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Abstract. A simple approach to the important problem of torque-free rotation of a symmetrical 
rigid body is suggested which is appropriate for teaching introductory mechanics and general 
physics to undergraduate students and is free from difficulties of traditional treatment of the prob-
lem. A small simulation program (Java-applet) is developed that visualizes the investigated motion 
and illustrates its principal features. The program facilitates understanding of concepts behind 
rigid body dynamics. Simultaneously with simulating the rigid body motion, the program presents 
a clear geometrical interpretation of the inertial rotation.  

Introduction 
Any motion of a body occurring in the absence of external forces can be called a free or in-

ertial motion. Inertial motion is certainly the simplest possible motion. For a mass point the iner-
tial motion is indeed a very simple one – it is a uniform rectilinear motion. However, for a rigid 
body only translational free motion, during which the body does not rotate, is actually simple 
enough. If the body rotates, its motion can be rather complicated even in the absence of external 
forces. The problem of torque-free rotation has many applications including any object freely 
falling in a gravitational field, as well as a space station or a non-spherical satellite orbiting the 
earth. For an axially symmetrical body, kinematics of such inertial rotation corresponds to pre-
cession. Being applied to a gyroscope, this free precession is called nutation. 

The problem of a rigid body rotation has been studied over several centuries, and the equa-
tions governing the behaviour of a body have been well known since Euler. And nowadays most 
textbooks in physics and introductory mechanics (see, for example, [1] – [3]) still treat the prob-
lem of torque-free rotation of a rigid body on the basis of Euler equations which are referred to 
the non-inertial reference frame rotating together with the body. Euler equations are defined for 
projections of the angular velocity vector onto the coordinate axes fixed to the rotating body, and 
hence these equations can tell us how the momentary angular velocity behaves itself with respect 
to the body. However, in this problem we are interested first of all how the body moves with re-
spect to the inertial space. For students, transition to the inertial frame of reference from a frame 
which rotates in a complicated manner may be rather confusing. From a pedagogical point of 
view, it seems expedient to find a solution to this problem directly in the inertial space.  

We discuss in this paper such a solution for an axially symmetrical body in an attempt to 
develop some clarity regarding the problem with the help of an obvious geometrical interpreta-
tion of the investigated motion. We suggest also a simple simulation program (Java-applet) “Free 
rotation of an axially symmetrical body” [4] that visualizes the inertial rotation and hence can 
facilitate understanding about its principal features. The program is available in the Internet and 
is executed directly in any web browser with the Java plug-in installed.     

Rotation about the principal axes of inert a  i
An arbitrary motion of a rigid body can be represented as a superposition of translational 

motion in which all points of the body, including the centre of mass, move with the same speed 
along parallel trajectories, and rotation around of the centre of mass. In the absence of external 
forces, the centre of mass moves rectilinearly and uniformly. For the analysis of rotation of a 
body it is expedient to use the reference frame associated with the centre of mass of the body, 
i.e., the inertial frame in which the centre of mass of a body is at rest and the coordinate axes 
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have constant directions in space. In this frame of reference an arbitrary motion of a rigid body is 
a rotation about a fixed point (about of the centre of mass). 

Kinematics of rotation of a rigid body about a fixed point is characterized by a vector ω of 
momentary angular velocity. Any point of the rotating body has a (linear) velocity, which at 
every moment of time is exactly the same as if the body were rotating around an axis directed 
along the angular velocity vector. However, for the general case of free rotation, the vector of 
angular velocity and hence the momentary axis of rotation change continuously their direction in 
space. Even in the absence of external torques, that is, during the inertial rotation, behaviour of 
the momentary axis of rotation (sometimes this behaviour is called “wobbling”) seems to be very 
complicated and counterintuitive. Moreover, the trajectories of different points of a freely rotat-
ing body seem even more complicated. The simulation program “Free rotation of an axially 
symmetrical body” illuminates various unexpected features of the inertial rotation, showing be-
haviour of the momentary angular velocity and the trajectory of an arbitrarily chosen point of the 
body. The program visualizes also the suggested geometrical interpretation of inertial rotation.   

For a rotating body, vector L of the total angular momentum is proportional to the momen-
tary angular velocity ω, but generally deviates from ω in direction. Both vectors L and ω have a 
common direction only if the body rotates about one of the three mutually orthogonal axes called 
principal axes of inertia. Principal axes of inertia exist for every body. For symmetrical bodies 
manufactured of a homogeneous material, the principal axes of inertia coincide with the axes of 
symmetry. For example, the principal axes of inertia of a rectangular parallelepiped pass through 
its centre parallel to the edges. Moments of inertia, calculated with respect to the principal axes 
of inertia that pass through the centre of mass, are called central principal moments of inertia.   

Inertial rotation of a rigid body about one of the principal axes of inertia is very simple. In-
deed, during this rotation directions of vectors L and ω coincide, and since in the absence of ex-
ternal torques vector L of the angular momentum is conserved, vector ω of the angular velocity 
is also conserved, i.e., its magnitude and direction in space remain constant. For this reason the 
principal axes of inertia are otherwise called the axes of free rotation. If a rigid body is set spin-
ning about one of these axes and then released, the body simply continues spinning uniformly 
around the axis whose direction in space and in the body does not change. All points of the body 
synchronously trace circles whose centres are located on this axis.  

Angular momentum and angular velocity of a symmetrical body 

If the initial angular velocity deviates from a principal axis of inertia, inertial rotation of a 
body generally is rather complicated. Such a rotation is comparatively simple for an axially 
symmetrical body (a “symmetrical top”), in which two of three principal moments of inertia are 
equal. We emphasize that the body should not be necessarily a body of rotation – an axis of 
symmetry whose order is higher than two will do perfectly well to make equal all transverse 
moments of inertia, i.e., moments of inertia about arbitrary axes perpendicular to the axis of 
symmetry. For instance, a rod or bar with a square cross section, as well as any prism or pyramid 
whose base is a regular polygon (including triangle), manufactured of a homogeneous material, 
give examples of bodies which in respect of rotation are dynamically equivalent to a circular cyl-
inder, disc or a cone, or an ellipsoid of rotation (oblate or prolate spheroid), and so on.  

When such bodies are set into rotation about the axis of symmetry, vector L of the angular 
momentum is also directed along this axis. If vector ω of the angular velocity deviates from the 
axis of symmetry through some angle, directions of vectors L and ω do not coincide anymore, 
but vector L necessarily lies in the same plane with ω and the axis of symmetry. Mutual disposi-
tion of these vectors for an axially symmetrical body is shown in figure 1.    
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For a body whose central principal moment of inertia about a transverse axis is greater than 
the moment of inertia about the axis of symmetry, vector L of the angular momentum deviates 
from the axis of symmetry through a greater angle than vector ω of the angular velocity does. 
Such mutual disposition of vectors L and ω with respect to the axis of the body is characteristic 
of prolate, stretched bodies (left-hand side of figure 1). For an oblate body, squeezed along the 
axis, vector L of the angular momentum deviates from the axis of symmetry through a smaller 
angle than vector ω does (see right-hand side of figure 1). 
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Figure 1. Mutual disposition of vector ω of the angular velocity, vector L of the angular momen-
tum, and the axis of symmetry (vector n) for symmetrical bodies of prolate (left) and oblate 
(right) shapes. 

Next we introduce a unit vector n to show in space the direction of the symmetry axis of 
our body, i.e., n is the vector starting at the origin (at the centre of mass) and directed along the 
axis of the body. At any moment of time all the three vectors n, L, and ω lie in one plane, and 
their mutual disposition doesn’t change during the motion of the body. The plane that contains 
the three vectors n, L, and ω, is revolving uniformly in space about vector L of the angular mo-
mentum whose direction in space remains constant in the absence of external torques. Indeed, 
linear velocity v = dn/dt of the end point of vector n, in terms of the momentary angular velocity 
ω and vector n itself, is given by the formula dn/dt = ω × n. This means that at any time moment 
the end point of vector n is moving perpendicularly to the plane of vectors n and ω, involving 
this plane together with these vectors into a uniform rotation about L. During this rotation of the 
plane, vector L remains constant both in direction and magnitude, while vectors n and ω move 
synchronously preserving their magnitudes: they describe in space circular cones with the com-
mon axis directed along L. The steady motion described above is commonly called regular pre-
cession of vectors n and ω about L. The motion of the body itself, which consists of spinning 
about the own axis with simultaneous precession of this axis (revolution of the axis about L) is 
also called a uniform or regular precession. 

Regular precession of vectors n and ω about L can be characterized by vector Ω of the an-
gular velocity of precession. Angular velocity of precession is directed along and proportional in 
magnitude to the total angular momentum L, and inversely proportional to the transverse mo-
ment of inertia I⊥ (moment of inertia about an axis, perpendicular to the axis of symmetry): 
Ω  = L/I⊥. This will be proved below (see section Angular velocity of precession). With the help 
of Ω, for the time rate of vector n variation in space, alongside the expression dn/dt = ω × n, we 
can write also dn/dt = Ω × n. Similar expression dω/dt = Ω × ω is valid for the time rate of vec-
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tor ω variation – both vectors n and ω synchronously execute uniform precession about a con-
stant vector L with the same angular velocity Ω. 

When such torque-free regular precession occurs with a gyroscope and superimposes on its 
forced precession, it is usually called nutation. We note again that a torque-free precession of an 
object occurs if the angular velocity deviates from the axis of symmetry. The axis of a freely ro-
tating symmetrical body preserves its direction in space (does not precess) if the angular velocity 
is directed along the axis of symmetry, i.e., if the body is spinning about its axis of symmetry.   

A geometrical interpretation of free precession 
Figure 2 shows a plain geometrical interpretation of a symmetrical body behaviour during 

inertial rotation. To make the presentation as clear as possible, vector L of the total angular mo-
mentum whose magnitude and direction in space are preserved in the absence of external 
torques, in figure 2 is oriented vertically (along z-axis).   
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Figure 2. Geometrical interpretation of a regular precession as rolling without slipping of an 
imaginary moving cone attached to the body over the surface of an immovable space cone (ω = 
ω0 + Ω ). 

At any moment of time vector ω of the angular velocity shows how the momentary axis of 
rotation is directed in space. Precession of this vector about L with angular velocity Ω  = L/I⊥ 
generates in space a circular cone whose vertex is located at the centre of mass of the body. The 
surface of this cone is formed by the set of momentary axes as they are oriented in space at dif-
ferent moments of time. For this reason this imaginary “space cone” (the vertical one in figure 2) 
is called an immovable axoid. The semi-angle at the vertex of this cone equals the constant angle 
of deviation of ω from the fixed direction of L. 

Next we imagine one more circular cone, this time attached firmly to the body. The vertex 
of this cone is also located at the centre of mass, but its axis is directed along the axis of symme-
try of the body. Let the generator of this cone be the vector of angular velocity ω, that is, the 
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momentary axis of rotation. In other words, the lateral surface of this cone associated with the 
body is also formed by the set of momentary axes of rotation at different moments of time, but, 
contrary to the space cone, this “body cone” shows how all these axes are located inside the body 
(relative to the body) at different moments of time. For this reason, this imaginary cone, associ-
ated with the rotating rigid body, is called a moving axoid.   

The moving and immovable cones touch one another by their lateral surfaces (outwardly 
for a prolate body, whose transverse moment of inertia is greater than longitudinal, as shown in 
the left-hand part of figure 2) along the momentary axis of rotation ω. All the points of the body, 
which are located at a given moment on the momentary axis of rotation, have zero linear veloci-
ties. This means that the moving cone (attached to the body) is rolling without slipping over the 
surface of the immovable cone, the line of contact being ω. A complicated motion of an arbitrary 
point of the body corresponds to addition of two rather simple motions of the body superimposed 
upon one another, namely, a uniform rotation about its axis of symmetry with angular velocity 
ω0 and a uniform precession of this axis in space along a cone with angular velocity Ω. This 
geometrical interpretation of kinematics of the torque-free precession (of the inertial rotation) is 
clearly shown in figure 2. 

We can also compare this evident geometrical interpretation of the torque-free precession 
(as rolling without slipping of the body cone over the surface of the space cone) with the decom-
position of vector ω of the total momentary angular velocity onto the vector sum of two compo-
nents ω0 and Ω, corresponding to the individual rotations (see figure 2):  

ω = ω0 + Ω. 

 One of these components ω0 corresponds to the axial rotation (spinning) of the body about 
its axis of symmetry. This component of the angular velocity is directed along the axis of sym-
metry, that is, its direction inside the body does not change during the motion. In space, this 
component generates a circular cone together with the axis of the body, changing with time ac-
cording to the expression dω0/dt = Ω × ω0. The other component Ω, on the contrary, does not 
change its direction in space: this component corresponds to precession of the body axis of 
symmetry about angular momentum L, whose direction in space (vertical on the screen) is pre-
served in the absence of external torques. This uniform precession occurs simultaneously with 
the axial rotation of the body.  

Angular velocity of precession 
As we already mentioned, angular velocity of precession Ω  can be expressed in terms of 

total angular momentum L and the transverse moment of inertia I⊥ (moment of inertia about an 
axis perpendicular to the axis of symmetry). To find this expression, we use figure 3, in which 
vector ω of the momentary angular velocity is presented as the sum ω0 + Ω  of angular velocities 
of spin and precession, and also as the sum of mutually orthogonal longitudinal and transverse 
(ω⊥) components.  

These two different decompositions of vector ω correspond to two different possibilities of 
representing the complex torque-free rotation of a rigid body as a superposition of two simple 
rotations. For the first possibility (ω = ω0 + Ω) one rotation occurs about the direction of n fixed 
in the body, while the other – about the direction of L fixed in space. Angular velocities ω0 and 
Ω corresponding to these rotations are not orthogonal. For the second possibility one rotation 
also occurs about the direction of n (but with an angular velocity different from ω0), while the 
other – about a direction perpendicular to the body axis, which is also fixed in the body. In this 
case the two components of ω are mutually orthogonal. 
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Figure 3. Relationship between vector L of the total angular momentum and vector Ω of the an-
gular velocity of precession.  

We note that projections of both ω and Ω  onto the perpendicular axis are equal to ω⊥. 
Considering similar right-angle triangles with a common angle, whose hypotenuses are formed 
by vectors L and Ω, while legs by L⊥ and ω⊥ respectively (see figure 3), we can write a propor-
tion L/L⊥ = Ω/ω⊥. Taking into account that L⊥ = I⊥ω⊥, we get from this proportion the desirable 
expression for angular velocity Ω of precession: Ω  = L/I⊥. For small deviations of ω from n 
(when ω⊥ << ω) this exact expression yields for the angular velocity of precession a simple ap-
proximate relationship, according to which Ω equals ω times the ratio of longitudinal and trans-
verse moments of inertia. This means that for prolate bodies Ω < ω (precession goes slower than 
the axial rotation), while for oblate bodies Ω > ω. In particular, for a thin disc the angular veloc-
ity of precession (of “wobbling”) is twice as great as the angular velocity of revolution: Ω ≈ 2ω.    

Computer simulation of the torque-free precession 
Figure 4 shows the window of the program “Free rotation of an axially symmetrical body” 

in which we can see the simulation of a torque-free rotation of an elongated (prolate) symmetri-
cal top (left-hand side) together with the geometrical interpretation of this precession as rolling 
without slipping of the body cone over the space cone (right-hand side).  

 
Figure 4. Simulation of the inertial rotation of an elongated symmetrical body (left) and the geo-
metrical interpretation of this precession as rolling without slipping of the body cone over the 
surface of the space cone.  
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The simulation shows also vectors ω and ω0, precessing with angular velocity Ω about the 
fixed in space direction of the angular momentum. Choosing different values for the ratio of 
transverse and longitudinal moments of inertia (in the program this parameter is called “Prolate-
ness”), and different deviations of the total angular velocity ω from the body axis (parameter 
“Angle”), we can see clearly how vectors ω0 and Ω  add in various cases to form vector ω of 
momentary angular velocity. 

For an oblate axially symmetrical body whose longitudinal moment of inertia is greater 
than the transverse one, the torque-free precession may occur even more surprising. In this situa-
tion vectors n and ω at any moment of time are deviated from vector L of the angular momentum 
to the opposite sides, as we can conclude from the right-hand side of figure 1. In this case the 
angle between vectors ω0 and Ω  is obtuse.  

In other words, vector ω0 of the spin angular velocity is directed oppositely to vector n, in 
contrast to the case of a prolate body. This means that when the axis of the body is precessing 
counterclockwise and the body cone is rolling inwardly over the space cone (touching the space 
cone by its inner surface), the own rotation of the body occurs clockwise, that is, in the opposite 
sense with respect to precession. This is a retrograde kind of precession. Figure 4 gives an im-
pression how the program simulates this behaviour. 

 

 
 

Figure 5. Computer simulation of the torque-free precession of an oblate symmetrical body (left-
hand side) and the geometrical interpretation of this retrograde precession (right-hand side). 

 

Long ago this kind of precession surprised the famous physicist Richard Feynman and 
stimulated him to develop a deep insight into the phenomenon. He tells the following story [5]: 
“I was in the cafeteria and some guy, fooling around, throws a plate in the air. As the plate went 
up in the air I saw it wobble, and I noticed the red medallion of Cornell on the plate going 
around. It was pretty obvious to me that the medallion went around faster than the wobbling. I 
had nothing to do, so I start figuring out the motion of the rotating plate. I discovered that when 
the angle is very slight, the medallion rotates twice as fast as the wobble rate – two to one. It 
came out of a complicated equation! I went on to work out equations for wobbles. Then I 
thought about how the electron orbits start to move in relativity. Then there’s the Dirac equation 
in electrodynamics. And then quantum electrodynamics. And before I knew it ... the whole busi-
ness that I got the Nobel prize for came from that piddling around with the wobbling plate.”  

 7



As we already mentioned, for a thin disc the angular velocity of precession is approxi-
mately twice as great as the angular velocity of revolution: Ω ≈ 2ω. Also our simulation shows 
clearly that at slight angles for a plate (i.e., for a thin disc) vector ω0 of the spin angular velocity 
and vector ω of the momentary angular velocity are very nearly equal in magnitude (though di-
rected almost oppositely), while the precession (or “wobble”) rate Ω is twice as fast as the spin 
ω0 of the plate. It’s just the opposite to Feynman’s description of the wobbling plate! 

Points of the body located on its axis of symmetry trace circular paths whose centres lie on 
the axis of the immovable cone, that is, on the axis of precession (vertical on the screen). We can 
consider complicated motion of points that doesn't lie on the axis of symmetry as a superposition 
of two relatively simple motions, namely of a rotation about the axis of symmetry with simulta-
neous motion of this axis in space (precession) along the surface of a vertical cone. The program, 
alongside the simulation of rolling without slipping of a body cone over the space cone, can 
show trajectories traced by such points in the course of inertial rotation. First we choose position 
of a point by indicating the angle between the axis of the body and direction to the point in ques-
tion. For more convenient observation, the program shows the trajectory traced by the spike of 
an imaginary long arrow fixed to the body. The spike of this arrow lies beyond the surface 
bounding the body. All points of this arrow (starting at the centre of mass) trace similar trajecto-
ries, but the path of its end point shows their peculiarities in a larger scale. 

In particular, we can choose a point on the lateral surface of a body cone, which at the ini-
tial moment of the simulation lies on the momentary axis of rotation. To do this, for the direction 
to the point we should choose the angle, equal to deviation of the angular velocity from the body 
axis. This point traces on a spherical surface a trajectory which looks like a cycloid, whose con-
secutive arcs join with one another like a sharp beak with a common tangent. For a prolate body, 
if we choose a point located to the body axis closer than the surface of the body cone (i.e., a 
point inside the body cone), the point will trace a wavy (sine-like) trajectory. Points of the body 
located outside the body cone trace trajectories with loops. For an oblate body, on the contrary, 
these points trace wavy trajectories, and vice versa.  

An intermediate position between the cases of prolate and oblate bodies corresponds to the 
spherical top – a body, whose all three central principal moments of inertia are equal. The shape 
of a spherical top shouldn’t necessarily be spherical. For example, a cube manufactured of a ho-
mogeneous material is characterized by equal principal moments of inertia about the axes paral-
lel to its edges. This means that with respect to rotation the cube is dynamically equivalent to a 
spherical ball. All other regular polyhedrons (tetrahedron, octahedron, dodecahedron, icosahe-
dron) are also spherical tops – in a torque-free rotation about the centre of mass they all behave 
themselves in the same way.     

For a spherical top, directions of the principal axes of inertia can be chosen arbitrarily – 
any three mutually orthogonal axes (with the origin at the centre of mass) can be regarded as 
principal axes. In particular, for a cube these axes should not be necessarily parallel to its edges. 
This means that any axis passing through the centre is an axis of free rotation. In other words, for 
an arbitrary direction of vector ω of the angular velocity, vector L of the angular momentum will 
have the same direction: for a spherical top an inertial torque-free rotation about any axis is sim-
ply a uniform rotation, and the direction of this axis of rotation in space is constant.  

The described above geometrical interpretation of inertial rotation of an axially symmetri-
cal body is certainly applicable to the special case in which the longitudinal and transverse mo-
ments of inertia are equal, e.g., to the case of a spherical top. During a free rotation of a spherical 
top vector ω of the angular velocity and the momentary axis of rotation are directed along L and 
preserve their direction in space – they do not precess. This means that the space cone degener-
ates into a ray (a half-line) directed along vector L of the total angular momentum. Illustration of 
this behaviour of the spherical top in the simulation program is shown in figure 6. The axis of the 
body cone is the axis which we have chosen (arbitrarily) in the body as its axis of symmetry. 
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(For a cube this axis can be directed, say, in parallel to one of its edges, or along one of its space 
diagonals, or can have any other fixed direction.) Rolling of the body cone over the degenerated 
space cone reduces to a uniform revolution of this body cone about vector ω that passes from the 
vertex of the cone (centre of mass of the body) along its lateral surface. Any point of the body 
(e.g., the spike of an arrow fixed to the body, see figure 6) traces a circle with the centre located 
on the axis of rotation.  

    
Figure 6. Torque-free rotation of a spherical top and its geometrical interpretation. 

 For our discussion, the special case of a spherical top is interesting in the sense that it al-
lows us, in our geometrical interpretation of the inertial rotation, to follow the transition from 
outward rolling of the body cone over the space cone, occurring for prolate bodies, to the case of 
oblate bodies, in which the body cone touches the space cone by its inward surface (compare 
Figures 4 – 6).  

We note that inertial rotation of a spherical top can be treated as a pure precession without 
any spin. Indeed, as we can clearly see from figure 6, in this case some axis of the body (arbitrar-
ily chosen) undergoes a uniform precession, and angular velocity Ω  of this precession equals 
momentary angular velocity ω, which means that ω0 = 0. However, if we choose for our symmet-
rical top the direction of L as an axis of symmetry, the same inertial rotation can be treated as 
pure spinning about this axis without any precession.  

Concluding remarks 
In this paper we have considered the important old problem of torque-free rotation of a 

symmetrical rigid body. Our treatment is appropriate for teaching introductory mechanics and 
general physics to undergraduate students. A small simulation program (Java-applet) [4] is de-
veloped to visualize the investigated motion. Simultaneously with simulating the body motion, 
the program presents a clear geometrical interpretation of the inertial rotation. The suggested ap-
proach is free from difficulties inherent to traditional treatment of the problem which has many 
applications including objects falling in a gravitational field, non-spherical satellites orbiting the 
earth, etc. An understanding about the inertial (torque-free) rotation of an axially symmetrical 
body is also an important prerequisite for the study of a counterintuitive behaviour of a gyro-
scope, whose torque-induced precession is generally complicated by a nutation [6].  
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