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A physical model is developed, which suggests a pathway to determining the optimal release
conditions for a basketball free throw. Theoretical framework is supported by Monte Carlo simula-
tions and a series of free throws performed and analysed at Southbank International School. The
model defines a smile-shaped success region in angle-velocity space where a free throw will score. A
formula for the minimum throwing angle is derived analytically. The optimal throwing conditions
are determined numerically by maximizing the expected number of successful shots given the error
pattern inherent to the player. Some might need more space for error in velocity, and thus need a
higher throwing angle, while others might aim lower because their velocity control is much stronger.
This approach is fully quantified by the model presented and suggests a reliable way for individual
free throw improvement. The model also explains recent NBA data showing that some of the most
successful free throwers bear completely different conditions to the average player.

I. INTRODUCTION

“Does a knowledge of physics help to improve one’s
basketball skills?” – a question asked by Peter Brancazio
some 35 years ago [1] still presents a considerable chal-
lenge and attracts active interest of current researchers
[2–14]. Physicists usually start their analysis from the
free throws. Unlike other kinds of throw, it is pretty
easy to isolate the variables, since there is no interference
from other players. Nevertheless, despite all the modern
knowledge, professional players only make 75% of free
throws. Many players show even less favorable statis-
tics, such as Shaquille O’Neal, notorious for his poor free
throw percentage of around 50% [4, 14]. More recent
NBA examples are Andre Drummond and DeAndre Jor-
dan hovering around 40% mark [13, 14].

Although it is hard to expect that a basketball player
who steps up to shoot a free throw would think about
optimal ball release conditions, knowing those is very im-
portant for training. Researchers carefully calibrated the
forces acting on a basketball in flight to be used in models
and simulations [7–9]. Different models have been pro-
posed for optimal shooting trajectory, with subtle differ-
ences between them. Broncazio [1] emphasized the im-
portance of throwing the ball with the minimum speed,
thus allowing for a softer shot. Fontanella [5] argued that
a steeper trajectory makes it easier to score a clean shot,
which is what shooters usually aim for. Gablonsky and
Lang [4] focused on finding the trajectory with the high-
est margin for error in release angle. They calculated
the error as a distance from the theoretical boundaries of
allowed velocities at a given angle.

Tran and Silverberg [6] conducted a 3D simulation
study to determine once and for all, the physics behind
the optimal free throw and later extended their results to
bank shots (reflected from backboard) [11]. Their results
allowed them to establish a few guidelines for the foul
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line: aim toward the back of the rim with 3 Hz of back-
spin and at 52◦ to the horizontal, so that the ball at its
highest point reaches the top of the backboard. However,
analysis of NBAs SportVU motion tracking data showed
[13] that while a typical 6′3 (190 cm) player shoots at
54.6◦ on average, one of the last years best free shooters
of this height, Stephen Curry, was shooting at 58.1◦. Also
James Harden, who became the 11th in NBA history to
make 700 free throws in a season (2014–2015), was shoot-
ing at 49.6◦ in contrast to NBA average of 53.4◦ for his
height of 6′5 (196 cm). So, not only the average release
angle is somewhat higher in professional basketball than
physicists suggested, but individual results can differ sig-
nificantly from the average. This difference can hardly be
attributed to psychological factors alone. In other words,
despite a lot of progress in basketball physics, the optimal
throwing conditions are still not fully understood.

This study aims to contribute to resolving this puzzle.
By combining theoretical foundation based on Newton’s
mechanics, experimental data collected at Southbank In-
ternational School and the results of Monte Carlo simu-
lations, it will be shown that the optimal throwing con-
ditions are individual and should be considered as such.
In practice, the probability distribution of release param-
eters of a player should be carefully measured and opti-
mal release conditions determined from simulations on
the basis of the determined error statistics. Recommen-
dations for individual improvement can then be provided
and individual progress monitored with further recursive
measurements and recommendations. This conclusion is
in agreement with recent findings by Min [15] who sug-
gested to use the phase space volume as the criterion to
optimize the shooting strategy.

II. THEORY

There are four main forces acting upon a basketball
in flight. They are, in the order of importance: gravity,
buoyancy, air resistance and Magnus force [13, 16], as
illustrated in FIG. 1. The gravitational force pulls the

ar
X

iv
:1

70
2.

07
23

4v
1 

 [
ph

ys
ic

s.
po

p-
ph

] 
 2

1 
Fe

b 
20

17

mailto:irina.barzykina@southbank.net


2

ball vertically down towards the Earth with the corre-
sponding gravitational acceleration g = 9.81m/s2. The
buoyant force acts in the opposite direction. It is caused
by the air pressure difference above and below the ball,
and its magnitude is proportional to the weight of the air
displaced by the ball. Buoyancy offsets gravity by about
1.5% [13]. Both gravity and buoyancy act on the ball
irrespective of its movement.

FIG. 1. The four forces that act on a basketball in flight.
Reproduced from Ref. 16.

Air resistance and Magnus force are related to the ball
moving through the air. As the ball moves, it pushes
through the air molecules, and the air molecules push
back according to Newton’s Third Law. The resulting
air resistance force, also known as drag, acts in the op-
posite direction of the ball’s motion; it depends on the
ball’s velocity, contact area as well as on the density of
the air. Okubo and Hubbard conducted accurate mea-
surements of the air drag force [8]. When the ball spins
while flying through the air, it experiences uneven fric-
tion which creates an unbalanced force perpendicular to
the direction of translational motion, called the Magnus
force. Uneven friction is the result of different local speed
of the ball surface against the air. On the side of the ball
moving against the air flow a higher pressure zone is cre-
ated, while on the opposite side of the ball moving with
the air flow a lower pressure zone is created. Most bas-
ketball players add backspin to their shot, as a ball with
backspin loses more energy on its bounce, which makes
it more likely to bounce into the basket [5]. Backspin
creates a slight upward lift on the ball’s trajectory.

According to Beuoy [13] the ball’s trajectory can be
modeled fairly accurately by ignoring the last two forces,
and focusing solely on the combination of gravity and
buoyancy. This combination can be thought of as the

effective gravity. In what follows effective gravity will be
implied whenever gravity is mentioned unless specifically
stated otherwise.

A. Ball trajectory

When a ball is thrown at a certain angle to the ground
its trajectory in-flight is parabolic, unless it is thrown
vertically up or down. Parabolic shape is a consequence
of Newtons laws. Let us assume that the ball is released
at height h above the ground at angle θ and velocity v, as
shown in FIG. 2. According to Newtons First Law, the
horizontal velocity component v cos θ does not change as
there is no horizontal force, so we can write for the x
coordinate of the ball at time t

x = vt cos θ (1)

Here it is assumed that x = 0 when the ball is released
(i.e. when t = 0). Vertical movement occurs under grav-
ity with the gravitational acceleration g pulling the ball
to the ground, so as a consequence of Newtons Second
Law the y coordinate at time t should be written as

y = h+ vt sin θ − 1

2
gt2 (2)

FIG. 2. Basketball free throw and the corresponding nota-
tions: h - the height of ball release, v - initial velocity, θ -
throwing angle, d - horizontal distance from the point of ball
release to the center of the hoop, H - height of the hoop.

Here v sin θ is the vertical component of the initial ve-
locity and it is assumed that y(0) = h. By expressing t
from Eq. 1 and substituting into Eq. 2 we find

y = −x2 g

2v2 cos2 θ
+ x tan θ + h (3)

Using Eq. 3 one can derive a velocity-angle relationship
given the target point (x, y). Since the ball is aiming at
the basket, the height of the target is always y = H,

v =
x

cos θ

√
g/2

x tan θ + h−H
(4)
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B. Minimum angle

It is clear that in order to score, there should be a
minimum angle of release. The maximum throwing angle
is 90◦, in the limit. Let r and R denote the ball and the
basket rim radii, respectively. The farthest possible point
where the ball centre can cross the horizontal rim line is
at distance x = d + R − r. Otherwise, the back of the
rim will be hit and the ball may bounce away from the
target. Now let us assume that the ball descends at angle
α and neglect any change in this angle while the ball is
above the basket. The minimum angle at which the ball
can descend without hitting the front of the rim can be
found from a rectangular triangle in FIG. 3, which shows
the extreme situation where the ball just passes above
the front of the rim and lands just before the back of the
rim. Given |AB|+ |BC| = |AC| it can be shown that

sinα =
r

2R− r
(5)

FIG. 3. Minimum angle of descent.

In order to relate the angle of descent α to the min-
imum angle of throwing θmin it can be noticed that
tanα = vy/vx or

tanα =
gt− v sin θmin

v cos θmin
=

gd

v2 cos2 θmin
− tan θmin (6)

Using Eq. 4 with x = d to exclude velocity from Eq. 6 it
can be obtained

tan θmin = tanα+
2(H − h)

d
(7)

Finally, using the identity tan2 α = sin2 α/(1 − sin2 α)
and Eq. 5 it can be shown that

tan θmin =
r

2R

(
1− r

R

)−1/2
+

2(H − h)

d
(8)

Eq. 8 is very important. It tells a player of height h (or
rather releasing the ball at height h) standing a distance
d from the basket at which minimum angle to throw.
The taller the player and the farther he is away from

the basket the smaller is the minimum angle. Note that
this equation is approximate. It was assumed that the
trajectory of the ball centre above the basket is almost
a straight line. In addition, the relationship between the
throwing angle and the angle of descent was calculated by
assuming d � R − r. These are reasonable assumptions
given standard parameters of free throw in basketball,
as illustrated in FIG. 4. These parameters will be used
throughout the rest of the paper, namely: r = 0.12 m,
R = 0.23 m, H = 3.05 m, d = 4.6 m.

FIG. 4. NBA basketball court and ball dimensions. Repro-
duced from Ref. 17.

C. Angle-velocity ‘smile’

When the throwing angle is above the minimum, there
is a room for error for the player, i.e. there is a range of
allowed velocities for which the target will be hit. The
maximum velocity is determined when the centre of the
ball crosses the horizontal rim line at a distance d+R−r,
as discussed. The minimum velocity is determined when
the ball just passes above the front of the rim. This prob-
lem is approached numerically using MATLAB software
[18]. For each angle θ ≥ θmin the numerical procedure
starts with maximum velocity and decreases it gradually
(in small steps of 0.001 m/s) while checking whether the
ball hits the front of the rim. The trajectory of the ball
centre is calculated using Eqs. 1 and 2, and the condition
for not hitting the front of the rim is given by

(x− (d−R))
2

+ (y −H)
2
> r2 (9)

This procedure is repeated for a range of angles in steps
down to the minimum angle, which is determined numer-
ically by finding the last angle where the trajectory for
maximum velocity still satisfies Eq. 9.

The results are shown in FIG. 5 for the release height
of h = 2 m. There is a smile-shaped region of release
conditions (θ, v) that result in a successful free throw.
The minimum throwing angle is achieved where the max-
imum and minimum velocities coincide. Eq. 8 predicts
θmin = 39.8◦, which is close but still somewhat underesti-
mates the numerically obtained value of 40.9◦. The min-
imum angle becomes smaller when the throwing distance
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becomes larger (not shown). An interesting observation
is that there is a range of angles where the throwing ve-
locity is minimal. At this minimal velocity there is a
significant room for error for a player. For example, if a
player throws at 7.59 m/s, he can throw at angles from
47 to 57.5◦, nearly 20% range. At the same time, smaller
velocity implies better physical control. This is exactly
the result emphasized by Brancazio [1].

FIG. 5. The range of angles and velocities that result in a
successful free throw for a ball release height of h = 2 m.

III. MONTE CARLO SIMULATIONS

There is always room for error at the moment the ball
is released: the error in throwing angle, initial velocity,
release height and spin. This study is focused on an-
gle and velocity, as spin has only little impact on the
trajectory and release height is usually stable. The mar-
gin for error can be defined as the minimum distance to
the boundary of the ‘smile’ region. The allowed error in
release angle is determined by horizontal (angular) dis-
tance to the boundaries, while the error in velocity is
determined by vertical distance. The margin for error
is maximized when the distance to both boundaries is
equal. FIG. 6 shows the relative error margin in angle
and velocity. While the allowed error in release angle is
maximized in the area of minimum velocity, this does not
mean that this area is optimal overall. The allowed er-
ror in velocity increases with increasing angle. So if the
shooter was perfect in angle, he would have to shoot at
higher angles to maximize the expected error in velocity.
This idea was discussed by Fontanella [5]. Gablonsky
and Lang [4] noticed that in order to define optimal re-
lease conditions one has to maximize the expected error
in both angle and velocity. They considered this problem
from the viewpoint of multiobjective optimization using
a heuristic argument that the best trajectory is the one
that puts five times as much emphasis on the error in
velocity than on the error in angle.

The approach taken in this paper is different. It is sug-
gested to start from the probability distribution of angle
and velocity, that is, when the ball is released with cer-
tain target values of θ0 and v0 the realized values can
be different but governed by the probability distribution
centered around (θ0, v0). It is assumed for simplicity that
errors in angle and velocity are independent and Gaus-
sian, and characterized by standard deviations σθ and σv,
respectively. Then in a Monte Carlo simulation, a million
of different release conditions are generated for a given
target pair (θ0, v0), using MATLAB built-in normal ran-
dom number generator. It is checked whether realized
(θ, v) values would result in successful shots (would hit
the ‘smile’ zone) and the total probability of success is
counted as a fraction of successful realizations, as illus-
trated in FIG. 7.

FIG. 6. Relative error margin in angle and velocity as a
function of release angle.

FIG. 7. Monte Carlo simulation procedure. Green circle is
the target point. Dots are random realizations. Black lines
are success bounds. Red dots are scored, blue dots are missed.
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FIG. 8. Contour plot of score probability distribution as a
function of target release angle θ0 and target release velocity
v0. Errors are assumed to be normal with relative standard
deviations σθ = σv = 0.01. Release height was h = 2 m.
Dashed black lines are success bounds. Star denotes the point
of maximum score probability.

The procedure is repeated on a rectangular grid of re-
lease angle-velocity pairs (θ0, v0), providing score proba-
bility for each pair. The resulting numerical score prob-
ability distribution is illustrated in FIG. 8 (contour plot)
and FIG. 9 (surface plot). It can be seen that when both
angle and velocity can be executed with the same error
of one percent, optimal release conditions move to higher
angle and higher velocity.

FIG. 9. Surface plot of score probability distribution corre-
sponding to FIG. 8.

This effect can be investigated further by repeating the
whole Monte Carlo simulation procedure for different val-
ues of σθ while keeping σv = 0.01, and finding optimal
(θ0, v0) pair in each case. As it can be seen in FIG. 10 and
FIG. 11, as the relative error in throwing angle increases,
the optimal throwing angle decreases and the optimal
release point moves towards the minimum velocity area.

This area allows the shooter the maximum error in angle.
In the opposite scenario, as the relative error in throw-
ing angle decreases, the optimal throwing angle increases
balancing the error in velocity. It is impossible to expect
that a player can execute the throw with absolute pre-
cision in velocity. Therefore, one should expect to have
optimal throwing conditions to be shifted to somewhat
higher angles.

FIG. 10. Optimal release angle as a function of σθ.

FIG. 11. Optimal release angle-velocity pairs (diamonds) as
a function of angle percent error, corresponding to FIG. 10.
Black lines are success bounds.

IV. EXPERIMENT

It order to verify theoretical conclusions, a series of
25 free throws by a student of Southbank International
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School was recorded on video. It is certainly not as de-
tailed a study as the one based on NBA data [13]. How-
ever, real data will help reinforce qualitative conclusions.
The student scored 52%, an outstanding result for a non-
professional. Each individual shot was processed frame
by frame to determine the height of release h, the hor-
izontal distance travelled by the ball d, in-flight time t
and the maximum height in balls trajectory hmax. Time
was measured in frames, with each frame being 1/30th

of a second. Distance was measured in mm right on the
image. In order to determine scaling coefficient, one stan-
dard horizontal distance was measured, the distance to
free throw line of 5.79 m, and one standard vertical dis-
tance, the height of the hoop, H = 3.05 m, as shown in
FIG. 12. Both horizontal and vertical scaling was consis-
tent providing a unique scaling coefficient of 19.4. The
difficulty (and additional error) in such measurements
comes from 3D projection. It is obvious in FIG. 12 that
the horizontal lines at the bottom of the screen are tilted
downwards while those at the top are tilted upwards.

The height of release was very stable at h = 2.02 m in
all measurements. This is player’s height with his arms
extended. The error of this figure is definitely more than
just a 1% distance measurement error (defined by the
ruler). Firstly, the ball position during release is some-
what smeared. Secondly, the player is located on the
right of the image where distance is amplified due to 3D
projection effect. The resulting error is estimated to be
at least 5% (knowing the height of the player). Improve-
ment can be achieved by using a grid of cameras but this
is outside of scope of the present study.

The parameters were determined as follows: vx = d/t,

vy =
√

2g(hmax − h), v =
√
v2x + v2y, θ = arctan(vy/vx).

The g factor was taken to be 9.66 to account for buoy-
ancy. The results are summarized in TABLE I.

FIG. 12. Free throw setup and standard measures used to
determine the scaling coefficient.

Experimental results are further compared to the the-
oretical success bounds in FIG. 13. Excellent agreement
is seen – successful shots all basically fit into the success
zone, despite the error involved in measurements. It is
interesting to notice that the observed relative standard

d, m hmax, m t, s vx, m/s vy, m/s v, m/s θ, ◦ score
4.55 4.04 0.94 4.26 6.25 7.49 55.71 1
4.59 4.12 0.91 4.18 6.37 7.61 56.69 1
4.22 4.08 0.92 3.90 6.31 7.38 58.29 0
4.61 4.06 0.93 4.29 6.28 7.54 55.68 1
4.76 4.08 0.92 4.40 6.31 7.65 55.10 0
4.24 4.10 0.92 3.89 6.34 7.41 58.46 0
4.53 4.10 0.92 4.16 6.34 7.55 56.74 1
4.12 3.83 1.02 4.19 5.91 6.99 54.65 0
4.57 4.16 0.90 4.11 6.43 7.65 57.38 1
4.57 4.14 0.91 4.14 6.40 7.62 57.09 1
4.55 4.02 0.94 4.29 6.22 7.46 55.40 1
4.30 3.98 0.96 4.11 6.16 7.29 56.28 0
4.61 4.12 0.91 4.20 6.37 7.62 56.58 1
4.20 3.94 0.97 4.08 6.10 7.19 56.24 0
4.59 4.08 0.92 4.24 6.31 7.56 56.10 1
4.55 4.08 0.92 4.20 6.31 7.54 56.32 1
4.86 4.18 0.89 4.35 6.46 7.82 56.04 0
4.86 4.10 0.92 4.46 6.34 7.72 54.86 0
4.34 4.02 0.94 4.09 6.22 7.36 56.68 0
4.30 3.85 1.01 4.33 5.94 7.10 53.89 0
4.61 4.00 0.95 4.38 6.19 7.47 54.74 1
4.59 4.06 0.93 4.27 6.28 7.53 55.79 1
4.40 3.85 1.01 4.43 5.94 7.15 53.28 0
4.22 3.89 0.99 4.19 6.00 7.12 55.10 0
4.63 4.10 0.92 4.25 6.34 7.60 56.18 1

TABLE I. Details of 25 consecutive free throws by a student
of Southbank International School.

deviations σθ = 0.022 and σv = 0.028 of release angle
and velocity, respectively, are quite close for this partic-
ular player. Therefore, according to the results of the
previous section, he should be aiming higher than the
minimum velocity area. And indeed he does, with the
average release angle being 56◦.

FIG. 13. Angle-velocity plot of 25 free throws detailed in
TABLE I. Red circles correspond to successful shots, blue
stars show where the target was missed. Dashed black lines
are theoretical success bounds.
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V. CONCLUDING REMARKS

A physical model was developed, which suggests a
pathway to determining the optimal release conditions
for a basketball free throw. The model was supported by
Monte Carlo simulations and a series of free throws per-
formed by a student of Southbank International School.
In agreement with previous findings in the literature,
the model confirms that tall players should generally be
better shooters as they have more room for error and
their required optimal release angle should generally be
lower [13]. The model also suggests that the optimal
shot should aim somewhere between the center of the
basket and the back of the rim [4]. Back spin was not
discussed but it is generally considered useful to secure
shots where the ball collides with the rim or the board
[5, 6]. The model and all the conclusions apply equally
well for wheelchair basketball [10].

What was particularly emphasized in this study was
that the optimal release conditions vary from player
to player, not only because they have different release
heights, but also because of their different levels of con-
sistency in release angles and velocities. If one records a
series of throws by a player and calculates probability dis-
tribution of errors in release angle and velocity, then us-
ing the technique demonstrated in this paper it would be
possible to determine optimal throwing conditions that
would maximize the expected number of successful shots
given the error pattern inherent to the player. Recom-
mendations for individual improvement can then be pro-
vided and individual progress monitored with further re-
cursive measurements and recommendations. This ap-

proach can be extended to more realistic Monte Carlo
simulation including all the relevant forces [15] and em-
pirical probability distribution in angle-velocity space.

Recent analysis of NBA data shows that some of the
most successful free throwers bear completely different
conditions to the average player [13], which also confirms
the fact that all players have different consistency in re-
lease angles and velocities. Some might need more space
for error in velocity, and thus need a higher throwing an-
gle, while others might aim lower because their velocity
control is much stronger. The physical model discussed
in this paper fully supports this point of view and shows
the way to translate the error footprint of a player into
individual conditions for optimal free throw.

It is well known that psychological aspects may play an
extremely important role in influencing ones scoring abil-
ity. With support of a good model one can confidently
practice optimal shots to the degree of automation and
thus should be able to keep nerves out of the way.
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