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The water bottle flipping challenge consists of spinning a bottle, partially filled with water, and
making it land upright. It is quite a striking phenomenon, since at first sight it appears rather
improbable that a tall rotating bottle could make such a stable landing. Here we analyze the
physics behind the water bottle flip, based on experiments and an analytical model that can be
used in the classroom. Our measurements show that the angular velocity of the bottle decreases
dramatically, enabling a nearly vertical descent and a successful landing. The reduced rotation
is due to an increase of the moment of inertia, caused by the in-flight redistribution of the water
mass along the bottle. Experimental and analytical results are compared quantitatively, and we
demonstrate how to optimize the chances for a successful landing.

I. INTRODUCTION

In May 2016, a senior high school student called
Michael Senatore enters a stage carrying a partially filled
bottle of water. He is participating in the school’s annual
talent show and the auditorium is packed. There is music
playing in the background as he approaches the center of
the stage in a funny way (swagger move). Suddenly he
gets serious, stands straight, focuses on a table standing
in front of him and throws the bottle in the air with a
spin. The bottle flipped once and landed standing per-
fectly upright on a table. This brings down the house
and the students bursts in wild cheers. Everything was
filmed with a smartphone camera1. Within weeks, this
30 seconds clip becomes viral on the internet and kids
around the globe are seen attempting the “water bottle
flipping challenge”, as is it known nowadays2,3. Michael
Senatore ended up selling the famous bottle for 15.000$
(or at least one signed by him)4.

Rotational physics often involves rather counterintu-
itive phenomena like the rotation of cats in free-fall12 or
Olympic divers13, but the remarkable water bottle flip
is no exception. Yet, the flip offers an original and very
insightful illustration of the fundamental principles of ro-
tational mechanics. In Fig. 1(a) (and in the supplemen-
tary video footage14) we present a series of snapshots
of a successful flip. At first sight it appears rather im-
probable that a tall rotating bottle could land stably in
upright position. After all, once released, the bottle’s an-
gular momentum must be conserved. For a rigid body,
the conservation of angular momentum implies a rota-
tion with a constant angular velocity making a smooth
landing rather unlikely. However, the sloshing of the wa-
ter leads to a redistribution of the mass along the bottle.
This change of mass distribution is clearly visible in the
top row of Fig. 1 (while the bottle is in the air), and will
increase the moment of inertia. Conservation of angu-

lar momentum then implies a decrease of the rotational
velocity – leaving the impression of the bottle being sus-
pended horizontally in the air for a moment. When per-
formed successfully, the flip ends with a nearly vertical
descent that is followed by a smooth landing.

In this paper we demonstrate how the water bottle flip
can be used in the classroom. In Sec. II we show how
the complex dynamics of the bottle can be imaged in
experiments, and how it can be analyzed by separating
the motion in the translation of the center of mass and a
rotation around the center of mass. Since the physics of
water sloshing is highly complex in itself, we present an
alternative that is more suitable for analysis: The “tennis
bottle flip”, shown in Fig. 1(b) (and in the supplementary
video footage14). In this system the water is replaced by
two tennis balls – indeed, the successful tennis bottle
flip clearly demonstrates that the redistribution of mass
is the physical ingredient behind the flip. Subsequently,
in Sec. III we show how the flip can be described by a
theoretical model, even allowing quantitative comparison
to experiments.

Based on the observations and modeling, we close by
addressing an important question that arises when at-
tempting a water bottle flip challenge (Sec. IV): Why is
there an optimal amount of water in the bottle? Millions
of flippers seem to disagree on the precise value, but they
do agree that the optimal filling fraction should be be-
tween 1/4 and 1/3 of the total height of the bottle. Can
we explain these values from mechanical principles?

II. EXPERIMENTS

We start by describing how to visualize the dynamics
during a bottle flip, and how to analyze the resulting
motion. The experiment is designed along the classical
approach for the dynamics of extended bodies6,7: The
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FIG. 1. Compositional photographs of a water bottle flip (top), and a tennis bottle flip (bottom). In both cases the redistribution
of mass inside the bottle leads to an increase of the moment of inertia – slowing down its rotational speed and allowing for a
near-vertical descent.

FIG. 2. Sketch of the geometrical parameters for the water
bottle and tennis bottle. The total height of the bottle is H,
while the distribution of water/balls is indicated as h. The
axis of rotation is indicated as well.

motion is decomposed into a translation of the center of
mass and a rotation around the center of mass. This
decomposition is natural since the only external force is
gravity, which exerts no torque around the center of mass.
As such, the water bottle flip serves as a prime example
of conservation of angular momentum.

Apart from the water bottle and the tennis bottle
shown in Fig. 1, we will also consider a “rigid bottle” that
contains an immobilized mass. The rigid bottle serves

two purposes: to verify if we recover the usual rigid body
rotation, and to highlight the importance of the movable
mass for a successful bottle flip.

A. Experimental setup and analysis

The experimental setup used in this study consists of
a black background, a lamp for illumination, and a dig-
ital camera α-6000. Each experimental run (or bottle
flip) takes roughly 1 second. Here we recorded the films
at 50 frames per second, 1/1600 s of shutter time and
2 megapixels resolution. Our recommendation is to use
a minimum of 20 frames per second to gather enough
data points, a maximum shutter time of 1/200 s to avoid
blur in the moving bottle and a minimum resolution of
1 megapixels (most smartphone-cameras satisfy such re-
quirements nowadays). We typically ran 10 successful
flips per bottle type with the same fillings, and select the
cleanest landings among them for analysis.

The rotational motion is quantified by the angular ve-
locity ω = dθ/dt. This quantity can be measured by
tracing the top and bottom of the bottle on the videos.
Another key ingredient of the analysis is to determine
the motion of the center of mass of the total system. For
the rigid bottle, the center of mass obviously remains at
a fixed position along the bottle for all times. However,
it is rather difficult to accurately determine the center of
mass of the sloshing water – from the images one cannot
infer the precise distribution of water inside the bottle.
Here we simply proceed by an approximate analysis that
is detailed in Sec. III B, based on the maximum height of
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FIG. 3. Analysis of the motion during the flip for (a) a bottle with immobilized mass, (b) a water bottle, (c) a tennis bottle.
In all panels the gray lines represent the complex trajectories of the top and bottom of the bottle. The blue lines describe the
center of mass motion, which to a good approximation is found to follow a parabolic trajectory. The values of H used in the
shown experiments are H = 23 cm for the rigid and water bottles and 28 cm for the tennis bottle.

the water mass along the bottle. This complexity of the
water bottle [Fig. 1(a)] is our prime motivation for intro-
ducing the tennis bottle [Fig. 1(b)]. Namely, the exact
positions of the tennis balls are easily determined. Sub-
sequently, the center of mass is obtained by taking the
mass-weighted average of the positions of the two balls
and of the bottle’s center.

In summary, the experimental measurements consist
of tracking the top and bottom of the bottle on each
frame, and the following additional points to determine
the center of mass: (a) Water bottle: the maximum
height of the sloshing water h on each frame (see Fig. 2).
(b) Tennis bottle: the position of the tennis balls for
each frame during the flip. The acquired digital images
were imported into a computer and the tracking was per-
formed manually using ImageJ8, simply using the point
tool with auto-measure. The data was then processed us-
ing MATLAB9. All manually tracked sets of data were
filtered using smoothing splines (with a low smoothing
factor of 0.99) to reduce the user-induced bias and noise.

The experiments presented below were performed with
a water bottle of mass mb = 25 gr, height H = 23 cm.
The filling fraction used was 0.39. For the tennis bottle
experiments, a tennis ball has a mass of 58 gr, and the
tennis bottle has a mass of 48 gr and a height of 28 cm
and a radius of 3.7 cm.

B. Results

Figure 3 shows typical trajectories obtained from our
experiments on the rigid bottle (panel a), the water bot-
tle (panel b), and the tennis bottle (panel c). The vari-
ous curves respectively trace out the edges of the bot-
tle (gray lines) and the center of mass position (blue
lines). In all cases, the center of mass follows the ex-
pected parabolic trajectory associated to a free-falling
motion. The parabola is most convincingly observed for
the rigid bottle and tennis bottle [Fig. 3(a,c)]. In these
experiments the center of mass was indeed accurately de-
termined, while this measurement was more approximate
for the sloshing the water [Fig. 3(b)].

Our prime interest, however, lies in the rotational as-
pects of the motion. It is clear from Fig. 3 that the
rotation of the rigid bottle is very different from both
the water bottle and the tennis bottle. This is further
quantified by considering the angular velocity ω = dθ/dt,
where the angle θ(t) describes the orientation of the bot-
tle over time. The raw data of ∆θ(t) = θ(t) − θ(t = 0)
is shown in the inset of Fig. 4. After using smoothing
splines, we differentiate ∆θ(t) to obtain ω(t). In Fig. 4
we plot ω (normalized by the initial value ω0) versus time
(normalized by the time of landing tf ). As expected, the
angular velocity is perfectly constant for the rigid bottle
(red markers). By contrast, ω is found to decrease dra-
matically for both the water bottle (blue) and the tennis
bottle (yellow). These results reveal that a gentle land-
ing can be achieved due to a significant reduction of the
bottle’s angular velocity ω. The dashed lines in Fig. 4
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correspond to the model developed in Sec. III.

C. Interpretation

The secret behind a successful water bottle flip – the re-
duced rotational velocity – can be understood from con-
servation of angular momentum. The combined system
of the bottle and the water is acted upon only by grav-
ity, and therefore experiences no resultant torque around
the center of mass. Consequently, the total angular mo-
mentum L around the center of mass must be conserved:
L = Iω is constant, where I is the moment of inertia
around the center of mass.

The moment of inertia of a rigid body is constant over
time, so that ω must remain constant – in perfect agree-
ment with our experiment (Fig. 4, red markers). How-
ever, the mobility of the liquid gives rise to a redistribu-
tion of the mass inside the bottle during the flip, which
implies that rotational inertia I is no longer constant.
This change of I explains the reduction of the angular
velocity observed in Fig. 4: As the liquid mass spreads
out, the total moment of inertia I around the center of
mass will increase, accompanied by a lowering of ω to
maintain the same value of L = Iω. The same argument
applies for the tennis balls that “spread out” during the
flip, for which we indeed also observe a decrease in ω.
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FIG. 4. Angular velocity ω as a function of time t, respec-
tively normalized by the initial ω0 and the final time tf . The
datasets correspond to the bottle with an immobilized mass
(red), the water bottle (blue) and the tennis bottle (yellow).
Dashed lines correspond to the model described in Sec. III.
Inset: The angle ∆θ = θ(t) − θ(0) versus t, from which the
main figure was derived.

III. MODEL

We now present a quantitative description of the ex-
periments by modeling the redistribution of mass. We
first discuss the tennis bottle and subsequently propose
a simplified one-dimensional model for the effect of slosh-
ing inside the water bottle. In both cases we find good
agreement with experiments. Finally, the model is used
to address the question of what determines the optimal
filling factor for a successful water bottle flip.

A. The tennis bottle flip

1. Center of mass

We start out by deriving the formula of the center of
mass, which was already used for analyzing the experi-
ment. The geometry of the tennis bottle is sketched in
Fig. 2.

The bottle is essentially a hollow cylinder of radius
R, height H, and mass mb. Assuming the cylinder is
up-down symmetric, its center of mass is located at a
position H/2. The tennis balls are modeled by hollow
spheres of radius R and mass mt. The lower ball stays at
the bottom of the cylinder while the top of the upper ball
is located at a position h that can change in the course
of the experiment [cf. Fig. 2]. The center of mass of the
two balls is thus located at h/2.

The total center of mass of the combined system –
bottle and balls – is obtained by a weighted average of
the respective centers of mass. Hence, one verifies that
the combined center of mass position hCM is located at

hCM =
mb

H
2 + 2mt

h
2

mb + 2mt
=
H

2

(
mb + 2mt

h
H

mb + 2mt

)
. (1)

Clearly, hCM varies during the experiment, as it is a func-
tion of the position of h of the second ball.

2. Moment of inertia

The next step is to determine the moment of inertia I
of the combined system. Given that the angular momen-
tum is conserved only around the center of mass, we also
need to determine I with respect to the axis through the
center of mass.

Let us first consider the bottle. We assume that the
bottle’s mass is perfectly localized in a very thin wall
at the outside of the cylinder (hence ignoring the mass
in the top and bottom of the cylinder). With this, we
can determine the moment of inertia in two steps. First,
we consider the moment of inertia of the bottle with re-
spect to the bottle’s center of mass that is located at
H/2, around the axis indicated in Fig. 2. This axis is
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perpendicular to the cylinder’s symmetry axis and the
corresponding moment of inertia reads

I ′b =
mb

12

(
6R2 +H2

)
. (2)

However, the rotation takes place around the center of
mass of the total system hCM, defined by (1). Hence, the
axis of rotation in the experiment is parallel to the axis
used for (2), but shifted by a distance H

2 − hCM. The
relevant moment of inertia is then obtained by using the
parallel axis theorem. This gives

Ib = I ′b +mb

(
H

2
− hCM

)2

=
mb

12

(
6R2 +H2

)
+mb

(
H

2
− hCM

)2

. (3)

In a similar fashion, one obtains the moment of inertia
of the two tennis balls. Approximating the balls as thin-
walled hollow spheres, we obtain

I1 =
2

3
mtR

2 +mt (R− hCM)
2
, (4)

I2 =
2

3
mtR

2 +mt (h−R− hCM)
2
. (5)

The first terms on the right hand side are the sphere’s mo-
ment of inertia around its center of mass, while the sec-
ond terms account for the parallel displacement to hCM

of the total system.
Finally, the total moment of inertia during the tennis

bottle flip reads

I(h) = Ib + I1 + I2. (6)

Each of these terms is a function of h, due to the depen-
dence of hCM on the position h of the second ball.

3. Comparison to experiments

To compare the model to experiments, we make use
of the fact that the angular momentum around the cen-
ter of mass, L = Iω, must be conserved during the flip.
According to this, we directly conclude that the dimen-
sionless angular frequency ω(t)/ω0 can be expressed as

ω(t)

ω0
=

I0
I(h)

, (7)

with I(h) given by (6). Here we introduced the initial
moment of inertia I0 = I(h0), which corresponds to the
situation prior to the flip when the two tennis balls are at
the bottom of the container. Upon inspection of Fig. 2(a)
one finds h0 = 4R.

We now present two tests of our predictions. First, we
insert the experimentally obtained h(t) in (6) and use (7)
to predict the angular velocity ω(t). The result is shown
as the yellow dashed line in Fig. 4. Clearly, it gives a
very good description of the experimental data.

However, an even more direct verification of (6,7) is
obtained by plotting the experimental ω versus the ex-
perimental h. In this case the comparison between theory
and experiment is without any input from experiment.
The result is shown in Fig. 5, showing an excellent agree-
ment without adjustable parameters.
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FIG. 5. Experimental results for the angular velocity ω for
the tennis bottle (top panel) and the water bottle (bottom
panel). Results of the models are shown in continuous red
lines.

B. The water bottle flip: one-dimensional model

We now return to the case of the water bottle, for which
the distribution of mass is obviously much more intricate.
To describe the fluid mass in a tractable manner, without
taking into account all the complexities of the sloshing
fluid, we propose a simplified one-dimensional model. We
assume the mass of water mw is always distributed uni-
formly along the bottle, starting from the bottom and
reaching up to a height h (see Fig. 2). This height h will
vary with time as the bottle is spinning in the air. Again,
we denote the minimum value of the height as h0, which
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corresponds to the situation prior to the flip where all
mass is collected at the bottom. The maximum possible
value of h is given by the height of the bottle H.

1. Center of mass

Once again, we first determine the center of mass of the
combined system of the bottle (mass mb) and the water
(mass mw). The center of mass can be found by taking
the weighted average of the center of mass of the bottle,
located at H/2, and of the distributed water, located at
h/2. With this, the center of mass position can be found
as

hCM =
H
2 mb + h

2mw

mb +mw
=
H

2

(
mb +mw

h
H

mb +mw

)
. (8)

This expression has been employed for obtaining the
position of the CM in the water bottle experiments (see
Figure 3).

2. Moment of inertia

The next step is to determine the moment of inertia
of the system I, measured with respect to the center of
mass hCM. In analogy to the tennis bottle, we separately
determine the moments of inertia of the bottle Ib and of
the water Iw, which leads to the total moment of inertia
I = Ib + Iw. Using the parallel axis theorem, we find the
bottle’s moment of inertia to be

Ib = I0 +mb

(
H

2
− hCM

)2

. (9)

Here I0 is the moment of inertia of the bottle with re-
spect to its own center of mass (located approximately
at H/2), while the second term accounts for the shift to
the system’s center of mass at hCM. Since we consider a
simplified one-dimensional description, we will from now
on use I0 = 1

12mbH
2. This is the expression valid for

thin objects, and is also recovered from (2) with R = 0.
In similar fashion, we can express the moment of inertia
of the one-dimensional water column as

Iw =
1

12
mwh

2 +M

(
h

2
− hCM

)2

. (10)

The total moment of inertia then reads

I = Ib + Iw =
1

12

(
mbH

2 +mwh
2
)

+mb

(
H

2
− hCM

)2

+mw

(
h

2
− hCM

)2

, (11)

where it is understood that hCM is given by (8).

3. Comparison to experiments

We now make the same comparison to the experiments
as we did for the tennis bottle. This is again based on

ω(t)

ω0
=

I0
I(h)

, (12)

but now with I(h) based on (11).
The first comparison is shown as the blue dashed line

in Fig. 4, where we used h(t) measured in the experiment.
The same data are shown Fig. 5, now plotting ω versus
h. The model gives a very good account of the reduction
of ω during water bottle flips, in particular given the
oversimplification of the sloshing in this one-dimensional
description.

IV. CAN WE PREDICT THE OPTIMAL
FILLING FRACTION?

Encouraged by these observations, we now turn to the
question of what is the optimal filling fraction, f = h0/H,
to accomplish a water bottle flip. It is obvious that an
optimum should exist. Namely, both an empty bottle
(f = 0) and a filled bottle (f = 1) can not accommodate
any mass redistribution, and hence will not exhibit any
slowing down of ω. According to the model, What would
be the optimal f?

A. Reducing the angular velocity

Since for a given ω0 one wishes to reduce ω as much
as possible, we will look for the minimum of the ratio
I0/I(h). For each filling fraction, the maximum moment
of inertia Imax is attained when the water is maximally
distributed, i.e. for h = H. Hence, we need to find
the value of f for which I0/Imax attains a minimum.
Though the expression (11) appears rather cumbersome,
it is possible to find an analytical form for the function
G(f) ≡ I0/Imax. For this we first define the mass ratio

M =
mw,max

mb
, (13)

where mw,max is the water mass for a filled bottle. With
this, we can express mw = fmw,max = fMmb and in-
sert this in (11) and (8). With the help of Maple11 or
Mathematica10, the remaining expression can be brought
to the form

G(f) =
I0
Imax

=
M2f4 + 4Mf3 − 6Mf2 + 4Mf + 1

(1 +Mf)
2 .

(14)
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This relation is plotted in Fig. 6 (blue curve) for M=20.
Typically, water bottles that can contain 0.5 liters of wa-
ter have a mass of approximately 25 grams. This implies
M = 500/25 = 20, for which G(f) exhibits a minimum at
f ≈ 0.41. The corresponding reduction ωmin/ω0 ≈ 0.36,
which we remark to be in close agreement with the re-
duction achieved experimentally in Fig. 4 (in our exper-
iments f = 0.39).

FIG. 6. Two criteria for the optimal flip are shown. On the
left y-axis, the minimum in G(f) (i.e. maximum moment of
inertia increase I/Io) gives us the first criterion for an optimal
bottle filling fraction f . On the right y-axis, the lowest achiev-
able center of mass position gives us another criterion for an
optimal flip. The plot shows the case of bottle water/bottle
mass ratio M = mwatermax/mbottle= 20.

B. Lowering the center of mass

One might argue that the optimization involves more
than just the reduction of ω. After all, the dynamics of
the landing is also of key importance. Clearly, the stabil-
ity of the landing would benefit from having the center
of mass as low as possible. Another relevant minimiza-
tion would therefore be hCM evaluated for h = h0. Again
introducing the mass ratio M , the expression (8) can be
written as

hCM

H
=

1

2

(
1 +Mf2

1 +Mf

)
. (15)

This result is shown in Fig. 6 (red curve), again for M =
20. Now, the minimization with respect to f can be
performed analytically and yields

f =

√
1 +M − 1

M
. (16)

For M = 20 this gives f = 0.18.
Using the these two criteria of having a low angular

velocity and a low center of mass, our crude model pro-
vides a prediction for the optimal range. This is shown
as the gray zone in Fig. 6. The figure shows that good
filling fractions lie in the range of approximately 20% to
40%. This is consistent with the reports found on the
Internet, which typically quote 1/4 to 1/3.

V. DISCUSSION

To summarize, we have presented the physics of the
water bottle flip as a contemporary illustration of the
principles of rotational mechanics. It allows for a vari-
ety of experimental and theoretical explorations that are
suitable to undergraduate physics courses. In fact, the
research presented here was initiated, and to a large ex-
tent executed, by the five undergraduate students who
appear as the first authors of this paper.15 Possible ex-
tensions of the presented work are to investigate the role
of horizontal momentum for a successful landing, or to
analyze the landing itself.

Apart from its intrinsic interest, the principle of redis-
tribution of mass finds applications in a variety of con-
texts. For example, Olympic divers extend their arms
and legs as much as possible to reduce their rotational
speed and dive into the water in a straight position. Simi-
lar strategies are used in granular dampers, in which solid
particles inside a shaky object are used to damp unde-
sired oscillations and stabilize the object5. These exam-
ples give a broader perspective on the physics behind the
water bottle flip.
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