Holographic imaging of nucleon via deeply virtual Compton scattering and conformal symmetry

Krešimir Kumerički

Department of Physics
University of Zagreb

Collaboration with:

Dieter Müller (Regensburg),
Kornelija Passek-Kumerički (Regensburg, Zagreb),
Andreas Schäfer (Regensburg)

Institut “Jožef Stefan”
Ljubljana, 26 April 2007
Outline

Introduction to Generalized Parton Distributions (GPDs)
- Proton Structure
- Definition and properties of GPDs
- Deeply virtual Compton scattering (DVCS)

Conformal Approach to DVCS Beyond NLO
- Conformal Approach
- DVCS at NNLO perturbative QCD

Results
- Choice of GPD Ansatz
- Size of Radiative Corrections
- Fitting GPDs to Data
- 3D image of proton

Summary
Parton distribution functions

- Deeply inelastic scattering, \(-q_1^2 \to \infty\),
 \[x_{BJ} \equiv \frac{-q_1^2}{2p \cdot q_1} \to \text{const} \]
Parton distribution functions

- Deeply inelastic scattering, \(-q_1^2 \rightarrow \infty\), \(x_{BJ} \equiv \frac{-q_1^2}{2p \cdot q_1} \rightarrow \text{const}\)
Parton distribution functions

- Deeply inelastic scattering, $-q_1^2 \to \infty$, $x_{BJ} \equiv \frac{-q_1^2}{2p \cdot q_1} \to \text{const}$

\[
\sum_X \frac{\gamma^*}{xp} \rightarrow \frac{2}{pdf q(x)} \rightarrow \text{const}
\]

$q(x)$ – probability that parton q has momentum xp
Parton distribution functions

• Deeply inelastic scattering, \(-q_1^2 \rightarrow \infty\), \(x_{BJ} \equiv \frac{-q_1^2}{2p \cdot q_1} \rightarrow \text{const}\)

\[
\sum_X x_p \gamma^* p q_1 \rightarrow \gamma^* x p X \rightarrow \gamma^* x p p
\]

\[
PDF q(x) - \text{probability that parton } q \text{ has momentum } x p
\]

• no information on spatial distribution of partons
Electromagnetic form factors

- Dirac and Pauli form factors:
 \[F_{1,2}(t = q_1^2) \]
Electromagnetic form factors

- Dirac and Pauli form factors:

\[q(b_\perp) \sim \int db_\perp e^{i q_1 \cdot b} F_1(t = q_1^2) \]
Electromagnetic form factors

- Dirac and Pauli form factors:

\[q(b_\perp) \sim \int db_\perp e^{iq_1 \cdot b_\perp} F_1(t = q_1^2) \]
Electromagnetic form factors

- Dirac and Pauli form factors:

\[q(b_\perp) \sim \int \, d b_\perp \, e^{i q_1 \cdot b_\perp} F_1(t = q_1^2) \]
Electromagnetic form factors

- Dirac and Pauli form factors:
 \[q(b_\perp) \sim \int db_\perp e^{iq_1 \cdot b_\perp} F_1(t = q_1^2) \]

- GPD: \[H^q(x, 0, t = \Delta^2) = \int db_\perp e^{i\Delta \cdot b_\perp} q(x, b_\perp) \]
Probing the proton with two photons

- Deeply virtual Compton scattering [Müller '92, et al. '94]
Probing the proton with two photons

- Deeply virtual Compton scattering [Müller ’92, et al. ’94]

\[P = P_1 + P_2 \quad q = \frac{(q_1 + q_2)}{2} \]

Generalized Bjorken limit:

\[-q^2 \simeq \frac{Q^2}{2} \to \infty \]

\[\xi = \frac{-q^2}{2P \cdot q} \to \text{const} \]

- QCD: factorization of short- and long-distance physics
Probing the proton with two photons

- Deeply virtual Compton scattering [Müller ’92, et al. ’94]

\[P = P_1 + P_2 \quad q = (q_1 + q_2)/2 \]

Generalized Bjorken limit:

\[-q^2 \approx Q^2/2 \rightarrow \infty \]

\[\xi = \frac{-q^2}{2P \cdot q} \rightarrow \text{const} \]

- QCD: factorization of short- and long-distance physics

\[\langle P_2 | \bar{q}(-z-) \gamma^+ q(z-) | P_1 \rangle \]
Definition of GPDs

- In QCD GPDs are defined as [Müller '92, et al. '94, Ji, Radyushkin '96]

\[
F^q(x, \eta, \Delta^2) = \int \frac{dz^-}{2\pi} e^{ixP^+z^-} \left\langle P_2 | \bar{q}(-z) \gamma^+ q(z) | P_1 \right\rangle \bigg|_{z^+=0, z_\perp=0}
\]

\[
F^g(x, \eta, \Delta^2) = \frac{4}{P^+} \int \frac{dz^-}{2\pi} e^{ixP^+z^-} \left\langle P_2 | G^+_{a\mu}(-z) G^{-\mu}_a(z) | P_1 \right\rangle \bigg|_{z^+=0, z_\perp=0}
\]

Forward limit
\[
x + \eta \frac{P^+}{2} \quad x - \eta \frac{P^+}{2} \quad \frac{1 + \eta}{2} P^+ \quad \frac{1 - \eta}{2} P^+
\]

\[
P = P_1 + P_2 ; \quad \Delta = P_2 - P_1 ; \quad \eta = -\frac{\Delta^+}{P^+} \text{ (skewedness)}
\]
Properties of GPDs

- Decomposing into helicity conserving and non-conserving part:

\[F^a = \frac{\bar{u}(P_2)\gamma^+ u(P_1)}{P^+} H^a + \frac{\bar{u}(P_2)i\sigma^{+\nu} u(P_1)\Delta_\nu}{2MP^+} E^a \quad a = q, g \]
Properties of GPDs

• Decomposing into helicity conserving and non-conserving part:

\[
F^a = \frac{\bar{u}(P_2)\gamma^+ u(P_1)}{P^+} H^a + \frac{\bar{u}(P_2)i\sigma^{+-\nu} u(P_1)\Delta}{2MP^+} E^a \quad a = q, g
\]

• Forward limit (\(\Delta \to 0\)): \(\Rightarrow\) GPD \(\to\) PDF

\[
F^q(x, 0, 0) = H^q(x, 0, 0) = \theta(x)q(x) - \theta(-x)\bar{q}(-x)
\]
Properties of GPDs

- Decomposing into helicity conserving and non-conserving part:

\[
F^a = \frac{\bar{u}(P_2)\gamma^\nu u(P_1)}{P^+} H^a + \frac{\bar{u}(P_2)i\sigma^{\nu\sigma}u(P_1)\Delta_\nu}{2MP^+} E^a \quad a = q, g
\]

- Forward limit \((\Delta \to 0)\): \(\Rightarrow\) GPD \(\to\) PDF

\[
F^q(x, 0, 0) = H^q(x, 0, 0) = \theta(x)q(x) - \theta(-x)\bar{q}(-x)
\]

- Sum rules:

\[
\int_{-1}^{1} dx \left\{ \begin{array}{c}
H^q(x, \eta, \Delta^2) \\
E^q(x, \eta, \Delta^2) \\
\end{array} \right\} = \left\{ \begin{array}{c}
F^q_1(\Delta^2) \\
F^q_2(\Delta^2) \\
\end{array} \right\}
\]
Properties of GPDs

- Decomposing into helicity conserving and non-conserving part:

\[F^a = \frac{\bar{u}(P_2)\gamma^+ u(P_1)}{P^+} H^a + \frac{\bar{u}(P_2)i\sigma^{+\nu} u(P_1)\Delta_\nu}{2MP^+} E^a \quad a = q, g \]

- Forward limit (\(\Delta \to 0\)): \(\Rightarrow\) GPD \(\to\) PDF

\[F^q(x, 0, 0) = H^q(x, 0, 0) = \theta(x)q(x) - \theta(-x)\bar{q}(-x) \]

- Sum rules:

\[
\int_{-1}^{1} dx \left\{ \begin{array}{c}
H^q(x, \eta, \Delta^2) \\
E^q(x, \eta, \Delta^2)
\end{array} \right\} = \left\{ \begin{array}{c}
F^q_1(\Delta^2) \\
F^q_2(\Delta^2)
\end{array} \right\}
\]

- Possibility of flavour decomposition of proton spin

\[
\frac{1}{2} \int_{-1}^{1} dx x \left[H^q(x, \eta, \Delta^2) + E^q(x, \eta, \Delta^2) \right] = J^q(\Delta^2) \quad [\text{Ji '96}]
\]
Relevance of GPDs for collider physics

- heavy particle production \Rightarrow collision is more central
 \Rightarrow larger probability for multiple parton collisions

- [Frankfurt, Strikman and Weiss ’04]
Relevance of GPDs for collider physics

- heavy particle production \Rightarrow collision is more central \Rightarrow larger probability for multiple parton collisions

- [Frankfurt, Strikman and Weiss ’04]

- No influence on total inclusive cross sections, but event structure is sensitive to transversal parton distributions.

- Relevant for LHC?
Deeply virtual Compton scattering (I)

- Measured in leptoproduction of a real photon:
Deeply virtual Compton scattering (I)

- Measured in leptoproduction of a real photon:

- There is a background process

\[\sigma \propto |T_{DVCS}|^2 + |T_{BH}|^2 + T_{DVCS}^\ast T_{BH} + T_{DVCS}T_{BH}^\ast \]

Using \(T_{BH} \) as a referent "source" enables measurement of the phase of \(T_{DVCS} \) → proton "holography" [Belitsky and Müller '02]
Deeply virtual Compton scattering (I)

- Measured in leptoproduction of a real photon:

\[
\gamma^* P_1 P_2 \rightarrow F_{1,2}(\Delta) \]

- There is a background process but it can be used to our advantage:

\[
\sigma \propto |T_{DVCS}|^2 + |T_{BH}|^2 + T_{DVCS}^* T_{BH} + T_{DVCS} T_{BH}^* \]

- Using \(T_{BH} \) as a referent “source” enables measurement of the phase of \(T_{DVCS} \) → proton “holography” [Belitsky and Müller ’02]
Deeply virtual Compton scattering (II)

\[P = P_1 + P_2 \quad q = (q_1 + q_2)/2 \]
\[\Delta = P_2 - P_1 \]

\[q_1^2 = Q^2 \quad q_2^2 = 0 \]

\[-q^2 \approx Q^2/2 \to \infty \]
\[\xi = \frac{-q^2}{2P \cdot q} \to \text{const} \]

\[A(\xi, \Delta^2, Q^2) = \sum_i \int dx \ C_i(x, \xi, Q^2/\mu^2) \ GPD_i(x, \eta = \xi, \Delta^2, \mu^2) \]
Deeply virtual Compton scattering (II)

\[P = P_1 + P_2 \quad q = (q_1 + q_2)/2 \]
\[\Delta = P_2 - P_1 \]
\[-q_1^2 = Q^2 \quad q_2^2 = 0 \]
\[-q^2 \approx Q^2/2 \to \infty \]
\[\xi = \frac{-q^2}{2P \cdot q} \to \text{const} \]

\[A(\xi, \Delta^2, Q^2) = \sum_i \int dx \ C_i(x, \xi, Q^2/\mu^2) \ GPD_i(x, \eta = \xi, \Delta^2, \mu^2) \]

- Measurements at DESY, JLab, CERN (COMPASS)
- At large energies, flavour singlet GPDs dominate
Deeply virtual Compton scattering (II)

\[\begin{align*}
 &P = P_1 + P_2 & q = (q_1 + q_2)/2 \\
 &\Delta = P_2 - P_1 \\
 &-q_1^2 = Q^2 \\
 &q_2^2 = 0 \\
 &\xi = \frac{-q^2}{2P \cdot q} \to \text{const}
\end{align*} \]

\[A(\xi, \Delta^2, Q^2) = \sum_i \int dx \ C_i(x, \xi, Q^2/\mu^2) \ GPD_i(x, \eta = \xi, \Delta^2, \mu^2) \]

- Measurements at DESY, JLab, CERN (COMPASS)
- At large energies, flavour singlet GPDs dominate
- Gluon contribution to \(C_i \) starts at NLO
- DIS experience at small \(x \) : gluons \(\gg \) sea quarks
Deeply virtual Compton scattering (II)

\[P = P_1 + P_2 \]
\[q = \left(q_1 + q_2\right)/2 \]
\[\Delta = P_2 - P_1 \]
\[-q_1^2 = Q^2 \]
\[q_2^2 = 0 \]
\[-q^2 \approx Q^2/2 \to \infty \]
\[\xi = \frac{-q^2}{2P \cdot q} \to \text{const} \]

\[A(\xi, \Delta^2, Q^2) = \sum_i \int \, d\xi \, C_i(x, \xi, Q^2/\mu^2) \, \text{GPD}_i(x, \eta = \xi, \Delta^2, \mu^2) \]

- Measurements at DESY, JLab, CERN (COMPASS)
- At large energies, flavour singlet GPDs dominate
- Gluon contribution to \(C_i \) starts at NLO
- DIS experience at small \(x \): gluons \(\gg \) sea quarks
- \(\Rightarrow \) need NNLO to stabilize perturbation series and investigate convergence
Deeply virtual Compton scattering (II)

\[P = P_1 + P_2 \]
\[q = (q_1 + q_2)/2 \]
\[\Delta = P_2 - P_1 \]
\[-q_1^2 = Q^2 \]
\[q_2^2 = 0 \]
\[-q^2 \approx Q^2/2 \rightarrow \infty \]
\[\xi = \frac{-q^2}{2P \cdot q} \rightarrow \text{const} \]

\[A(\xi, \Delta^2, Q^2) = \sum_i \int dx \ C_i(x, \xi, Q^2/\mu^2) \ GPD_i(x, \eta = \xi, \Delta^2, \mu^2) \]

- Measurements at DESY, JLab, CERN (COMPASS)
- At large energies, flavour singlet GPDs dominate
- Gluon contribution to \(C_i \) starts at NLO
- DIS experience at small \(x \): gluons \(\gg \) sea quarks
- \(\Rightarrow \) need NNLO to stabilize perturbation series and investigate convergence \(\Rightarrow \) conformal approach
Operator Product Expansion

\[J_{em}(x)J_{em}(0) \rightarrow \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \left(\frac{1}{x^2} \right)^2 x_{n+k+1} C_{n,k} O_{n,k} \]

\[O_{n,k} \equiv (i \partial_+)^k \bar{\psi} \gamma^+ (i \leftrightarrow D_+)^n \psi \]

\[D_+ \equiv \vec{D}_+ - \vec{D}_+ \]
Operator Product Expansion

\[J_{em}(x)J_{em}(0) \rightarrow \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \left(\frac{1}{x^2} \right)^2 x^{n+k+1} C_{n,k} O_{n,k} \]

\[k = 0 : \quad O_{n,0} \equiv \bar{\psi} \gamma^+(i \overset{\leftrightarrow}{D_+})^n \psi \]

\[\overset{\leftrightarrow}{D_+} \equiv D_+ - D_+ \]

- \(C_{n,0} \) and \(\gamma_n \) of \(O_{n,0} \) are well known from DIS up to NNLO.
Operator Product Expansion

\[J_{em}(x)J_{em}(0) \rightarrow \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \left(\frac{1}{x^2} \right)^2 x^{-n+k+1} C_{n,k} O_{n,k} \]

\[O_{n,k} \equiv (i\bar{\partial}_+)^k \bar{\psi} \gamma^+(i \leftrightarrow D_+)^n \psi \quad i\bar{\partial}_+ \xrightarrow{\text{M.E.}} -\Delta_+ \]

\[\bar{D}_+ \equiv \bar{D}_+ - \bar{D}_+ \]

- \(C_{n,0} \) and \(\gamma_n \) of \(O_{n,0} \) are well known from DIS up to NNLO.
- But \(C_{n,k} \) and \(\gamma_{n,k} \) are not so well known.
- \(\gamma_{n,k} \neq 0 \Rightarrow \) operators \(O_{n,k} \) mix under evolution.
Operator Product Expansion

\[J_{em}(x)J_{em}(0) \longrightarrow \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \left(\frac{1}{x^2} \right)^2 x^{-n+k+1} C_{n,k} O_{n,k} \]

\[O_{n,k} \equiv (i\partial_+)^k \bar{\psi} \gamma^+ (i \leftrightarrow D_+)^n \psi \quad \quad i\partial_+ \stackrel{\mathrm{M.E.}}{\longrightarrow} -\Delta_+ \]

• \(C_{n,0} \) and \(\gamma_n \) of \(O_{n,0} \) are well known from DIS up to NNLO.
• But \(C_{n,k} \) and \(\gamma_{n,k} \) are not so well known.
• \(\gamma_{n,k} \neq 0 \ \Rightarrow \) operators \(O_{n,k} \) mix under evolution.
• Choosing operator basis in which \(\gamma_{n,k} \) is diagonal would help. But how to diagonalize unknown matrix?!
Introduction to GPDs

Conformal Approach to DVCS Beyond NLO

Results

Summary

Operator Product Expansion

\[J_{em}(x) J_{em}(0) \longrightarrow \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \left(\frac{1}{x^2} \right)^2 x_{-n+k+1}^n C_{n,k} O_{n,k} \]

\[O_{n,k} \equiv (i\partial_+)^k \overline{\psi} \gamma^+(i \overleftrightarrow{D_+})^n \psi \quad i\partial_+ \xrightarrow{\text{M.E.}} -\Delta_+ \]

- \(C_{n,0} \) and \(\gamma_n \) of \(O_{n,0} \) are well known from DIS up to NNLO.
- But \(C_{n,k} \) and \(\gamma_{n,k} \) are not so well known.
- \(\gamma_{n,k} \neq 0 \Rightarrow \) operators \(O_{n,k} \) mix under evolution.
- Choosing operator basis in which \(\gamma_{n,k} \) is diagonal would help. But how to diagonalize unknown matrix?!
- (At least) to LO answer is: use conformal operators.
Conformal operators

\[\mathbb{O}_{n,n+k} = (i\partial^+)^{n+k} \bar{\psi} \gamma^+ C_n^{3/2} \left(\frac{D^+}{\partial^+} \right) \psi \]

- they have well-defined conformal spin \(j = n + 2 \)
- massless QCD is conformally symmetric at the tree level
 \(\Rightarrow \) conformal spin is conserved
Conformal operators

\[\mathbb{O}_{n,n+k} = (i\partial^+)^{n+k} \bar{\psi} \gamma^+ C_n^{3/2} \left(\frac{D^+}{\partial^+} \right) \psi \]

- they have well-defined conformal spin \(j = n + 2 \)
- massless QCD is conformally symmetric at the tree level
 \(\Rightarrow \) conformal spin is conserved
- mixing of operators with different \(n \) is forbidden by conformal symmetry, while mixing of those with different \(n + k \) is forbidden by Lorentz symmetry
Conformal operators

\[\mathcal{O}_{n,n+k} = (i\partial^+)^{n+k} \bar{\psi} \gamma^+ C_n^{3/2} \left(\frac{D^+}{\partial^+} \right) \psi \]

- they have well-defined conformal spin \(j = n + 2 \)
- massless QCD is conformally symmetric at the tree level \(\Rightarrow \) conformal spin is conserved
- mixing of operators with different \(n \) is forbidden by conformal symmetry, while mixing of those with different \(n + k \) is forbidden by Lorentz symmetry \(\Rightarrow \) \(\mathcal{O}_{n,n+k} \) don’t mix at LO
Conformal operators

\[\mathcal{O}_{n, n+k} = (i\partial^+)^{n+k} \bar{\psi} \gamma^+ C_n^{3/2} \left(\frac{D^+}{\partial^+} \right) \psi \]

- they have well-defined conformal spin \(j = n + 2 \)
- massless QCD is conformally symmetric at the tree level \(\Rightarrow \) conformal spin is conserved
- mixing of operators with different \(n \) is forbidden by conformal symmetry, while mixing of those with different \(n + k \) is forbidden by Lorentz symmetry \(\Rightarrow \) \(\mathcal{O}_{n, n+k} \) don’t mix at LO
- conformal symmetry broken at the loop level (renormalization introduces mass scale, dimensional transmutation) \(\Rightarrow \)
 - running of the coupling constant \(\partial g / \partial \ln \mu \equiv \beta \neq 0 \)
 - anomalous dimensions of operators \(\gamma_{jk} = \delta_{jk} \gamma_j + \gamma_{jk}^{\text{ND}} \)
Conformal operators

\[\bigodot_{n,n+k} = (i\partial^+)^{n+k} \bar{\psi} \gamma^+ C_n^{3/2} \left(\frac{D^+}{\partial^+} \right) \psi \]

- they have well-defined conformal spin \(j = n + 2 \)
- massless QCD is conformally symmetric at the tree level \(\Rightarrow \) conformal spin is conserved
- mixing of operators with different \(n \) is forbidden by conformal symmetry, while mixing of those with different \(n+k \) is forbidden by Lorentz symmetry \(\Rightarrow \bigodot_{n,n+k} \) don’t mix at LO
- conformal symmetry broken at the loop level (renormalization introduces mass scale, dimensional transmutation) \(\Rightarrow \)
 - running of the coupling constant \(\partial g / \partial \ln \mu \equiv \beta \neq 0 \)
 - anomalous dimensions of operators \(\gamma_{jk} = \delta_{jk} \gamma_j + \gamma_{jk}^{ND} \)
\(\Rightarrow \bigodot_{n,n+k} \) start to mix at NLO
Conformal Towers

\[\text{spin} = n + k + 1 \]

\[\text{conformal spin } j = n + 2 \]
Conformal Towers

\[\text{spin} = n + k + 1 \]

\[\text{conformal spin } j = n + 2 \]

\[\gamma_n \text{ and } C_n \text{ known from DIS} \]
Conformal Towers

\[\text{spin } = n + k + 1 \]

\[\text{conformal spin } j = n + 2 \]

\[\gamma_n \text{ and } C_n \text{ known from DIS} \]

These mix at NLO

\[\text{Diagonalize in artificial } \beta = 0 \text{ theory by changing scheme} \]

\[O_{CS} = B - 1 O_{MS} \]

\[\gamma_{CS,jk} = \delta_{jk} \gamma_k \]
Conformal Towers

\[\text{Diagonalize in artificial } \beta = 0 \text{ theory by changing scheme} \]

\[\mathcal{O}^{CS} = B^{-1} \mathcal{O}^{\overline{MS}} \]

so that

\[\gamma_{jk}^{CS} = \delta_{jk} \gamma_k \]
Conformal Towers

• Diagonalize in artificial $\beta = 0$ theory by changing scheme

$$\mathcal{O}^{\text{CS}} = B^{-1} \mathcal{O}^{\overline{\text{MS}}}$$

so that

$$\gamma_{jk}^{\text{CS}} = \delta_{jk} \gamma_k$$
Conformal Towers

- Diagonalize in artificial $\beta = 0$ theory by changing scheme

\[\Omega_{\text{CS}} = B^{-1} \Omega_{\text{MS}} \]

so that

\[\gamma_{jk}^{\text{CS}} = \delta_{jk} \gamma_k \]

- \(C_{n,k} = (-1)^k \frac{(n+2)_k}{k!(2n+4)_k} C_{n,0} \) ⇒ summing complete tower
In full QCD $\beta \neq 0$ and NLO diagonalization is spoiled:

$$\gamma_{jk}^{CS} = \delta_{jk}\gamma_k + \frac{\beta}{g}\Delta_{jk}$$
\(\beta \neq 0 \) (I)

- In full QCD \(\beta \neq 0 \) and NLO diagonalization is spoiled:

\[
\gamma^{\text{CS}}_{jk} = \delta_{jk} \gamma_k + \frac{\beta}{g} \Delta_{jk}
\]

- However, there is also ambiguity in \(\overline{\text{MS}} \to \text{CS} \) rotation matrix:

\[
B = B^{(\beta=0)} + \frac{\beta}{g} \delta B
\]
\(\beta \neq 0 \quad (1) \)

- In full QCD \(\beta \neq 0 \) and NLO diagonalization is spoiled:

 \[
 \gamma_{jk}^{\text{CS}} = \delta_{jk} \gamma_k + \frac{\beta}{g} \Delta_{jk}
 \]

- However, there is also ambiguity in \(\overline{\text{MS}} \rightarrow \text{CS} \) rotation matrix:

 \[
 B = B^{(\beta=0)} + \frac{\beta}{g} \delta B
 \]

- By judicious choice of \(\delta B \) one can “push” mixing to NNLO (\(\overline{\text{CS}} \) scheme, [Melić et al.]).
\[\beta \neq 0 \ (I) \]

- In full QCD $\beta \neq 0$ and NLO diagonalization is spoiled:
 \[\gamma_{jk}^{\text{CS}} = \delta_{jk} \gamma_k + \frac{\beta}{g} \Delta_{jk} \]

- However, there is also ambiguity in $\overline{\text{MS}} \rightarrow \text{CS}$ rotation matrix:
 \[B = B^{(\beta=0)} + \frac{\beta}{g} \delta B \]

- By judicious choice of δB one can “push” mixing to NNLO ($\overline{\text{CS}}$ scheme, [Melić et al.]).

- But how to calculate rotation matrix B? This is problem equivalent to calculation of $\gamma_{j,k}$.
\[\beta \neq 0 \text{ (II)} \]

- The \(B^{(\beta=0)} \) is constrained by conformal Ward identities . . .

\[
B_{jk}^{(\beta=0)\text{NLO}} = \delta_{jk} - \frac{\alpha_s}{2\pi} \theta(j > k) \frac{\gamma_{jk}^{\text{SCT, LO}}}{a_{jk}} \quad (a_{jk} \text{ — known matrix})
\]

SCT \equiv \text{special conformal transformation}
\[\beta \neq 0 \ (II) \]

- The \(B^{(\beta=0)} \) is constrained by conformal Ward identities . . .

\[
B^{(\beta=0)\text{NLO}}_{jk} = \delta_{jk} - \frac{\alpha_s}{2\pi} \theta(j > k) \frac{\gamma_{jk}^{\text{SCT, LO}}}{a_{jk}} \]

(SCT ≡ special conformal transformation)

- . . . and, as a consequence

\[
\overline{\text{MS}}_{\gamma_{jk}}^{\text{ND},(1)} = \left[\gamma_{j}^{\text{SCT, (0)}} - \beta_0 \frac{b}{g}, \gamma_{k}^{(0)} \right]_{jk} \]

\(a_{jk} \) — known matrix

[Müller '93]
\[\beta \neq 0 \ (II) \]

- The \(B^{(\beta=0)} \) is constrained by conformal Ward identities ...

\[
B^{(\beta=0)\text{NLO}}_{jk} = \delta_{jk} - \frac{\alpha_s}{2\pi} \theta(j > k) \frac{\gamma^{\text{SCT}, \text{LO}}_{jk}}{a_{jk}}
\]

\(\gamma^{\text{SCT}} \equiv \text{special conformal transformation} \)

- ... and, as a consequence

\[
\overline{\text{MS}}^{\text{ND}, (1)}_{\gamma_{jk}} = \left[\gamma^{\text{SCT}, (0)} - \beta_0 \frac{b}{g}, \gamma^{(0)} \right]_{jk} \frac{a_{jk}}{a_{jk}}
\]

- Final result:

\(n \)-loop DIS (diagonal) result + \((n - 1)\)-loop SCT anomaly = \(n \)-loop non-diagonal prediction
NNLO DVCS (I)

- DVCS amplitude in terms of conformal moments:

\[S^H(\xi, \Delta^2, Q^2) = 2 \sum_{j=0}^{\infty} \xi^{-j-1} C_j(Q^2/\mu^2, \alpha_s(\mu)) \mathcal{H}_j(\xi = \eta, \Delta^2, \mu^2) \]

\[H^q_j(\eta, \ldots) = \frac{\Gamma(3/2)\Gamma(j+1)}{2^{j+1}\Gamma(j+3/2)} \int_{-1}^{1} dx \eta^{j-1} C_j^{3/2}(x/\eta) H^q(x, \eta, \ldots) \]
NNLO DVCS (I)

- DVCS amplitude in terms of conformal moments:

\[S_H(\xi, \Delta^2, Q^2) = 2 \sum_{j=0}^{\infty} \xi^{-j-1} C_j(Q^2/\mu^2, \alpha_s(\mu)) H_j(\xi = \eta, \Delta^2, \mu^2) \]

\[H_j^q(\eta, \ldots) = \frac{\Gamma(3/2)\Gamma(j+1)}{2^{j+1}\Gamma(j+3/2)} \int_{-1}^{1} dx \, \eta^{j-1} C^{3/2}_j(x/\eta)H^q(x, \eta, \ldots) \]

- ... analogous to Mellin moments in DIS: \(x^n \rightarrow C^{3/2}_n(x) \)
NNLO DVCS (I)

• DVCS amplitude in terms of conformal moments:

\[S\mathcal{H}(\xi, \Delta^2, Q^2) = 2 \sum_{j=0}^{\infty} \xi^{-j-1} C_j(Q^2/\mu^2, \alpha_s(\mu)) H_j(\xi = \eta, \Delta^2, \mu^2) \]

\[H_j^q(\eta, \ldots) = \frac{\Gamma(3/2)\Gamma(j+1)}{2^{j+1}\Gamma(j+3/2)} \int_{-1}^{1} \mathrm{d}x \, \eta^{j-1} C_j^{3/2}(x/\eta) H^q(x, \eta, \ldots) \]

• ...analogous to Mellin moments in DIS: \(x^n \rightarrow C_n^{3/2}(x) \)
• Here, Wilson coefficients \(C_j \) read ...
NNLO DVCS (II)

\[C_j(Q^2/\mu^2, Q^2/\mu^*^2, \alpha_s(\mu)) = \sum_{k=j}^{\infty} C_k(1, \alpha_s(Q)) \mathcal{P} \exp \left\{ \int_{Q}^{\mu} \frac{d\mu'}{\mu'} \left[\gamma_j(\alpha_s(\mu')) \delta_{kj} + \frac{\beta}{g} \Delta_{kj}(\alpha_s(\mu'), \mu'/\mu^*) \right] \right\} \]

with

\[C_j(1, \alpha_s(Q)) = \frac{2^{1+j+\gamma_j(\alpha_s)/2} \Gamma \left(\frac{5}{2} + j + \gamma_j(\alpha_s)/2 \right)}{\Gamma(3/2) \Gamma(3 + j + \gamma_j(\alpha_s)/2)} c_j^{\overline{\text{MS}},\text{DIS}}(\alpha_s) \]

- \[\frac{2^{\cdots} \Gamma(\cdots)}{\Gamma(3/2) \Gamma(\cdots)} \] is result of resumming the conformal tower \(j \)
NNLO DVCS (II)

\[C_j(Q^2/\mu^2, Q^2/\mu'^2, \alpha_s(\mu)) = \]
\[\sum_{k=j}^{\infty} C_k(1, \alpha_s(Q)) \mathcal{P} \exp \left\{ \int_{Q}^{\mu} \frac{d\mu'}{\mu'} \right\} \]
\[\left[\gamma_j(\alpha_s(\mu')) \delta_{kj} + \frac{\beta}{g} \Delta_{kj}(\alpha_s(\mu'), \mu'/\mu^*) \right] \}

with

\[C_j(1, \alpha_s(Q)) = \frac{2^{1+j+\gamma_j(\alpha_s)/2} \Gamma \left(\frac{5}{2} + j + \gamma_j(\alpha_s)/2 \right)}{\Gamma(3/2) \Gamma(3+j+\gamma_j(\alpha_s)/2)} \overline{c}^{\overline{\text{MS}}, \overline{\text{DIS}}} (\alpha_s) \]

- \(\frac{2^{\gamma_j(\alpha_s)/2} \Gamma(\gamma_j(\alpha_s)/2)}{\Gamma(3/2) \Gamma(\gamma_j(\alpha_s)/2)} \) is result of resumming the conformal tower \(j \)
- \(\overline{c}^{\overline{\text{MS}}, \overline{\text{DIS}}} (\alpha_s) \) from [Zijlstra, v. Neerven ‘92,’94, v. Neerven and Vogt ’00]
NNLO DVCS (II)

\[C_j(Q^2/\mu^2, Q^2/\mu^*^2, \alpha_s(\mu)) = \sum_{k=j}^{\infty} C_k(1, \alpha_s(Q)) \mathcal{P} \exp \left\{ \int_{Q}^{\mu} \frac{d\mu'}{\mu'} \left[\gamma_j(\alpha_s(\mu'))\delta_{kj} + \frac{\beta}{g} \Delta_{kj}(\alpha_s(\mu'), \mu'/\mu^*) \right] \right\} \]

with

\[C_j(1, \alpha_s(Q)) = \frac{2^{1+j+\gamma_j(\alpha_s)/2} \Gamma \left(\frac{5}{2} + j + \gamma_j(\alpha_s)/2 \right)}{\Gamma(3/2) \Gamma(3 + j + \gamma_j(\alpha_s)/2)} c_j^{\overrightarrow{\text{MS,DIS}}}(\alpha_s) \]

- \(\frac{2^\cdot \cdots \Gamma(\ldots)}{\Gamma(3/2) \Gamma(\ldots)} \) is result of resumming the conformal tower \(j \)

- \(c_j^{\overrightarrow{\text{MS,DIS}}}(\alpha_s) \) from [Zijlstra, v. Neerven '92,'94, v. Neerven and Vogt '00]

- Finally, evolution of conformal moments is given by ...
NNLO DVCS (III)

\[\mu \frac{d}{d\mu} H_j(\cdots, \mu^2) = -\gamma_j(\alpha_s(\mu)) H_j(\cdots, \mu^2) \]

\[- \frac{\beta(\alpha_s(\mu))}{g(\mu)} \sum_{k=0}^{j-2} \eta^{j-k} \Delta_{jk}(\alpha_s(\mu), \frac{\mu}{\mu^*}) H_k(\cdots, \mu^2) \]

- \(\Delta_{jk} \) — unknown correction, starts at NNLO, and can be suppressed by choice of initial condition — neglected
- \(\gamma_j \) from [Vogt, Moch and Vermaseren '04]
NNLO DVCS (III)

\[\mu \frac{d}{d\mu} H_j(\cdots, \mu^2) = -\gamma_j(\alpha_s(\mu)) H_j(\cdots, \mu^2) \]

\[- \frac{\beta(\alpha_s(\mu))}{g(\mu)} \sum_{k=0}^{j-2} \eta^{j-k} \Delta_{jk} \left(\alpha_s(\mu), \frac{\mu}{\mu^*} \right) H_k(\cdots, \mu^2) \]

- \(\Delta_{jk} \) — unknown correction, starts at NNLO, and can be suppressed by choice of initial condition — neglected
- \(\gamma_j \) from [Vogt, Moch and Vermaseren '04]

- We have used these expressions to
 1. investigate size of NNLO corrections to non-singlet [Müller '05] and singlet [K.K., Müller, Passek-Kumerički and Schäfer '06] Compton form factors
 2. perform fits to DVCS (and DIS) data and extract information about GPDs [K.K., Müller and Passek-Kumerički '07]
Results on NNLO DVCS

- We use simple Regge-inspired ansatz for GPDs . . .

\[H_j(\xi, \Delta^2, Q_0^2) = \begin{pmatrix} N'_\Sigma F_\Sigma(\Delta^2) B\left(1 + j - \alpha_\Sigma(\Delta^2), 8\right) \\ N'_G F_G(\Delta^2) B\left(1 + j - \alpha_G(\Delta^2), 6\right) \end{pmatrix} \]

\[\alpha_a(\Delta^2) = \alpha_a(0) + 0.25\Delta^2 \quad F_a(\Delta^2) = \left(1 - \frac{\Delta^2}{m_a^2}\right)^{-3} \]
Results on NNLO DVCS

• We use simple Regge-inspired ansatz for GPDs . . .

\[H_j(\xi, \Delta^2, Q_0^2) = \left(\begin{array}{c} \frac{N'_\Sigma}{N'_G} F_\Sigma(\Delta^2) B\left(1 + j - \alpha_\Sigma(\Delta^2), 8\right) \\ \frac{N'_G}{N'_G} F_G(\Delta^2) B\left(1 + j - \alpha_G(\Delta^2), 6\right) \end{array} \right) \]

\[\alpha_a(\Delta^2) = \alpha_a(0) + 0.25\Delta^2 \quad F_a(\Delta^2) = \left(1 - \frac{\Delta^2}{m_a^2}\right)^{-3} \]

• . . . corresponding in forward case (\(\Delta = 0\)) to PDFs of form

\[\Sigma(x) = N'_\Sigma x^{-\alpha_\Sigma(0)} (1 - x)^7 ; \quad G(x) = N'_G x^{-\alpha_G(0)} (1 - x)^5 \]
Results on NNLO DVCS

- We use simple Regge-inspired ansatz for GPDs...

\[\mathcal{H}_j(\xi, \Delta^2, Q_0^2) = \left(\begin{array}{c} N'_\Sigma F_\Sigma(\Delta^2) B\left(1 + j - \alpha(\Delta^2), 8\right) \\ N'_G F_G(\Delta^2) B\left(1 + j - \alpha_G(\Delta^2), 6\right) \end{array} \right) \]

\[\alpha_a(\Delta^2) = \alpha_a(0) + 0.25\Delta^2 \quad \quad F_a(\Delta^2) = \left(1 - \frac{\Delta^2}{m_a^2}\right)^{-3} \]

- ...corresponding in forward case (\(\Delta = 0\)) to PDFs of form

\[\Sigma(x) = N'_\Sigma x^{-\alpha(0)} (1 - x)^7; \quad G(x) = N'_G x^{-\alpha_G(0)} (1 - x)^5 \]

- for small \(\xi\) (small \(x\)) valence quarks less important
Results on NNLO DVCS

- We use simple Regge-inspired ansatz for GPDs...

\[H_j(\xi, \Delta^2, Q_0^2) = \left(\frac{N'_\Sigma}{N'_G} F_\Sigma(\Delta^2) B\left(1 + j - \alpha_\Sigma(\Delta^2), 8\right)}{F_G(\Delta^2) B\left(1 + j - \alpha_G(\Delta^2), 6\right)} \right) \]

\[\alpha_a(\Delta^2) = \alpha_a(0) + 0.25 \Delta^2 \quad F_a(\Delta^2) = \left(1 - \frac{\Delta^2}{m_a^2}\right)^{-3} \]

- ...corresponding in forward case (\(\Delta = 0\)) to PDFs of form

\[\Sigma(x) = N'_\Sigma x^{-\alpha_\Sigma(0)} (1 - x)^7 \quad G(x) = N'_G x^{-\alpha_G(0)} (1 - x)^5 \]

- for small \(\xi\) (small \(x\)) valence quarks less important

- We calculate \(K\)-factors

\[K^P_{\text{abs}} = \left| \frac{S\mathcal{H}^{NP\text{LO}}}{S\mathcal{H}^{NP-1\text{LO}}} \right| \quad K^P_{\text{arg}} = \frac{\text{arg}(S\mathcal{H}^{NP\text{LO}})}{\text{arg}(S\mathcal{H}^{NP-1\text{LO}})} \]
Size of Radiative Corrections - Modulus

- NLO: up to 40–70% (\(\overline{\text{MS}}\)); up to 30–55% (\(\overline{\text{CS}}\)) ["hard"]
- NNLO: 8–14% ("hard"); 1-4% ("soft") [\(\overline{\text{CS}}\)]
Scale Dependence

Same K-factors, but with $\mathcal{H} \rightarrow d\mathcal{H}/d\ln Q^2$

- **NLO**: even 100%
- **NNLO**: somewhat smaller, but acceptable only for larger ξ
Fast fitting routine

- $N_\Sigma = 0.143$, $\alpha_\Sigma(0) = 1.10$, $m_\Sigma = 1.26$, $N_G = 0.549$, $\alpha_G(0) = 0.915$, $m_G = 1.66$, $Q_0^2 = 2.5$ GeV2

- $\chi^2/(\text{number of degrees of freedom}) = 54/64$
Example of final fit result

- $d\sigma(\gamma^* p \rightarrow \gamma p)/dt$ [nb/GeV2]
- $\sigma(\gamma^* p \rightarrow \gamma p)$ [nb]
- F_2

Graphs:
- Q^2 vs. $-t$ [GeV2]
- W vs. Q^2 [GeV2]
- W vs. t [GeV2]
- F_2 vs. Q^2 [GeV2]
Parton probability density

- Fourier transform of GPD for $\eta = 0$ can be interpreted as probability density depending on x and transversal distance b

 \[H(x, \vec{b}) = \int \frac{d^2 \vec{\Delta}}{(2\pi)^2} e^{-i\vec{b} \cdot \vec{\Delta}} H(x, \eta = 0, \Delta^2 = -\vec{\Delta}^2) , \]

- Average transversal distance:

 \[\langle \vec{b}^2 \rangle(x, Q^2) = \frac{\int d\vec{b} \, b^2 H(x, \vec{b}, Q^2)}{\int d\vec{b} \, H(x, \vec{b}, Q^2)} = 4B(x, Q^2) , \]

\[(at \quad Q^2 = 4 \text{ GeV}^2) \]

\[\langle \vec{b}^2 \rangle_{\text{gluon}}(\xi = 10^{-3}) = 0.30^{+0.07}_{-0.04} \text{ fm}^2 \]
Three-dimensional image of a proton

Quarks:

Gluons:

$H(x, b)$

$H(x, b) \times 10^{-5}$

$H(x, b) \times 10^{-3}$

$H(x, b) \times 10^{-1}$

$H(x, b)$ normalized
Summary

- Generalized parton distributions offer unified description of the proton structure. They are experimentally accessible via DVCS.
Summary

- Generalized parton distributions offer unified description of the proton structure. They are experimentally accessible via DVCS.
- Conformal symmetry enables elegant approach to radiative corrections to DVCS amplitude.
Summary

- Generalized parton distributions offer unified description of the proton structure. They are experimentally accessible via DVCS.

- Conformal symmetry enables elegant approach to radiative corrections to DVCS amplitude.

- NLO corrections can be sizable, and are strongly dependent on the gluonic input.
Summary

- Generalized parton distributions offer unified description of the proton structure. They are experimentally accessible via DVCS.
- Conformal symmetry enables elegant approach to radiative corrections to DVCS amplitude.
- NLO corrections can be sizable, and are strongly dependent on the gluonic input.
- NNLO corrections are small to moderate, supporting perturbative framework of DVCS.
Summary

- Generalized parton distributions offer unified description of the proton structure. They are experimentally accessible via DVCS.
- Conformal symmetry enables elegant approach to radiative corrections to DVCS amplitude.
- NLO corrections can be sizable, and are strongly dependent on the gluonic input.
- NNLO corrections are small to moderate, supporting perturbative framework of DVCS.
- Scale dependence is not so conclusive: large NNLO effects for $\xi \lesssim 10^{-3}$ signaling breakdown of naive perturbation series.
Summary

• Generalized parton distributions offer unified description of the proton structure. They are experimentally accessible via DVCS.

• Conformal symmetry enables elegant approach to radiative corrections to DVCS amplitude.

• NLO corrections can be sizable, and are strongly dependent on the gluonic input.

• NNLO corrections are small to moderate, supporting perturbative framework of DVCS.

• Scale dependence is not so conclusive: large NNLO effects for $\xi \lesssim 10^{-3}$ signaling breakdown of naive perturbation series.

• Fits to available DVCS and DIS data also work well and give access to transversal distribution of partons.
Summary

• Generalized parton distributions offer unified description of the proton structure. They are experimentally accessible via DVCS.

• Conformal symmetry enables elegant approach to radiative corrections to DVCS amplitude.

• NLO corrections can be sizable, and are strongly dependent on the gluonic input.

• NNLO corrections are small to moderate, supporting perturbative framework of DVCS.

• Scale dependence is not so conclusive: large NNLO effects for $\xi \lesssim 10^{-3}$ signaling breakdown of naive perturbation series.

• Fits to available DVCS and DIS data also work well and give access to transversal distribution of partons.

The End
Relation to distribution amplitudes

- In QCD GPDs are defined as [Müller '92, et al. '94, Ji, Radyushkin '96]

\[
F^q(x, \eta, \Delta^2) = \int \frac{dz^-}{2\pi} e^{ix P^+ z^-} \langle P_2 | \bar{q}(-z) \gamma^+ q(z) | P_1 \rangle \bigg|_{z^+=0, z_\perp=0}
\]

\[
F^g(x, \eta, \Delta^2) = \frac{4}{P^+} \int \frac{dz^-}{2\pi} e^{ix P^+ z^-} \langle P_2 | G_a^+(-z) G_{a\mu}^+(z) | P_1 \rangle \bigg|_{...}
\]

\[
P = P_1 + P_2 ; \quad \Delta = P_2 - P_1 ; \quad \eta = -\frac{\Delta^+}{P^+} \text{ (skewedness)}
\]
Conformal algebra

- Conformal group restricted to light-cone \(\sim O(2,1) \)

\[
L_+ = -iP_+ \\
[L_0, L_\mp] = \mp L_\mp \\
L_\pm = \frac{i}{2} K_\pm \\
[L_-, L_+] = -2L_0 \\
L_0 = \frac{i}{2} (D + M_{-+}) \\
L^2 = L_0^2 - L_0 + L_- L_+ \\
(L^2, \mathcal{O}_{n,n+k}) = j(j-1) \mathcal{O}_{n,k}
\]

\((D — \text{dilatations, } K_\pm — \text{special conformal transformation (SCT)})\)
Appendix

Size of Radiative Corrections - phase

\[\Delta^2 = 0 \]

- Thick lines: "hard" gluon
 \[N_G = 0.4 \]
 \[\alpha_G(0) = \alpha_S(0) + 0.1 \]
- Thin lines: "soft" gluon
 \[N_G = 0.3 \]
 \[\alpha_G(0) = \alpha_S(0) \]

- NLO: up to 24% (\(\overline{\text{MS}}\)); up to 13% (\(\overline{\text{CS}}\))
- NNLO and "soft" NLO — less than 5%

["hard"]
Appendix

Scale Dependence - Modulus

- **NLO**: even 100%
- **NNLO**: smaller (largest for “hard” gluons)

Thick lines:
“hard” gluon
\[N_G = 0.4 \]
\[\alpha_G(0) = \alpha_S(0) + 0.1 \]

Thin lines:
“soft” gluon
\[N_G = 0.3 \]
\[\alpha_G(0) = \alpha_S(0) \]