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B → Kη′ decay — experimental data

� CLEO, Belle and BaBar collaborations see a lot of η′’s in charmless (rare)
hadronic B decays

Br(B+ → K+η′) = (72± 5) · 10−6

Br(B0 → K0η′) = (57± 6) · 10−6

� as compared to the π’s:

Br(B+ → K+π0) = (12.7± 1.2) · 10−6

Br(B0 → K0π0) = (10.2± 1.5) · 10−6

� What makes η′’s special?

� Experience with η′ mass (U(1) problem: mη′ � mπ) suggests: axial anomaly



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Various theoretical approaches

1. Approaches using anomaly
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Various theoretical approaches

1. Approaches using anomaly

� Atwood and Soni (1997), Hou and Tseng (1998), Ali et al. (1998), etc.

� but for the off-shell gluons η′gg vertex is suppressed and not very “anomalous”

2. Other approaches

• Halperin and Zhitnitsky (1997) — b → sc̄c, intrinsic charm of η′ — too large
Br(B → K∗η′)

• Hou and Tseng (1998), Kagan and Petrov (1997) — new physics

• Beneke and Neubert (2002) — QCD factorization approach — problems,
large errors
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3. Rosner et al. (1997, 2000, 2002)

� general flavour-SU(3) analysis of different classes of diagrams and their contri-
butions
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3. Rosner et al. (1997, 2000, 2002)

� general flavour-SU(3) analysis of different classes of diagrams and their contri-
butions

� Tree T = −→ suppressed
by small Vub

� Penguin P = −→
probably
the most
important
contribution
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� Experimental data call also for the singlet penguin S:

A(B → Kη′) =
3√
6
P +

4√
3
S

� S = −→
S ∼ 0.5P explains
the exp. data (both
for Kη′ and Kη
channels)
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� Experimental data call also for the singlet penguin S:

A(B → Kη′) =
3√
6
P +

4√
3
S

� S = −→
S ∼ 0.5P explains
the exp. data (both
for Kη′ and Kη
channels)

� this analysis is not “from-the-first-principles”; overall normalization is fixed by fit
to Br(B → Kπ) ⇒ short-distance calculation is needed

� short-distance penguin calculations give

Br(B → Kη′) ∼ (1− 3) · 10−6 (perturbative standard-model)

� our goal: short-distance calculation of digluon singlet-penguin contribution

[Back to results]
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Suppression of the digluon amplitude

� Digluon amplitude is sometimes dismissed on the basis of Simma
and Wyler(1990) who demonstrated cancelation of the large logs in
b→ s + glueball
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Suppression of the digluon amplitude

� Digluon amplitude is sometimes dismissed on the basis of Simma
and Wyler(1990) who demonstrated cancelation of the large logs in
b→ s + glueball

∼ F1(x)(p2γµ − /ppµ)L− F2(x)iσµνq
νmbR

∼
(F1-terms)

+
(F2-terms)

∼
(F1-terms)

+
(F2-terms)

� x� 1 ⇒ (F1 ∼ lnx) � (F2 ∼ x2 lnx)

� F1 terms cancel for on-shell or soft gluons (Ward identities, low-energy theorem
Low(1958)) ⇒ suppression

� but not for hard off-shell gluons (Witten (1977))!
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Explicit calculation of b→ sg∗g∗ amplitude

� Simma and Wyler (1990): small external momenta — pb, ps, pg � mW

� This work: pb, ps → 0, but general pg

Building blocks

� Self-energy

� �
�����
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% &

Σ(p) = −M 2
W/pL− 2M 2

W

(
1 +

m2
i

2M 2
W

)
/pL

∫ 1

0
dx(1− x) ln

D

µ2
∗

−
∫ 1

0
dx
[
(1− x)mbms/pR−m2

i (mbR + msL)
]

ln
D

µ2
∗

lnµ2
∗ =

1

ε
− γE + ln 4πµ2
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� Triangle
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Γµ(0, p,−p) =
4M 2

W

m2
i −M 2

W

(
1 +

m2
i

2M 2
W

)
(p2gµν − pµpν)γνL

∫ 1

0
dxx(1− x) ln

D

C

+ M 2
Wγ

µL + 2M 2
W

(
1 +

m2
i

2M 2
W

)
γµL

∫ 1

0
dx(1− x) ln

D

µ2
∗

D = xm2
i + (1− x)M 2

W − x(1− x)p2

C = m2
i − x(1− x)p2

� Divergent parts of Γµ and Σ cancel among themselves in the final amplitude
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� Box
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Iµν(0,0,−p,p) = 2M2
W

m2
i−M

2
W

(
1− m2

i
2M2

W

)
(−iεµνρσpσγρL)×

×
∫ 1

0 dx(1−x)

{
(3x−1)Y1+[x2(1−x)p2+(x+1)m2

i ]Y2

}
+

2M2
W

m2
i−M

2
W

(
1+

m2
i

2M2
W

)∫ 1
0 dx(1−x)

{
[−(x+1)/pgµν−(x−1)(pµγν+pνγµ)]Y1

+

(
x2(1−x)[−(pµγν+pνγµ)p2+/p(4pµpν−gµνp2)]

+[−(x+1)/pgµν−(x−1)(pµγν+pνγµ)]m2
i

)
Y2

}
L
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i , M

2
W , p2
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{
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i

)
Y2

}
L

� Y1,2 = complicated functions of x, m2
i , M

2
W , p2

� We agree with Simma and Wyler (1990) in appropriate regions of parameter
space.
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Complete amplitude for b→ sg∗g∗

A = i
αs
π

GF√
2
s̄(0)tbta

∑
i

λiTiµνb(0)εµa(−p)ενb (p) + (crossed) ,

T µν
i = T µν

iBox + T µν
iTriangle + T µν

iSelf-energy .



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Complete amplitude for b→ sg∗g∗

A = i
αs
π

GF√
2
s̄(0)tbta

∑
i

λiTiµνb(0)εµa(−p)ενb (p) + (crossed) ,
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i = T µν

iBox + T µν
iTriangle + T µν
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� Adding up, UV-divergences cancel and one gets:

T µν
i = (−iεµνρσpσγρL)Ai + (µ-ν symmetric part)

where

Ai =− 8M2
W

m2
i−M

2
W

(
1+

m2
i

2M2
W

)∫ 1
0 dxx(1−x) ln D

C

+
2M2

W
m2
i−M

2
W

(
1− m2

i
2M2

W

)∫ 1
0 dx(1−x)

{
(3x−1)Y1+[x2(1−x)p2+(x+1)m2

i ]Y2

}
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Complete amplitude for b→ sg∗g∗

A = i
αs
π

GF√
2
s̄(0)tbta

∑
i

λiTiµνb(0)εµa(−p)ενb (p) + (crossed) ,

T µν
i = T µν

iBox + T µν
iTriangle + T µν

iSelf-energy .

� Adding up, UV-divergences cancel and one gets:

T µν
i = (−iεµνρσpσγρL)Ai + (µ-ν symmetric part)

where

Ai =− 8M2
W

m2
i−M

2
W

(
1+

m2
i

2M2
W

)∫ 1
0 dxx(1−x) ln D

C

+
2M2

W
m2
i−M

2
W

(
1− m2

i
2M2

W

)∫ 1
0 dx(1−x)

{
(3x−1)Y1+[x2(1−x)p2+(x+1)m2

i ]Y2

}
� Expanding this one sees, as expected, that there is no power suppression of

large logs.
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η′g∗g∗ vertex

� General colour-singlet η′ → g∗(k1)g
∗(k2) amplitude:

N ab
µν(k

2
1, k

2
2) = −i Fη′g∗g∗(k2

1, k
2
2) εµνρσk

ρ
1k

σ
2 δ

ab .
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η′g∗g∗ vertex

� General colour-singlet η′ → g∗(k1)g
∗(k2) amplitude:

N ab
µν(k

2
1, k

2
2) = −i Fη′g∗g∗(k2

1, k
2
2) εµνρσk

ρ
1k

σ
2 δ

ab .

� Fη′g∗g∗(k2
1, k

2
2) is generally unknown form-factor

� Atwood and Soni (1997), Hou and Tseng (1998) hoped that

Fη′g∗g∗(k
2
1, k

2
2) ≈ Fη′g∗g∗(0, 0) = −4παs

1

2π2f 1
η′

even fork2
i ∼ m2

b

� similarly to famous π → γγ anomaly amplitude (Jacob and Wu (1989))

Fπγγ(0, 0) = −4παem
1

4π2fπ

� Perturbative QCD, hard scattering approach Ali and Parkhomenko (2002), Kroll
and Passek-Kumerički (2002) ⇒ 1/Q2 suppression (Q2 ≡ |k1|2 = |k2|2)

Fη′g∗g∗(Q
2)

∣∣∣∣
Q2>m2

b

−→ 4παs(Q
2)

f 1
η′√

3Q2
,

� f 1
η′ ≈ 1.15

√
2fπ known from η1 − η8 mixing theory (Feldman and Kroll (1998))
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Gluing two pieces together

� Combining amplitudes for b→ sg∗g∗ and g∗g∗ → η′

� to leading orders in m2
η′/Q

2 and m2
b,s/Q

2 we get

A(b→ sη′) =
GFfπ
3π2

(
φη′s̄ /P η′Lb

) ∑
i=u,c,t

λi

∫ M2
W

µ2∼m2
b

dQ2 α
2
s(Q

2)

Q2
Ai(−Q2) ,
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� Check that the dependence on the infra-red cut-off µ2 is mild:

0 10 20 30 40 50 60

low-momentum cut-off  µ2 [GeV2]

0

0.5

1

1.5

2

2.5

3
I c - 

I t

2mb
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Comparison to the penguin P contribution

� Recall that we want to provide underlying short-distance mechanism for singlet-
penguin contribution to B → Kη′ amplitude
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� Recall that we want to provide underlying short-distance mechanism for singlet-
penguin contribution to B → Kη′ amplitude

� We need nonperturbative matrix element:

〈K|
(
s̄ /P η′Lb

)
|B〉 = ?
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Comparison to the penguin P contribution

� Recall that we want to provide underlying short-distance mechanism for singlet-
penguin contribution to B → Kη′ amplitude

� We need nonperturbative matrix element:

〈K|
(
s̄ /P η′Lb

)
|B〉 = ?

� Fitting to semileptonic B decays, as in the simple factorization approach to
non-leptonic two-body B decays (Bauer, Stech and Wirbel (1987), Deandrea
et al. (1993)):

〈K|
(
s̄ /P η′Lb

)
|B〉 = (m2

B −m2
K)FB→K(m2

η′)

FB→K(m2
η′) ≈ FB→K(0) = 0.38− 0.49
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Comparison to the penguin P contribution

� Recall that we want to provide underlying short-distance mechanism for singlet-
penguin contribution to B → Kη′ amplitude

� We need nonperturbative matrix element:

〈K|
(
s̄ /P η′Lb

)
|B〉 = ?

� Fitting to semileptonic B decays, as in the simple factorization approach to
non-leptonic two-body B decays (Bauer, Stech and Wirbel (1987), Deandrea
et al. (1993)):

〈K|
(
s̄ /P η′Lb

)
|B〉 = (m2

B −m2
K)FB→K(m2

η′)

FB→K(m2
η′) ≈ FB→K(0) = 0.38− 0.49

� gives approximately
Br(B → Kη′) = (1− 2) · 10−6
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Comparison to the penguin P contribution

� Recall that we want to provide underlying short-distance mechanism for singlet-
penguin contribution to B → Kη′ amplitude

� We need nonperturbative matrix element:

〈K|
(
s̄ /P η′Lb

)
|B〉 = ?

� Fitting to semileptonic B decays, as in the simple factorization approach to
non-leptonic two-body B decays (Bauer, Stech and Wirbel (1987), Deandrea
et al. (1993)):

〈K|
(
s̄ /P η′Lb

)
|B〉 = (m2

B −m2
K)FB→K(m2

η′)

FB→K(m2
η′) ≈ FB→K(0) = 0.38− 0.49

� gives approximately
Br(B → Kη′) = (1− 2) · 10−6

i.e. we have the desired S ∼ 0.5P .
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� Digluon singlet-penguin mechanism probably substantially contributes to the
B → Kη′ decay.
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� No new physics ⇒ no large direct CP violation in this mode.
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Conclusions

� Digluon singlet-penguin mechanism probably substantially contributes to the
B → Kη′ decay.

� There is no need for new physics in this mode.

� No new physics ⇒ no large direct CP violation in this mode.

� What about semi-inclusive Br(B → Xsη
′) = (620± 20) · 10−6?
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Conclusions

� Digluon singlet-penguin mechanism probably substantially contributes to the
B → Kη′ decay.

� There is no need for new physics in this mode.

� No new physics ⇒ no large direct CP violation in this mode.

� What about semi-inclusive Br(B → Xsη
′) = (620± 20) · 10−6?

End
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QCD corrections, leading logs
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(loop gluon momentum)2  [GeV2]
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"exact" calculation
leading logs,  1L αs runs
leading logs, 2L αs(mb)
leading logs, 1L αs(mb)

mb
2
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