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Parton Distribution Functions

2

e Deeply inelastic scattering, —qf — 00, Xgy = 2;’(;1 — const
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q(x) — probability that parton g
has momentum xp
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Parton Distribution Functions

2

e Deeply inelastic scattering, —q% — 00, Xy = 2;7(;1 — const
" 2 7" ol

q(x) — probability that parton g
has momentum xp

e no information on spatial distribution of partons
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Electromagnetic Form Factors

e Dirac and Pauli form factors:

Fio(t = qi)
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Electromagnetic Form Factors

e Dirac and Pauli form factors:
q(by) ~ /dbl e MPLF (1 = qf)

q(b1)

by
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Electromagnetic Form Factors

e Dirac and Pauli form factors:
q(by) ~ /dbl e MPLF (1 = qf)

q(x) ® q(b.)

D—wp

by
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Electromagnetic Form Factors

e Dirac and Pauli form factors:
q(by) ~ /dbl e MPLF (1 = qf)

q(x,by)

by
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Electromagnetic Form Factors

e Dirac and Pauli form factors:
q(by) ~ /dbl e MPLF (1 = qf)

q(X7 bl)

by
o GPD: H9(x,0,t = A?) = [dby e®Prq(x,b,)
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Definition of GPDs

e In QCD GPDs are defined as [Miiller '92, et al. '94, Ji, Radyushkin '96]

dz= i pt - _
F9(x, 7},A2)—/27T6'XP+2 (P2|g(—2)v"q(2)|P1)

Z+:0,ZL:0

FEGen ) = e [ G 7% (PG (-2)6,,! ()P

P+ 27

T +n
2

P+

Forward limit
—

A—0
+
1—|—nP+ 1—7)P+ p pt
2 2
+
P=P, +P,: A=Py,—P;; n=— (skewedness)

P
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Relevance for LHC Physics

w, }J SUSY,...

Hari rton cor
ard parton core Soft partons x<<0.01

e heavy particle production => larger probability for multiple
parton collisions

® [Frankfurt, Strikman, Weiss '04]
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Properties of GPDs

e Decomposing into helicity conserving and non-conserving part:

T + 7 TV
Fa_ u(P2)y u(Pl)Ha+ u(P2)ic™u(P1)A,

P+ 2MP+

E° a=gq,g
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Properties of GPDs

e Decomposing into helicity conserving and non-conserving part:

T + 7 TV
Fa — U(P2),7 u(Pl)Ha+ U(Pz)lO' U(Pl)AV Ea

p+ 2MP+ 98
e Forward limit (A — 0): = GPD — PDF

F9(x,0,0) = H(x,0,0) = 0(x)q(x) — 0(—x)g(—x)
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Properties of GPDs

e Decomposing into helicity conserving and non-conserving part:

T + 7 TV
Fa — U(Pz)"}/ u(Pl)Ha+ U(Pz)lO' U(Pl)AV Ea

p+ 2MP+ IT9E
e Forward limit (A — 0): = GPD — PDF

F9(x,0,0) = H(x,0,0) = 0(x)q(x) — 0(—x)g(—x)

e Sum rules:

[ { By ={ Bis
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Properties of GPDs

e Decomposing into helicity conserving and non-conserving part:

Fa — L_I(P2)7+U(P1)Ha+ E(P2)iU+VU(P1)AV E?

p+ 2MP+ IT9E

e Forward limit (A — 0): = GPD — PDF
F9(x,0,0) = H9(x,0,0) = 6(x)q(x) — 0(=x)a(—x)

e Sum rules:

1

/1 o | HI(x, 1, A7) { Fi(A?)

1 1
5 [ dex[Hien 82) 4 B 82)] = (0% o
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Deeply Virtual Compton Scattering (DVCS)
P=Pi+P qg=(q1+q)/2
Generalized Bjorken limit:

_q2 ~ Q2/2 = 0

2
§:

~* v

—q} =0

2P - q

— const

P Py

A=Y / dx Ci(x, €)GPD(x. £, £) + Aethe teitier

e Measurements at DESY, JLab, CERN (COMPASS)
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Deeply Virtual Compton Scattering (DVCS)
P=Pi+P, g=(q1+q)/2
Generalized Bjorken limit:
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e Measurements at DESY, JLab, CERN (COMPASS)

o At large energies, flavour singlet GPDs dominate
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Deeply Virtual Compton Scattering (DVCS)
P=Pi+P, g=(q1+q)/2
Generalized Bjorken limit:

_q2 ~ Q2/2 = 0

2
§:

~* v

—q} =0

2P - q

— const

P1 P2

A=Y / dx Ci(x, €)GPD(x. £, £) + Aethe teitier

e Measurements at DESY, JLab, CERN (COMPASS)

o At large energies, flavour singlet GPDs dominate
e gluon contribution to Ci(x, &) starts at NLO
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Deeply Virtual Compton Scattering (DVCS)
P=Pi+P, g=(q1+q)/2
Generalized Bjorken limit:

@z=0 —q° ~ Q%/2 — 0

2
§:

~* v

—q; = Q7

2P - q

— const

P1 P2

A=Y / dx Ci(x, €)GPD(x. £, £) + Aethe teitier

e Measurements at DESY, JLab, CERN (COMPASS)
At large energies, flavour singlet GPDs dominate
gluon contribution to Cj(x, &) starts at NLO

DIS experience at small x :  gluons >> sea quarks
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Deeply Virtual Compton Scattering (DVCS)
P=Pi+P q=(q1+q)/2

Generalized Bjorken limit:

~* v

—q° @2 =0 —¢°~ Q%/2 — 0
2
= — const
P1 P2 5 2Pq

A=Y / dx Ci(x, €)GPD(x. £, £) + Aethe teitier

e Measurements at DESY, JLab, CERN (COMPASS)
At large energies, flavour singlet GPDs dominate
gluon contribution to Cj(x, &) starts at NLO

DIS experience at small x :  gluons >> sea quarks

= need NNLO to stabilize perturbation series and
investigate convergence
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Deeply Virtual Compton Scattering (DVCS)
P=Pi+P q=(q1+q)/2

Generalized Bjorken limit:

~* v

—q° @2 =0 —¢°~ Q%/2 — 0
2
= — const
P1 P2 5 2Pq

A=Y / dx Ci(x, €)GPD(x. £, £) + Aethe teitier

e Measurements at DESY, JLab, CERN (COMPASS)
At large energies, flavour singlet GPDs dominate
gluon contribution to Cj(x, &) starts at NLO

DIS experience at small x :  gluons >> sea quarks

= need NNLO to stabilize perturbation series and
investigate convergence = conformal approach
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Operator Product Expansion

0o 00 1 2
Jem(X)Jem(O) — Z Z <2> X£+k+1 Cn,k On,k
n=0 k=0 X
Onk = (i04) Dy (i D4)"p

B+ED+*B+
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Operator Product Expansion

- 1 2 n+k+1
Jom (X) Je z_:kz: <X2> x" Cnk On i
k=0: Ono = Oy (i D)™
B+EB+*B+

e C,0 and v, of O, well known from DIS
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Operator Product Expansion

oo o0 1 2
Jem(X)Je ZZ <X2> XTLC, O, 1
n=0 k=0
k=0:  Ono= G (i D)"Y
B+EB+*B+

e Cy0 and v, of O, well known from DIS

e matrix elements of O, equal to Mellin moments of GPDs

1
(P2|Opo|P1) = (P+)"+1/1dxx"Fq(x,n,A2)
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Operator Product Expansion

m(X)Jem (0) — Z Z <X12>2Xf+k+1 CnkOn k
n=0 k=0
On = (i04) P y*(i D+)™ iop M5 AL
D+=Di—D+
e Cy0 and v, of O, well known from DIS

e matrix elements of O, equal to Mellin moments of GPDs
1
(PaOnalPy) = (PT)™ [ dbex"Fo(x,n. 02)
-1

e O, (for fixed n+ k) mix under evolution ...
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Operator Product Expansion

0o 00 1 2
Jem(X)Jem(o) — Z Z <X2> X£+k+1 Cn,k On,k

n=0 k=0
ANk T 4 n . M.E.
Onk = (i104) " (i D+)" 0y =" —Ay
B+EB+*B+
e Cy0 and v, of O, well known from DIS
e matrix elements of O, equal to Mellin moments of GPDs

(P3| OnolP1) = (PT)"H / 1

Ok (for fixed n+ k) mix under evolution ...

e ...so instead of O choose their linear combinations which

diagonalize LO evolution operator

dx x"F9(x,n, A?)
1

Summary
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Conformal operators

«—

vk T D+
Opnek = (107) K Dyt CS/2<8+) ¥

e they have well-defined conformal spin j=n+ 2

Summary
o]
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Conformal operators

«—

vk T D+
Opnsk = (107)" K Dyt CS/2<6+) ¥

they have well-defined conformal spin j=n+ 2

massless QCD is conformally symmetric at the tree level
= conformal spin is conserved

mixing of operators with different n is forbidden by conformal
symmetry, while mixing of those with different n+ k is
forbidden by Lorentz symmetry
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Conformal operators

«—

. ntk T Dt
Onnik = (’8+) +k¢7+ C3/2<a+> P

e they have well-defined conformal spin j=n+ 2

e massless QCD is conformally symmetric at the tree level
= conformal spin is conserved

e mixing of operators with different n is forbidden by conformal
symmetry, while mixing of those with different n+ k is
forbidden by Lorentz symmetry => O, ,,, don't mix at LO
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Conformal operators

«—

vk T D+
Opnsk = (107)" K Dyt 63/2(6+) ¥

they have well-defined conformal spin j=n+ 2

massless QCD is conformally symmetric at the tree level
= conformal spin is conserved

mixing of operators with different n is forbidden by conformal
symmetry, while mixing of those with different n+ k is
forbidden by Lorentz symmetry => O, 1, don’t mix at LO
conformal symmetry broken at the loop level (renormalization
introduces mass scale, dimensional transmutation) =-

e running of the coupling constant
e anomalous dimensions of operators ;. = djk; A,/J’;‘(D
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Conformal operators

«—

vk T D+
Opnsk = (107)" K Dyt CS/2<6+) ¥

they have well-defined conformal spin j=n+ 2

massless QCD is conformally symmetric at the tree level
= conformal spin is conserved

mixing of operators with different n is forbidden by conformal
symmetry, while mixing of those with different n+ k is
forbidden by Lorentz symmetry => O, 1, don’t mix at LO
conformal symmetry broken at the loop level (renormalization
introduces mass scale, dimensional transmutation) =-

e running of the coupling constant

e anomalous dimensions of operators ;. = djk; qx})‘(D

= O, 1k start to mix at NLO
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Conformal Approach to DVCS Beyond NLO Results
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Conformal Towers

7
conformal spin j = n+2

Summary
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Conformal Towers

v, and C, known from DIS

7
conformal spin j = n+2

Summary
o]
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Conformal Towers

® © 6 06 0 O
® 6 6 06 00
« These mix at NLO

v, and C, known from DIS

7
conformal spin j = n+2

Summary
o]
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Conformal Approach to DVCS Beyond NLO

Results
0O00e0000
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Conformal Towers

4_ These mix at NLO

PY v, and C, known from DIS
M

7
conformal spin j = n+2

e Diagonalize in artificial 7 = 0 theory by changing scheme

0% = p~10™8 so that 7ﬁ(s = 0jkVk

Summary
o]
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Conformal Approach to DVCS Beyond NLO

Results
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Conformal Towers

4_ These mix at NLO, in MS but not in CS scheme

PY v, and C, known from DIS

7
conformal spin j = n+2

e Diagonalize in artificial 8 = 0 theory by changing scheme

0% = p~10™8 so that 7ﬁ(s = 0jkVk

Summary
o]
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Conformal Towers

I ® oj0o|® 0 o
t o 0oj0oj® 0 O o
"_l ® o|/o|e® @]« These mixat NLO, in MS but not in CS scheme
& o oloe
o 0|0
[ N J
PY v, and C, known from DIS

7
conformal spin j = n+2

e Diagonalize in artificial 8 = 0 theory by changing scheme
0% = p~1gMs so that 7ﬁ(s = 0jkVk

+2 :
o Cok= (—l)k% Cro = summing complete tower
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B#0

e In full QCD G # 0 and NLO diagonalization is spoiled:

p
VﬁS = OjkVk + gAjk
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B#0

e In full QCD G # 0 and NLO diagonalization is spoiled:
Vﬁf = 0jkYk + ZAjk

e However, there is also ambiguity in MS — CS rotation matrix:

B = B(P=0) 1 Z&B
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B#0

e In full QCD G # 0 and NLO diagonalization is spoiled:
3
Vﬁs = 0jkYk + ;Ajk

e However, there is also ambiguity in MS — CS rotation matrix:

B = B(P=0) 1 255

e By judicious choice of §B one can “push” mixing to NNLO

(CS scheme, [Melic et al. 03] )
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B#0

In full QCD (8 # 0 and NLO diagonalization is spoiled:
we = Ok + gAjk

However, there is also ambiguity in MS — CS rotation matrix:

B =B(F=0) 4 555

By judicious choice of B one can “push” mixing to NNLO
(CS scheme, [Melic et al. *03] )

The B(5=9) is constrained by conformal Ward identities

sCT, LO (ajx — known matrix)

(B=0)NLO __ Qs .. ik .
Bjk = jk—ge(J > k)JT [Miiller '94]
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NNLO DVCS

e DVCS amplitude in terms of conformal moments:

SH(E,8%,0%) =2) " ¢771CH(Q% /12, as(p)) Hi(§ = n, &%, 1i?)
j=0

HA( ):r(3/2)r(j+1) 1
M- 2411 (j+3/2) J_4

; A1 G (/) H(x, . )
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NNLO DVCS

e DVCS amplitude in terms of conformal moments:

SH(E,A2,0%) =2) " e771CH(Q% /1P, as(p)) Hi(€ = n, A2, 1)
j=0

HA( ):r(3/2)r(j+1) 1
) T S Gasy) 1

; A1 G (/) H(x, . )

e ...analogous to Mellin moments in DIS: x" — C,‘:’/z(x)
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NNLO DVCS

e DVCS amplitude in terms of conformal moments:

SH(E,8%,0%) =2) " ¢771CH(Q% /12, as(p)) Hi(§ = n, &%, 1i?)
j=0

_rerg+y 1

Hi(n,...) =
(,-) 2Hr(+3/2) J 1

; A1 G (/) H(x, . )

e ...analogous to Mellin moments in DIS: x" — C,‘:’/z(x)

e Here, Wilson coefficients CJ read . ..
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NNLO DVCS Il

C(Q?/ 1, Q% /™2, as()) =
o) HdM/
Ce(1,as(Q)) P { L
k§:j K(1,as(Q)) Pexp o ¥

(s + L gttt 0| |

with

o1+j+vi(es)/2 (5 4 . 2)
G(1.0x(@) = 2 PTG T+ 5(00)/2) s ors

F(3/2)T (3 +j +(es)/2)

% is result of resumming the conformal tower j

* 3
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NNLO DVCS Il

G(Q2 /12, Q% 1, as(p)) =
00 “du'
C 17 s Q 7) { v
kZ:; k(L as(Q)) Pexp o ¥

(s + L gttt 0| |

with

o1+j+vi(es)/2 (5 4 . 2)
G(1.0x(@) = 2 PTG T+ 5(00)/2) s ors

F(3/2)r (3 4+, +j(as)/2)

rG2C) 'S result of resumming the conformal tower
N CW,Dls
J

(Ozs) from [Zijlstra, v. Neerven ‘92,'94, v. Neerven and Vogt '00]
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NNLO DVCS Il

Q12 @™ asln)) =
o0 Mdul
Ci(1, as X —
§k:J; W(1,as(Q) Pe p{ =
[mas(u'))cskj + Dyt u’/u*)] }

with
G(1,as(Q)) =

21+j+'vj(as)/2r(g +Jj+7(as)/2) Wspis
. R
F3/2r3+j+(as)/2)
27T (-

rG2C) 'S result of resumming the conformal tower j

MS,DIS
° ¢ (

Ozs) from [Zijlstra, v. Neerven ‘92,'94, v. Neerven and Vogt '00]

e Finally, evolution of conformal moments is given by ... =
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:U’di J( ) [ ) = 'YJ(O(S(M)) HJ( 7/112)
j—2
. B(Zgigz)) S Ajk<as<u>, i) el i)
k=0

e Aj — unknown correction, starts at NNLO, and can be
suppressed by choice initial condition — neglected
® 7 from [Vogt, Moch and Vermaseren '04]
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NNLO DVCS IlI
d 2
n (- 1) = —yi(as(p) Hi (-, 1)
j—2
B (ggﬁ”)) S A,-k<as(u), ‘1) He(- i)
k=0

e Aj — unknown correction, starts at NNLO, and can be
suppressed by choice initial condition — neglected
® 7 from [Vogt, Moch and Vermaseren '04]

Summary

e We have used these expressions to
1. investigate size of NNLO corrections to non-singlet [Miiller '06]
and singlet [K.K., Miiller, Passek-Kumeri¢ki and Schifer '06]
Compton form factors
2. perform fits to DVCS (and DIS) data and extract information
about GPDs [Miiller et al., in preparation]
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Results on NNLO DVCS

e We use simple Regge-inspired ansatz for GPDs . ..

' [ Ng Fs(A?) B(l +j — ax(A?), 8)
Hl(gy sz Q%) - < NZ FG(AZ)B(]_ +j_ OZG(AZ),6 >
3

@,(A?) = a,(0) + 0.25A%  F,(A?) = <1 — A2)
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Results on NNLO DVCS

e We use simple Regge-inspired ansatz for GPDs . ..

NL F (A2)8(1 +j—a):(A2) 8)
H' ,A27 2 = < P X g bl
J(g QO) N/G FG(Az)B(]_ +_I_OZG(A2),6)
A2\ "?
0a(82) = a,(0) +0.25A%  F,(A%) = < _ m2>
e ...corresponding in forward case (A = 0) to PDFs of form

T(x) = Ngx =0 (1 —x)";  G(x) = Ngx¢0 (1—x)®
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Results on NNLO DVCS

e We use simple Regge-inspired ansatz for GPDs . ..

, 2 52y [ Ns Fs(A%)B(1+) —as(A?),8)
HJ(&A ) QO) - < N/G FG(Az) B(l +_I _ OZG(AZ),())
a2\ "?
aa(A?) = a,(0) +0.25A%  F,(A?%) = < -~ m2>
e ...corresponding in forward case (A = 0) to PDFs of form
T(x) = Ngx =01 -x)7";  G(x) = Ngx© (1-x)°

e small £ (small x) = neglect valence quarks contribution
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Results on NNLO DVCS

We use simple Regge-inspired ansatz for GPDs . ..

, 2 52y [ Ns Fs(A%)B(1+) —as(A?),8)
HJ(&A ) QO) - < N/G FG(Az) B(l +_I _ OZG(AZ),())
a2\ "?
aa(A?) = a,(0) +0.25A%  F,(A?%) = < -~ m2>
... corresponding in forward case (A = 0) to PDFs of form
T(x) = Ngx =01 -x)7";  G(x) = Ngx© (1-x)°

small £ (small x) = neglect valence quarks contribution
We calculate K-factors
’SHNPLO’

KR = 1— 1. KP =
P—1 ' arg
‘SHN LO’

arg (SH
NP*ILO) ’

NPLO>

arg (SH
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Size of Radiative Corrections - Modulus

s — T T e
0.8; ______________________ ;
< | =]
T el —_— ]
&2 L - 1 Thick lines:
~ r — - q “hard” gluon
I [ q Ng =0.4
TQ_)/ 0.45 7] ag(0)=ay(0H0.1
02 [ P2 (NNLO) 3 ] "I"hinulines:
< oz A=0 — — Pl (NLO\TS| ngft: g"‘:‘;’”
i L MOMS] 1 ag(0)=ax(0)
ol Ll Ll Ll L]
10° 10* 10° 10?
13
e NLO: up to 40-70% (MS); up to 30-55% (CS) [“hard”]

e NNLO: 8-14% ("hard"); 1-4% (“soft") [CS]
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Conformal Approach to DVCS Beyond NLO

00000000

Scale Dependence

Same K-factors, but with H — dH/d In Q°

4GeV?)

zig(gz =

K

2

/

18
16
14
12

\

1
0.8
0.6
0.4
0.2

o
my

-/
— il Ll

\

(b)3

10" 10°

g

e NLO: even 100%

e NNLO: somewhat smaller, but acceptable only for larger &

10°

Results
00@0

Thick lines:

“hard” gluon

Ng =0.4
ac(0)=ax (0)+0.1

Thin lines:
“soft” gluon
Ng =0.3
ag(0)=asx(0)

Summary
o]
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GPD Fits
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Relation to distribution amplitudes

e In QCD GPDs are defined as [Miiller '92, et al. '94, Ji, Radyushkin '96]

dz~ ixPtz— —
Fq(x,777A2):/27re Pr2(Pylg(—2)y " q(2)|P1)

Z+:0, ZLZO

4 dz= . -
Fg(X, 7],A2) _ ﬂ 227 ixPtz

(P2lG;(=2)G,, (2)IP1)|

T

T +n

Pt T+

Pt - pt

—
0<xz<n
— 1 1—
1+77P+ 1 nP+ +nP+ JP-F
2 2 2 2
+

A
P=P,+P,: A=P,—P;: n=-5% (skewedness)
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Conformal algebra

e Conformal group restricted to light-cone ~ 0(2,1)

Ly = —iPy Lo, L] = FL+ conf.spinj:
Iy [L-,Ly] = —2Lo (L2 Onnk] =

? Casimir: JG = 1)k
Lo=35(D+M_.) LP=12 Lo+ L L,

(D — dilatations, K_ — special conformal transformation (SCT))
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Size of Radiative Corrections - phase
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e NLO: up to 24% (MS); up to 13% (CS)
e NNLO and “soft” NLO — less than 5%

Thick lines:

“hard” gluon

Ng =0.4
ag(0)=ax(0H0.1

Thin lines:
“soft” gluon
Ng =0.3
ag(0)=ax(0)

[“hard"]
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(Q* = 4GeV?)

P
K abs

Scale Dependence - Modulus
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e NLO: even 100%

e NNLO: smaller (largest for "hard” gluons)

Thick lines:

“hard” gluon

Ng =0.4
ag(0)=ayx(0)+0.1

Thin lines:
“soft” gluon
Ng = 0.3
ag(0)=asx(0)
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