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¢ What makes n"’s special?

¢ Experience with " mass (U(1) problem: m,, > m,) suggests: axial anomaly
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Various theoretical approaches

1. Approaches using anomaly
¢ Atwood and Soni (1997), Hou and Tseng (1998), Ali et al. (1998), etc.

¢ but for the off-shell gluons 7/ gg vertex is suppressed and not very “anomalous”

2. Other approaches

e Halperin and Zhitnitsky (1997) — b — scc, intrinsic charm of " — too large
Br(B — K™n')

e Hou and Tseng (1998), Kagan and Petrov (1997) — new physics

e Beneke and Neubert (2002) — QCD factorization approach — problems,
large errors
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[Back to results]
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¢ Digluon amplitude is sometimes dismissed on the basis of Simma
and Wyler(1990) who demonstrated cancelation of the large logs in
b — s+ glueball

~ Fi(z)(p*y* — pp*)L — Fy(x)io, g my R

(F-terms) (Fi-terms)
~ + ~U +
(F5-terms) (F5-terms)

2kl = (Fi~lnx) > (F,~2*Inx)

¢ F terms cancel for on-shell or soft gluons (Ward identities, low-energy theorem
Low(1958)) = suppression

¢ but not for hard off-shell gluons (Witten (1977))!
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Building blocks
¢ Self-energy
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¢ Triangle
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¢ Divergent parts of I'* and X cancel among themselves in the final amplitude
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¢ Y, , = complicated functions of =, m?, M, p*

¢ We agree with Simma and Wyler (1990) in appropriate regions of parameter
space.
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¢ Adding up, UV-divergences cancel and one gets:
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¢ Expanding this one sees, as expected, that there is no power suppression of
large logs.
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¢ General colour-singlet ' — ¢*(k1)g* (ko) amplitude:
N (k7 k) = —i Eygege (ki K3) €upo kK55
¢ F, (k3 k3) is generally unknown form-factor
¢ Atwood and Soni (1997), Hou and Tseng (1998) hoped that
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Fpg (ki k3) & Fypeg(0,0) = —4ra,—— even fork} ~ m;

! 27r2f$,
¢ similarly to famous m — ~~ anomaly amplitude (Jacob and Wu (1989))
1
Fﬂ-,yfy(o, 0) = —47TOéemM

¢ Perturbative QCD, hard scattering approach Ali and Parkhomenko (2002), Kroll
and Passek-Kumericki (2002) = 1/Q?* suppression (Q* = |k:1|* = |kz|?)

Q2 Q2 Js’
< > Q2>mz ( ) \/§Q2

¢ fg, ~ 1.15v/2f, known from 7, — ng mixing theory (Feldman and Kroll (1998))
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Gluing two pieces together

¢ Combining amplitudes for b — sg*¢* and g*¢* — 7/

¢ to leading orders in m;,/Q* and m; ./ ()* we get
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A(-Q%),



¢ Check that the dependence on the infra-red cut-off 4 is mild:
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¢ Recall that we want to provide underlying short-distance mechanism for singlet-
penguin contribution to B — K7’ amplitude

¢ We need nonperturbative matrix element:
(K| (51}”77,Lb) |1B) =7

¢ Fitting to semileptonic B decays, as in the simple factorization approach to
non-leptonic two-body B decays (Bauer, Stech and Wirbel (1987), Deandrea
et al. (1993)):

(K|(sPyLb)|B) = (mp — my ) 77" (my)

77/
FB=K(m2) ~ FB~K(0) = 0.38 — 0.49

¢ gives approximately
Br(B— Kn')=(1-2)-10°

i.e. we have the desired S ~ 0.5P.
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