velocity. We can use equations (4.6) and (4.18) to express the above inequality
in terms of the magnetic potential. We get

ω � ωmin (4.57)

where

ωmin = 1
2πd

√
g
∣∣∣φ1
φ2

∣∣∣. (4.58)

We can then write the precession frequency in terms of ωmin :

Ω
2π = ω2

min

ω . (4.59)
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By the adiabaticity, the rate at which the �eld b is changing (equation (4.42))
must be much slower than precession. This condition is written as

| Ω |�| (v · ∇)b |. (4.60)

We can use equations (4.10), (4.11) and (4.16) to give the result

b =
{
x φ2

2|φ1| , y
φ2

2|φ1| ,−sgnφ1

}
+ ... (4.61)

and this means that equation (4.59) is dependent only on the transverse speed
of the top, v⊥. We can apply some algebra to the adiabatic condition (4.60) to
give the new condition

v⊥ �
2
√
g

d

(∣∣∣φ1
φ2

∣∣∣) 3
2 ωmin

ω . (4.62)

The nutation frequency is related to the transverse speed of the top. If we
consider the frequency of this vertical motion, equation (4.46) gives

ωz = 1
2π

√
g
∣∣∣φ3
φ2

∣∣∣ = 1
2π

√
g
a

(4γ2−1)
γ(γ2+1) (4.63)

where we are referring to the circular disc base.

Using the previously stated measurements of a and d for the Levitron, and
using an approximate spin frequency of 20Hz, the potential from equation (4.22)
implies that 0.73a <| φ1

φ2
|< 0.83a and

ωmin ≈ 0.88
2π

√
ga
d2 ∼ 8.7Hz (4.64)

over the interval of stability, 1
2 < γ <

√
2
5 . This frequency is much less than

the lowest speed achievable by hand-spinning. Equation (4.59) then tells us
that the corresponding precession frequency here would be Ω

2π = 3.8Hz , and
the Levitron is indeed a fast top.

The inequality (4.62) gives an upper limit for the transverse speed of the
top. When the top is spun by hand, its horizontal speed is much slower than
this limit and so we have satis�ed the adiabatic condition for motion.

Earlier we discussed MS , the mass for which the most stable motion can
occur. Putting this together with equation (4.63), we obtain

ωz = 0.61106
2π

√
g
a ≈ 0.69ωmin da ∼ 1.4Hz. (4.65)

This nutation frequency is much less than the precession frequency.

If we spin the top too fast, the precession frequency will be too slow to
prevent the top from tipping over so much that it can no longer be supported
by the magnetic �eld, and the top will fall over.
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4.8 Analogy with Microscopic Particle Traps

While I will not look into it here, it is worth noting that the trap mechanism
in the Levitron is analogous to magnetic gradient traps for neutral particles
with a quantum magnetic dipole moment. These traps were �rst used to trap
cold neutrons and currently are being used to trap atoms.
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Chapter 5

Conclusion

Rigid body dynamics is a broad and interesting topic, with many useful
applications. In this project, we began by de�ning a rigid body and went on
to look at the basics of rigid bodies and their motion, describing Euler angles
and considering in�nitesimal rotations. We then went on to look at angular
momentum and the moment of inertia tensor, as well as the principal axis,
combining these ideas to �nd the equations of motion for a rigid body to be
Euler's equations. We looked into the motion of symmetric rigid bodies and
�nally were able to consider the motion of a heavy symmetrical top.

We have seen that precession is an exciting phenomenon and although it may
imply some counter-intuitive ideas, fully understood it can be used to describe
the motion of the spinning top, and further the motion of the Levitron, an
exceptional toy which had scientists ba�ed for a long time, since it seems to
violate Earnshaw's theorem.

In examining the principles behind the Levitron, we have seen that it is the
unique coupling of the magnetic forces and torques with the gyroscopic motion
of the top that is responsible for permitting stable levitation to occur.

There are many areas where I could have extended the study of precession.
An obvious one is to study the precession of the Earth. This would involve
considering local torque-induced precession due to the gravitational e�ects of
the sun and moon acting upon the axis of the Earth. There is also a minor
amount of non-local torque-free precession due to the motion of the solar system.
The Earth has a central bulge at the equator, so it is in fact not a sphere, but
a symmetrical top. We could also look into the e�ects of the Earth's precession
on astronomical observations and the precession of orbital objects. Clearly, this
topic is very rich and there is wide scope for further study here.

Very recently, I discovered a special type of spinning top called the Rat-
tleback, or Celt, which is a semi-ellipsoidal top which can be initially spun in
any direction, but if not spun in its preferred direction, it will become unstable,
�rattle�, stop and reverse its spin. This spin-reversal seems to violate angular
momentum conservation laws, and I think it would be very interesting to study
the mathematical principles behind the Rattleback more closely.

There are many other areas of the project which I haven't touched on at all.
We could have considered Thomas precession, which is a special correction to
gyroscopic precession in a rotating non-inertial frame. It has many applications,
such as in quantum mechanics where it is a correction to the spin-orbit interac-
tion, and takes into account the relativistic time dilation between the electron
and the nucleus in Hydrogen atoms.

We could further extend the study of the Levitron to consider more closely
the analogy between it and microscopic particle traps.
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It is astounding to think that the simple spinning top, one of the oldest
discovered toys has such stimulating mathematics behind it, and similar math-
ematics can help explain such a wide range of di�erent phenomena in the areas
of astrology, electromagnetism and quantum mechanics.
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