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In 1989 Supplee described an apparent relativistic paradox on which a submarine seems to sink in a given
frame while floating in another one. If the submarine density is adjusted to be the same as the water density
(when both of them are at rest) and then it is put to move, the density of the submarine will become higher than
that of the water, thanks to Lorentz contraction, and hence it sinks. However, in the submarine proper frame, is
the water that becomes denser, so the submarine supposedly should float and we get a paradox situation.

In this paper we analyze the submarine paradox in both a flat and a curved spacetime. In the case of a flat
spacetime, we first show that any relativistic force field in special relativity can be written in the Lorentz form, so
that it can always be decomposed into a static (electric-like) and a dynamic (magnetic-like) part. Taking into
account the gravitomagnetic effects between the Earth and the water, a relativistic formulation of Archimedes
principle can be established, from which the apparent paradox can be explained. On the other hand, considering
the curved spacetime on the vicinity of Earth, we show that the gravitational force exerted by Earth on a moving
body should now increase with the speed of the body. Notwithstanding, the submarine paradox can still be
explained with this speed-dependent force when the corresponding gravitomagnetic effects are taken into account.

Keywords: Supplee’s submarine paradox, theory of relativity, gravitomagnetism, Archimedes principle, Lorentz force.

I. THE PARADOX

When a submarine is submerged underwater it can sink
or float, depending on whether its density is higher or lower
than the density of the water. Suppose that we adjust the
density of the submarine when it is at rest to be the same as the
density of the standing water, so that the submarine remains
in equilibrium when submerged. What should happen, then,
when the submarine is put to move with a high velocity in
the water? Disregarding any hydrodynamic effects as drag,
viscosity, turbulence, etc. (which we shall always assume
hereafter), observers fixed to the ocean would claim that the
submarine sinks, since its density becomes higher than the
water density thanks to the Lorentz contraction. On the other
hand, observers within the submarine would claim instead that
the submarine should float, since is the water that now becomes
denser. Of course, the submarine cannot float in a frame and
sink in another, so we get a contradictory situation.

This apparent paradox was described in 1989 by Supplee
in [1], although he had used a bullet instead of a submarine.
Considering some assumptions about the gravitational force
among moving bodies, Supplee gave two explanations for the
problem, from which he concluded that the submarine should
sink in both frames. In the first explanation, he avoided to use
the theory of gravitation by considering a uniformly upwards
accelerated lake which, according to Einstein’s equivalence
principle, behaves likely a uniform gravitational field; he
showed that in this case the bullet acceleration is less than that
of the lake, so that the bullet relatively sinks. In the submarine
proper frame, however, the water indeed becomes denser but,
since this frame is no longer inertial, the isobaric surfaces of
the lake will not be flat anymore, which ultimately results in
the submarine going far away from the lake surface, i.e., in
the bullet sinking again. In the second explanation, Supplee
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considered a constant weak field in the framework of general
relativity, which led him to the same conclusion.

Fourteen years after Supplee’s publication, Matsas had
analyzed the problem again, but this time using the full
machinery of general relativity [2]. Considering a background
spacetime with a Rindler chart and assuming reasonable
conditions about the submarine rigidness, Matsas analyzed
the motion of a submarine which accelerates from the rest to a
given velocity v. He concluded that the submarine shape gets
deformed as it accelerates, with its length contracting more
and more, so that its density increases accordingly, which leads
the submarine to sink. Moreover, in the proper frame of the
submarine he showed that the observed gravitational field is
somewhat different, which leads the submarine to sink again.
Matsas also argued that this problem can be important to some
questions regarding the thermodynamic of black-holes [2].

Finally, Supplee’s paradox was studied once more by
Jonsson through the analysis of the fictitious forces that appear
in non-inertial frames [3].

Although the approaches above mentioned are interesting
on their own, we believe that it is not necessary to employ
accelerated frames neither to use the full theory of general
relativity in order to explain the submarine paradox. In
fact, first of all, we should remark that accelerated motions
can be contemplated with special relativity without use of
non-inertial frames, so the introduction of non-inertial frames
to explain the submarine paradox is not necessary. Moreover,
the behavior of the submarine (if it sinks or floats) depends
only on the balance between the Archimedes (buoyancy)
force and the gravitational (weight) force acting on it. On
the surface of Earth, the gravitational field is relatively very
small (in the sense that spacetime curvature can be neglected
for any practical purpose), which enable us to interpret the
gravitational interaction as an ordinary force field in a flat
spacetime. This, of course, is only an approximation, since
general relativity show us that in an exact flat spacetime there
is no gravity. Nevertheless, the spacetime in the vicinity of
Earth can be regarded, with a very high accuracy, as consisting
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of a flat space plus a curved time. We shall show that even
in this case the gravitational field can still be interpreted as a
force field, although it must become dependent on the speed
of the falling bodies. Special theory of relativity can also be
employed with some care and, hence, the submarine paradox
can be explained in both a flat as well as in a curved spacetime.

To correctly explain the submarine paradox, however, it
is necessary to impose covariance of the gravitational force
regarding the Lorentz transformations. This lead us to a
covariant theory of gravitation in a flat spacetime [4]. This
theory also holds in a flat space but a curved time when
the speed dependence of the gravitational force is taken
into account. This covariance requirement implies that
gravitomagnetic effects, which play key hole in our explanation
of the Supplee’s submarine paradox, must be present whenever
there is a relative movement between the interacting bodies.

This paper is organized as follows. In section II we proof
a theorem stating that every force field in special relativity
can be written in the Lorentz form, so that any force can be
split into a static (electric-like) and a dynamic (magnetic-like)
part. In the section III we use these results to explain the
submarine paradox in a flat spacetime; the gravitomagnetic
effects involved enable us to formulate a relativistic version of
the Archimedes principle which gives the correct Archimedes
force acting on the submarine, providing in this way the
solution of the paradox. Next, in the section IV, we discuss the
curvature of spacetime in the vicinity of Earth and we show that
in this case the gravitational force between the Earth and a very
fast moving body must increase with the speed of the body.
Finally, we revisit the submarine paradox considering this
speed-dependent force law in the section V and we compare
the results of both approaches.

II. ANY COVARIANT FORCE FIELD OF SPECIAL
RELATIVITY CAN BE WRITTEN IN LORENTZ FORM

Special theory of relativity tells us that the force is not a
four-vector. In fact, if F = d p/dt is the same force acting
in a given body, as measured from an inertial frame R, and
F′ = d p′/dt′ is the force measured by another inertial frame
R′ (with R′ moving w.r.t. R with the velocity v = vx̂, all the
axes being coincident at t = t′ = 0), then we get that [5, 6]

F′x = Fx −
v
c2

uyFy + uzFz

1 − uxv
c2

, (1a)

F′y = Fy

√
1 − v2

c2

1 − uxv
c2

, (1b)

F′z = Fz

√
1 − v2

c2

1 − uxv
c2

, (1c)

where u is the body velocity as measured by R.
In this section, we shall show that although the force is not

a four-vector, it can be always written in a Lorentz form,

F = G + u × H, (2)

w.r.t. any inertial frame. In (2), G is defined as the part of the
force F which does not depend on the body velocity u − we
may call it the static (electric-like) part of the force. Similarly,
M = u × H is defined by the part of the force which does
depend on u − we may call it the dynamic (magnetic-like) part
of the force.

To prove the statement above, let us assume that F, the force
acting on the body in the frame R, does not depend on u1.
Hence, in the frame R the force is already written in Lorentz
form with G = F and H = 0. Now we have to proof that the
same is true in the frame R′. To find the force in the frame
R′, we can use (1). Notice however that force F′ depends
on velocity u that the particle has in the frame R. However,
the observers in R′ do not measure u, instead, it is u′ that is
actually measured. This fact suggests us to eliminate u through
the velocity transformation formulæ,

ux =
u′x + v

1 +
u′xv
c2

, uy = u′y

√
1 − v2

c2

1 +
u′xv
c2

, uz = u′z

√
1 − v2

c2

1 +
u′xv
c2

, (3)

in order to rewrite (1) in terms of u′. Inserting (3) into (1) and
simplifying, we get the formulæ

F′x = Fx −
v
c2

u′yFy + u′zFz√
1 − v2

c2

, (4a)

F′y = Fy
1 +

u′xv
c2√

1 − v2

c2

, (4b)

F′z = Fz
1 +

u′xv
c2√

1 − v2

c2

. (4c)

Thus, from the part of F′ which does not depend on u′ we get
the static part of the force, G′, namely,

G′x = Fx, G′y =
Fy√
1 − v2

c2

, G′z =
Fz√

1 − v2

c2

, (5)

and, from that part of F′ which does depend on u′, we get the
dynamical part of the force, M′,

M′x = −
v
c2

u′yFy + u′zFz√
1 − v2

c2

, M′y =

u′xv
c2 Fy√
1 − v2

c2

, M′z =

u′xv
c2 Fz√
1 − v2

c2

.

(6)
Now it is just a matter of fact that (6) can be written as the
vector product M′ = u′ × H′, with

H′ = −
v
c2 × G′, (7)

1 For speed-dependent force fields, in general there is no inertial frame where
the force becomes independent of the body velocity. Nonetheless, this fact
does not invalidate the use of (1) and, hence, the results which follow will
still hold. The words static and dynamic, however, becomes inappropriate in
this case, since now both G as H may depend on the body velocity (perhaps
the terms electric-like and magnetic-like are more suitable here).
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that is,

H′x = 0, H′y =
v
c2

Fz√
1 − v2

c2

, H′z = −
v
c2

Fy√
1 − v2

c2

. (8)

Thus, the force F′ can be written in the Lorentz form (2)
w.r.t. the frame R′ as well. Moreover, since the frame R′ is
quite arbitrary, we had proved that in any inertial frame every
physically acceptable force field can be written in the Lorentz
form2. This can be also proved considering another inertial
frame R′′ moving w.r.t. R′ with a velocity w = wx̂. Supposing
that in R′ the force acting on the body is F′ = G′ + u′ × H′,
then, repeating the above procedure, we can show that in R′′

the force is still given by F′′ = G′′ + u′′ × H′′, with the static
and dynamic forces in each frame related with themselves by
the formulæ (see [4] for details),

G′′x = G′x, G′′y =
G′y − wH′z√

1 − w2

c2

, G′′z =
G′z + wH′y√

1 − w2

c2

, (9)

and

H′′x = H′x, H′′y =
H′y + w

c2 G′z√
1 − w2

c2

, H′′z =
H′z −

w
c2 G′y√

1 − w2

c2

. (10)

The most known example of such a force is the
electromagnetic one. In this case we have G = qE and M =

qu × B, with q denoting the electric charge, E the electric field
and B the magnetic field, respectively. Another example is the
gravitational force in the approximation where Newton’s law is
valid (i.e., in a flat spacetime background). In this case, we have
G = mg and M = mu × h, where g is the static gravitational
field and h the dynamic gravitational field − the gravitational
analogue of the magnetic field. The consequences of this
covariant theory of gravitation were recently discussed in [4].

III. SOLUTION OF THE SUBMARINE PARADOX IN A
FLAT SPACETIME

Let us now analyze the submarine paradox considering by
now only the special theory of relativity. This means that in
this section the gravitational interaction will be regarded as
an ordinary force field in a flat spacetime (in the same way
as, for instance, the electromagnetic interactions are usually
treated). We shall assume therefore that the gravitational force
that Earth exerts in a given particle is given by Newton’s law,

F = −
GMm

r2 r̂, (11)

when the Earth is at rest, no matter what is the particle motion.
In (11), M is the mass of Earth, m the mass of the particle, r
is the distance vector from the Earth to the particle position,

2 For a deduction of this result using the concept of four-force, see [4].

G the Newton constant. In the present case, we shall consider
actually only the constant gravitational force F = −mg ẑ on the
surface of Earth, where g is the acceleration of gravity. Finally,
we shall also consider the (inertial and gravitational) mass as
an invariant quantity, which is of course the most logical way
to proceed and to avoid misunderstandings3.

Before analyze the original formulation of Supplee’s
paradox, let us consider first a slight modified version on
which no acceleration is involved. This is obtained supposing
a submarine moving with velocity v = vx̂ in the standing
water of the ocean and letting its density be adjusted by the
observers at rest within the ocean (frame R) in such a way
that the submarine remains in equilibrium in this frame. From
Archimedes principle this means that the submarine density
must be adjusted to be the same as the water density when
both are measured by the frame R. The paradox situation
arises because it seems, at first sight, that the submariners
(frame R′) would conclude that submarine should float, since
in this frame the submarine density happens to be lesser than
that of the moving water, thanks to the Lorentz length effects.
We shall see, however, that this apparent paradox is due to an
incorrect use of usual Archimedes principle: if special relativity
is correctly employed, we get that the submarine actually does
not sink neither float in both frames.

A straightforward confirmation of this result could be given
directly from the transformation formulæ (1) or (4). In fact,
since in the frame R the total force acting on the submarine is
null, the same will be true in the frame R′, so that the submarine
cannot accelerate in neither frame. However, in order to
provide a physical explanation of the problem, a more detailed
exposition is necessary. We shall explain in the sequel what
happens with the weight and Archimedes forces separately,
explaining why the Archimedes principle cannot be directly
applied in the frame R′. Nevertheless, a relativistic formulation
of Archimedes principle can be formulated if we take into
account the gravitomagnetic effects that will be present in R′.

Let us begin our analysis in the frame R. Here, the water
of the ocean is at rest, while the submarine has velocity v =

vx̂. The submarine is subject to two forces: a small constant
gravitational (weight) force, W = −mg ẑ = −ρsubVsubg ẑ, and
the Archimedes (buoyancy) force, A. Archimedes force is a
response from the water to the action of gravity: a gradient
of pressure arises in order to kept its static equilibrium. The
gradient of pressure present in a fluid suited in a gravitational
field equals the density of that gravitational force, ∇p = f =

−ρwatg ẑ. Hence, Archimedes force acting on the submarine
can be found integrating −∇p over the submarine volume:

A =

∫
Vsub

(−∇p) dV =

∫
Vsub

ρwatg ẑdV = ρwatVsubg ẑ. (12)

Thus we can see that the total force acting on the submarine
will be null if we set ρsub = ρwat = ρ.

In the proper submarine frame, R′, on the other hand, the
water is moving with the velocity u′wat = −vx̂. Lorentz

3 See Refs. [7–11] for discussions about the concept of mass in relativity.
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Figure 1. Submarine paradox in the frame R. A submarine is moving
with velocity v = vx̂ in a standing ocean. The submarine density
is adjusted to be the same as the water density, so that the intensity
of Archimedes force A equals the intensity of gravitational (weight)
force W and the submarine does not sink neither float.

length effects implies that water’s density increases, while
the submarine density decreases by the same factor:

ρ′wat =
ρ√

1 − v2

c2

, ρ′sub = ρ

√
1 −

v2

c2 . (13)

In this frame, the submarine is also subjected to the
gravitational and Archimedes forces. The gravitational force,
however, is not given by Newton’s law anymore, neither can
the Archimedes force be deduced directly from the usual
Archimedes principle. The gravitational force acting on the
submarine should be found through (4), remembering that in
R′ the submarine velocity u′sub is zero:

W′ =
W√
1 − v2

c2

= −
mg ẑ√
1 − v2

c2

= −
ρVsubg ẑ√

1 − v2

c2

. (14)

On the other hand, to find the Archimedes force in the frame
R′, we need to know first what happens with the gradient of
pressure on the water. The gradient of pressure can also be
regarded as a response from the water to the gravitational
force of the Earth, of course, but now we should realize that
both the water as the Earth move w.r.t. R′ with the velocity
u′wat = −vx̂. Hence, the water will be subject to both a
static (electric-like) gravitational force as well as a dynamic
(magnetic-like) one. A unit volume of water in the frame R
is subject to the gravitational force F = −ρg ẑ and, from (5)
and (6), follow that the static and dynamic gravitational forces
acting on this element of volume, as measured in the frame R′,
will be, respectively,

G′ = −
ρg ẑ√
1 − v2

c2

, M′ =
v2

c2

ρg ẑ√
1 − v2

c2

. (15)

Notice that, according to (6) and (7) we can write the dynamical
force as M′ = u′wat ×H′, where H′ = −v/c2 ×G′. From (2) we
get, therefore, the total force acting on that element of volume:

F′ = −
ρg ẑ√
1 − v2

c2

+
v2

c2

ρg ẑ√
1 − v2

c2

= −ρg ẑ

√
1 −

v2

c2 . (16)

Figure 2. Submarine paradox in the frame R′. In this case the
submarine is at rest and the water is moving with the velocity
u′wat = −vx̂. Thus the submarine density becomes lower than the water
density. Notwithstanding the difference of densities, a relativistic
Archimedes principle shows that Archimedes force A′ still equals the
weight force W′ in intensity, so that the submarine still remains in
equilibrium. The dynamic (magnetic-like) gravitational force that the
moving Earth exerts on the moving water contributes significantly to
this result.

Now we should realize that this quantity of water no longer
occupies a unit volume in the frame R′. In fact, it is contracted
by a factor of

√
1 − v2/c2, so that, in order to get the force per

unit volume in the frame R′, we need further to divide (16) by
this factor. Whence, we get,

f ′ = ∇′p′ = −ρg ẑ. (17)

The conclusion is that the gradient of pressure is not
proportional to the higher water’s density − rather, it is an
invariant quantity, which could be anticipated already from the
fact that pressure is a scalar and from ∂′z = ∂z. This is why
Archimedes principle cannot be directly applied in R′.

Integrating f ′ = −∇′p′ over the submarine volume, we get
the Archimedes force acting on it:

A′ =

∫
V ′sub

(
−∇′p′

)
dV ′ =

∫
V ′sub

ρg ẑdV ′ = ρV ′subg ẑ. (18)

Finally, since V ′sub = Vsub/
√

1 − v2/c2, we get,

A′ =
ρVsubg ẑ√

1 − v2

c2

= −W′. (19)

Therefore, the Archimedes force intensity equals the weight
of the submarine and, thus, it does not float neither sink in the
frame R′ as well − the submarine remains in equilibrium in
both frames.

We would like to highlight that Archimedes force can also be
obtained from a relativistic Archimedes principle. Remember
that the original formulation of Archimedes principle states
that the intensity of the Archimedes force equals the weight
of water displaced by the submersed body. This principle is
still valid in the frame R′, we must distinguish between the
static weight of the mass displaced by the body, defined as the
mass displaced times the static (electric-like) gravitational field,
W′ = ρ′watV

′
bod g′, and its dynamic weight, which is given by the

current of mass times the dynamic (magnetic-like) gravitational
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field, M′ = V ′bod j′wat × h′, where j′wat = ρ′watu′wat and h′ =

−v/c2 × g′. Therefore, we get for the static and dynamic
weight of the submarine, respectively,

W′ = −
ρ′watV

′
subg ẑ√

1 − v2

c2

, M′ =
v2

c2

ρ′watV
′
subg ẑ√

1 − v2

c2

. (20)

Notice that the dynamical weight is contrary to the static weight
and hence it can be thought as a “negative weight” due to the
repulsive dynamic gravitational force between the Earth and
the water. The sum of these two terms (with the opposite signs)
provides, of course, the Archimedes force (19).

Finally, let us consider the original formulation of Supplee’s
paradox. In this case the density of the submarine is adjusted
to the water density when both of them are at rest (let m be the
submarine mass and V0 its proper volume, so that its proper
density is ρ0 = m/V0). If the submarine is put to move with
a velocity v = vx̂, the gravitational force acting on it will still
be W = −mg ẑ = −ρ0V0g ẑ, since the gravitational field is just
static in the frame R. To evaluate the Archimedes force we
should realize that now the submarine volume is contracted
to Vsub = V0

√
1 − v2/c2, and then, from the Archimedes

principle, we get that A = ρ0V0g ẑ
√

1 − v2/c2. Thus, the total
force acting on the submarine is

F = −ρ0V0g

1 −
√

1 −
v2

c2

 ẑ. (21)

On the other hand, in the frame R′ (the inertial frame that is
instantaneously at rest w.r.t. the submarine at at t = t′ = 0), the
weight force acting on the submarine will be, according to (4),
W′ = −ρ0V0g ẑ/

√
1 − v2/c2. Notice that there is no dynamic

(magnetic-like) force here again, since the submarine is at rest
on R′ in this instant of time. There is, however, a dynamic
force between the moving Earth and the moving ocean. As we
have seen, these gravitomagnetic forces combined imply that
the gradient of water’s pressure observed in the frame R′ is the
same as that measured in R. Thus, Archimedes force will be
given just by A′ = ρ0V0g ẑ. From this we find that the total
force acting on the submarine w.r.t. the frame R′ is

F′ = −ρ0V0g

 1√
1 − v2

c2

− 1

 ẑ =
F√

1 − v2

c2

. (22)

The conclusion is that in both frames the submarine will
sink. Notice further that is not necessary to employ accelerated
frames neither general relativity in order to study the submarine
behavior. We can do that, of course, but then we should take
care with the geometric effects that arise in non-inertial frames,
as already discussed by Supple and Matsas [1, 2].

IV. SPACETIME CURVATURE IN THE VICINITY OF
EARTH AND THE IMPLICATED SPEED-DEPENDENT

GRAVITATIONAL FORCE

According to Einstein’s theory of gravitation, gravity is
not a force but just an effect of the spacetime curvature [12].

In other words, Einstein’s theory implies that there is no
gravitational field in an exactly flat spacetime whatsoever.
Of course, the Newtonian description of gravity as a force
field in a flat spacetime can be justified as being a very good
approximation in the vicinity of Earth, which is due to the
very small curvature of spacetime − so small that we can only
measure its effects with the most precise instruments available.
The former approach presented in the last section assumes that
this is indeed the case, hence, it should be treated as a first
approximation for the problem.

Nevertheless, in order to get a better approximation for the
gravitational phenomenon on the surface of Earth, the curvature
of spacetime need to be taken into account. Since any physical
measurement of distances performed on the surface of Earth
does not reveal any discordance with the Euclidean geometry,
it is enough to consider here a flat space plus a curved time.
This means that the metric on the proximity of Earth can be
written in the form,

ds2 = − f (z) dt2 + dx2 + dy2 + dz2, (23)

(we suppose that Earth is larger enough so that its surface can
be approximated by horizontal plane), where the function f (z)
is to be determined. In order to do so, we shall proceed as
follows: first remember that in Einstein’s theory, the world-line
of a particle freely falling in a gravitational field is a geodesic,
which is determined by the equations [12]

duα

dτ
+ Γαβγuβuγ = 0, (24)

where uµ are the components of the four-velocity of the
particle (in a given frame), τ is its proper time and Γαβγ are
the Christoffel symbols, which are obtained from the metric
through the formula [12]

Γαβγ = 1
2 gαδ

(
∂βgγδ + ∂γgαδ − ∂δgαβ

)
. (25)

The geodesic equation agrees with the fact that the particle
four-acceleration aα = duα/dτ + Γαβγuβuγ must be zero in
the proper co-moving frame of the particle, since Einstein’s
equivalence principle states that the particle does not feel any
effect of gravity as it freely fall in the gravitational field.

However, for an observer at rest on the surface of Earth,
the four-acceleration of the particle will be given just by aα =

duα/dτ. In fact, since the spacetime can be considered locally
flat in the neighborhood of the particle (which is supposed to
be near from the Earth), we can use Cartesian coordinates to
measure its movement, from which the Christoffel symbols
will all vanish. Comparing this result with (24), we see that we
can write,

aα = −Γαβγuβuγ. (26)

Now, consider a particle that is released from the rest in the
constant gravitational field near the surface of Earth. In this
very instant, the components of the particle four-velocity are

u0 = c, u1 = 0, u2 = 0, u3 = 0. (27)
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Besides, we know that in this case the acceleration of the
particle is just a = −g ẑ and, hence, the components of its
four-acceleration are

a0 = 0, a1 = 0, a2 = 0, a3 = −g. (28)

On the other hand, it follow from (23) and (25) that the only
non-null Christoffel symbols are

Γ0
03 = Γ0

30 =
1
2

d
dz

log f (z) , and Γ3
00 =

1
2

d f (z)
dz

. (29)

Then, using (26), (27), (28) and (29) at once, we get the relation

a3 = −Γ3
00u0u0 =

c2

2
d f (z)

dz
= −g. (30)

Solving this equation, we find the function f (z):

f (z) =
2gz
c2 + C, (31)

where C is the constant of integration. In order to fix C, we
may realize that in the absence of the gravitational field (i.e.,
for g = 0), the metric should reduce to the Minkowski metric,
ds2 = −c2dt + dx2 + dy2 + dz2. This lead us to the value C = c2

and, hence, the spacetime metric in the vicinity of Earth’s
surface becomes,

ds2 = −

(
1 +

2gz
c4

)
c2dt2 + dx2 + dy2 + dz2. (32)

The corresponding non-null Christoffel symbols reduce to

Γ0
03 = Γ0

30 =
g
c4

(
1 +

2gz
c4

)−1

, Γ3
00 =

g
c2 . (33)

Since the metric (32) is linear in the coordinates, Einstein’s
field equations are automatically satisfied, of course.

Now, let us see what should be the acceleration of the
particle in the gravitational field of Earth when the particle has
a given (instantaneous) velocity, u. In this case its four-velocity
becomes,

u0 = γuc, u1 = γuux, u2 = γuuy, u3 = γuuz, (34)

where we introduced the Lorentz factor γu = 1/
√

1 − u2/c2

for short. However, we cannot assume that the acceleration of
the particle is directed along the ẑ direction anymore, since the
theory of relativity shows us that acceleration and force are not
parallel each to the other, except when the velocity is parallel
or orthogonal to the force. In fact, the relationship between
force and acceleration is [5, 6, 12]

F = m
[
γua + γ3

u

( a · u
c2

)
u
]
. (35)

Hence, the particle four-acceleration must be written as

a0 = γ4
u

( a · u
c2

)
c, (36a)

a1 = γ2
uax + γ4

u

( a · u
c2

)
ux, (36b)

a2 = γ2
uay + γ4

u

( a · u
c2

)
uy, (36c)

a3 = γ2
uaz + γ4

u

( a · u
c2

)
uz. (36d)

On the other hand, (26), (33) and (34) furnish us,

a0 = −
2g(

1 +
2gz
c4

) uzγ
2
u

c3 , a1 = 0, a2 = 0, a3 = −gγ2
u.

(37)
Comparing (36) with (37) we obtain the acceleration of the
particle in the weak gravitational field of Earth:

ax = g
(uxuz

c2

)
, ay = g

(uyuz

c2

)
, az = −g

(
1 −

u2
z

c2

)
. (38)

Notice that the particle acceleration will be directed along the
ẑ direction only if uz = 0 or if ux = uy = 0. In the fist case, the
acceleration is just a = −g ẑ, while in the second case we have
a = −g

(
1 − u2/c2

)
ẑ.

Finally, inserting (38) into (35) and simplifying, we get the
gravitational force acting on the moving particle:

F = −
mg ẑ√
1 − u2

c2

. (39)

We conclude therefore that the spacetime curvature in the
proximity of Earth implies a speed-dependent gravitational
force. The gravitational force increases with the particle speed.

Notwithstanding the curved spacetime we have here, we may
realize that the Lorentz transformations can still be employed,
as long as the frame R′ moves w.r.t. the frame R′ in a direction
parallel to Earth’s surface (for instance in the x̂ direction).
The only effects differing from that obtained in an exactly flat
spacetime (besides the existence of the gravitational field, of
course) are those on which the events should be compared in
different heights coordinates, since, according to the metric
(32), the higher the position, the faster the time will pass. In
fact, if dt is a given interval of time measured by a clock at the
surface of Earth, then an identical clock situated at the height

z will mark the time dtz =

√
1 +

2gz
c4 dt, which is higher than

dt. Correspondingly, if a light ray is emitted from the height z
towards the surface of Earth, a blue-shift effect will take place.

V. SOLUTION OF THE SUBMARINE PARADOX IN THE
CURVED SPACETIME OF EARTH

Finally, let us analyze what changes we get in the description
of the submarine paradox, when the effects of the tiny
spacetime curvature on the surface of the Earth are taken into
account. It is sufficient for this end to consider a gravitational
force law given by (39) instead of the Newton’s law (11).

Let us first consider that version of the paradox on which
the submarine does not accelerate. In this case, where the
spacetime is weakly curved, the gravitational force W acting
on the submarine w.r.t. the frame R, will be

W = −
mg ẑ√
1 − v2

c2

= −
ρsubVsubg ẑ√

1 − v2

c2

, (40)
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since the submarine moves with the velocity v = vx̂ and we
are using the force law (39). In order to the submarine stay in
equilibrium underwater, its density should now be adjusted (by
the observers at rest within the water) to ρsub = ρwat

√
1 − v2/c2,

so that the intensity of Archimedes force A equals the intensity
of the weight force W. In the frame R′, of course, the same will
be true. In fact, the gravitational force acting on the submarine
can be found through (4), and it is given by

W′ = −
mg ẑ(

1 − v2

c2

) = −
ρsubVsubg ẑ(

1 − v2

c2

) . (41)

The density of the water in the frame R′ is still given by (13)
and, hence, the gradient of pressure in the frame R′ remains
the same as that measured in the frame R. Thus, Archimedes
force becomes,

A′ =
ρwatVsubg ẑ√

1 − v2

c2

=
ρsubVsubg ẑ(

1 − v2

c2

) , (42)

from which we can see that in frame R′ the submarine will
remain in equilibrium as well.

For the original formulation of Supplee’s paradox, we get a
similar explanation. Here the submarine density ρ0 is matched
with the water density when both are at rest. In the frame R,
the submarine moves with the velocity v = vx̂ and gravitational
force acting on it is

W = −
mg ẑ√
1 − v2

c2

= −
ρ0V0g ẑ√

1 − v2

c2

. (43)

The Archimedes force is A = ρ0Vsubg ẑ = ρ0V0g ẑ
√

1 − v2/c2

and, thus, the total force acting on the submarine is

F = −ρ0V0g ẑ

 1√
1 − v2

c2

+

√
1 −

v2

c2

 = −
v2

c2

ρ0V0g ẑ√
1 − v2

c2

. (44)

In the frame R′ the total force acting on the submarine can be
found through (4), and then we get

F′ = −
ρ0V0g ẑ√

1 − v2

c2

 1√
1 − v2

c2

+

√
1 −

v2

c2

 = −
v2

c2

ρ0V0g ẑ(
1 − v2

c2

) .
(45)

The first and second terms in this equation refer respectively
to the weight and Archimedes force. Taking into account the
gravitomagnetic effects, we can still get the Archimedes force
from a relativistic Archimedes principle, as before.

Equations (44) and (45) agree with those obtained by
Supplee and Matsas [1, 2]. It should be mentioned, however,
that Supplee’s argument is not quite correct, since he assumed
(as many others assume, see Refs. [7–11]) that the gravitational
mass of a body is determined by Einstein’s formula E = mc2,
which leads to a speed-dependent mass: mu = m0/

√
1 − u2/c2.

However, the relation between mass and energy expressed
by Einstein’s formula holds only when the momentum of
the body is null − in fact the correct expression is E =√

m2c4 + p2c2. Besides, we must remember that in Einstein’s
theory of gravitation the source of gravitational interaction is
energy-momentum tensor, not the energy alone. Therefore, it is
only a coincidence that the speed-dependent mass considered
by Supplee gives the same speed-dependent force law (39)
deduced from general relativity. Matsas, on the other hand,
bypassed this issue of what should be gravitational force acting
on a moving body by replacing the special relativity analysis
with a full general relativistic approach [2].

In this paper we showed that the submarine paradox can
be explained through both the special and general relativity.
The only difference arising from the two approaches is that the
force acting on the submarine (and its acceleration) is higher in
the curved spacetime of Earth than in an exact flat spacetime.
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