Generalized parton distributions, and accessing them via deeply virtual Compton scattering beyond NLO

Krešimir Kumerički

Department of Physics University of Zagreb

Collaboration with:

Dieter Müller (Regensburg), Kornelija Passek-Kumerički (Regensburg, Zagreb), Andreas Schäfer (Regensburg)

DA06: Workshop on Light-Cone Distribution Amplitudes

IPPP, Durham, 28-30 September 2006

Outline

Introduction to Generalized Parton Distributions (GPDs)

Proton Structure
Definition and Properties of GPDs

Conformal Approach to DVCS Beyond NLO

Deeply Virtual Compton Scattering (DVCS) Conformal Approach NNLO DVCS

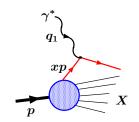
Results

Choice of GPD Ansatz Size of Radiative Corrections Scale Dependence Fitting GPDs to Data

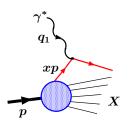
Summary

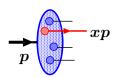
Summary

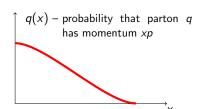
• Deeply inelastic scattering, $-q_1^2 o \infty, \; x_{BJ} \equiv \frac{-q_1^2}{2p \cdot q_1} o {\rm const}$



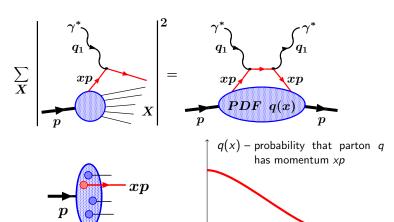
• Deeply inelastic scattering, $-q_1^2 o \infty, \; x_{BJ} \equiv \frac{-q_1^2}{2p \cdot q_1} o {\rm const}$



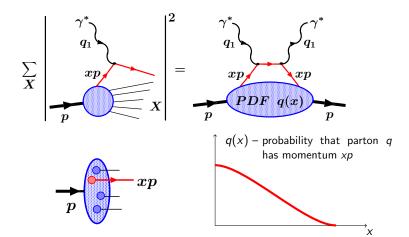




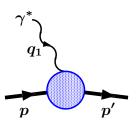
• Deeply inelastic scattering, $-q_1^2 o \infty, \; x_{BJ} \equiv \frac{-q_1^2}{2 p \cdot q_1} o {\rm const}$



• Deeply inelastic scattering, $-q_1^2 o \infty, \; x_{BJ} \equiv \frac{-q_1^2}{2 p \cdot q_1} o {\rm const}$

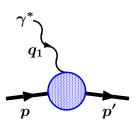


• no information on spatial distribution of partons



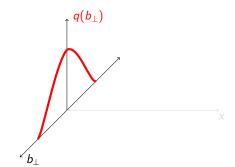
• Dirac and Pauli form factors:

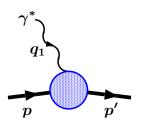
$$F_{1,2}(t=q_1^2)$$



• Dirac and Pauli form factors:

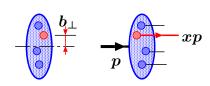
$$egin{split} oldsymbol{q(b_\perp)} \sim \int \mathrm{d}b_\perp \, e^{iq_1\cdot b_\perp} F_1(t=q_1^2) \end{split}$$

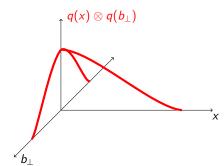


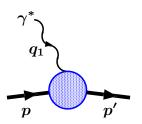


Dirac and Pauli form factors:

$$q(b_\perp) \sim \int \mathrm{d} b_\perp \, \mathrm{e}^{iq_1 \cdot b_\perp} F_1(t=q_1^2)$$

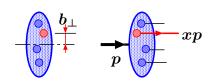


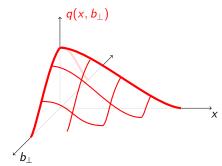


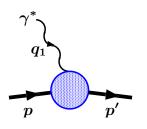


Dirac and Pauli form factors:

$$q(b_\perp) \sim \int \mathrm{d} b_\perp \, e^{iq_1 \cdot b_\perp} F_1(t=q_1^2)$$

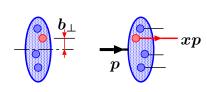


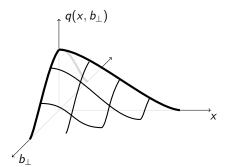




Dirac and Pauli form factors:

$$q(b_\perp) \sim \int \mathrm{d} b_\perp \, \mathrm{e}^{iq_1 \cdot b_\perp} F_1(t=q_1^2)$$



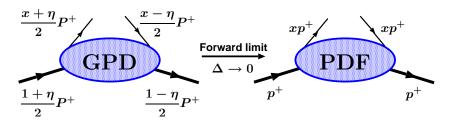


• GPD: $H^{q}(x, 0, t = \Delta^{2}) = \int db_{\perp} e^{i\Delta \cdot b_{\perp}} q(x, b_{\perp})$

Definition of GPDs

In QCD GPDs are defined as [Müller '92, et al. '94, Ji, Radyushkin '96]

$$\begin{split} F^{q}(x,\eta,\Delta^{2}) &= \int \frac{dz^{-}}{2\pi} e^{ixP^{+}z^{-}} \langle P_{2} | \bar{q}(-z)\gamma^{+}q(z) | P_{1} \rangle \Big|_{z^{+}=0, z_{\perp}=0} \\ F^{g}(x,\eta,\Delta^{2}) &= \frac{4}{P^{+}} \int \frac{dz^{-}}{2\pi} e^{ixP^{+}z^{-}} \langle P_{2} | G_{a}^{+\mu}(-z) G_{a\mu}^{-+}(z) | P_{1} \rangle \Big|_{...} \end{split}$$



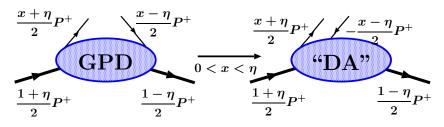
$$P=P_1+P_2$$
 ; $\Delta=P_2-P_1$; $\eta=-rac{\Delta^+}{P^+}$ (skewedness)

Definition of GPDs

• In QCD GPDs are defined as [Müller '92, et al. '94, Ji, Radyushkin '96]

$$F^{q}(x,\eta,\Delta^{2}) = \int \frac{dz^{-}}{2\pi} e^{ixP^{+}z^{-}} \langle P_{2} | \overline{q}(-z)\gamma^{+}q(z) | P_{1} \rangle \Big|_{z^{+}=0, z_{\perp}=0}$$

$$F^{g}(x,\eta,\Delta^{2}) = \frac{4}{P^{+}} \int \frac{dz^{-}}{2\pi} e^{ixP^{+}z^{-}} \langle P_{2} | G_{a}^{+\mu}(-z) G_{a\mu}^{+}(z) | P_{1} \rangle \Big|_{\dots}$$



$$P=P_1+P_2$$
 ; $\Delta=P_2-P_1$; $\eta=-rac{\Delta^+}{P^+}$ (skewedness)

• Decomposing into helicity conserving and non-conserving part:

$$F^{a}=\frac{\bar{\textit{u}}(\textit{P}_{2})\gamma^{+}\textit{u}(\textit{P}_{1})}{\textit{P}^{+}}\textit{H}^{a}+\frac{\bar{\textit{u}}(\textit{P}_{2})\textit{i}\sigma^{+\nu}\textit{u}(\textit{P}_{1})\Delta_{\nu}}{2\textit{MP}^{+}}\textit{E}^{a} \qquad \textit{a}=\textit{q},\textit{g}$$

Properties of GPDs

Decomposing into helicity conserving and non-conserving part:

$$F^a = \frac{\bar{u}(P_2)\gamma^+u(P_1)}{P^+}H^a + \frac{\bar{u}(P_2)i\sigma^{+\nu}u(P_1)\Delta_{\nu}}{2MP^+}E^a \qquad a=q,g$$

• Forward limit $(\Delta \to 0)$: \Rightarrow GPD \to PDF

$$F^{q}(x,0,0) = H^{q}(x,0,0) = \theta(x)q(x) - \theta(-x)\bar{q}(-x)$$

Properties of GPDs

Decomposing into helicity conserving and non-conserving part:

$$F^a = \frac{\bar{\textit{u}}(\textit{P}_2)\gamma^+ \textit{u}(\textit{P}_1)}{\textit{P}^+} H^a + \frac{\bar{\textit{u}}(\textit{P}_2)\textit{i}\sigma^{+\nu} \textit{u}(\textit{P}_1)\Delta_{\nu}}{2\textit{MP}^+} E^a \qquad a = \textit{q}, \textit{g}$$

• Forward limit $(\Delta \rightarrow 0)$: \Rightarrow GPD \rightarrow PDF

$$F^{q}(x,0,0) = H^{q}(x,0,0) = \theta(x)q(x) - \theta(-x)\bar{q}(-x)$$

Sum rules:

$$\int_{-1}^{1} dx \left\{ \begin{array}{l} H^{q}(x, \eta, \Delta^{2}) \\ E^{q}(x, \eta, \Delta^{2}) \end{array} \right. = \left\{ \begin{array}{l} F_{1}^{q}(\Delta^{2}) \\ F_{2}^{q}(\Delta^{2}) \end{array} \right.$$

Properties of GPDs

Decomposing into helicity conserving and non-conserving part:

$$F^a = \frac{\bar{\textit{u}}(\textit{P}_2)\gamma^+ \textit{u}(\textit{P}_1)}{\textit{P}^+} H^a + \frac{\bar{\textit{u}}(\textit{P}_2)\textit{i}\sigma^{+\nu} \textit{u}(\textit{P}_1)\Delta_{\nu}}{2\textit{MP}^+} E^a \qquad a = \textit{q}, \textit{g}$$

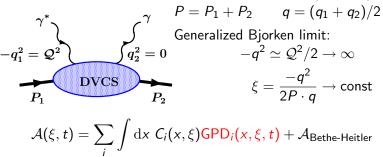
• Forward limit $(\Delta \rightarrow 0)$: \Rightarrow GPD \rightarrow PDF

$$F^{q}(x,0,0) = H^{q}(x,0,0) = \theta(x)q(x) - \theta(-x)\bar{q}(-x)$$

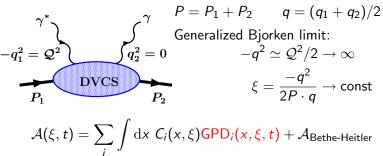
Sum rules:

$$\int_{-1}^1 dx \ \left\{ \begin{array}{l} H^q(x,\eta,\Delta^2) \\ E^q(x,\eta,\Delta^2) \end{array} \right. = \left\{ \begin{array}{l} F_1^q(\Delta^2) \\ F_2^q(\Delta^2) \end{array} \right.$$

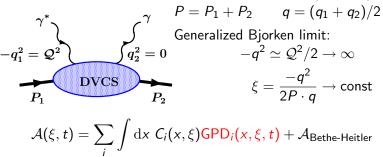
$$\frac{1}{2} \int_{-1}^{1} dx \, x \Big[H^{q}(x, \eta, \Delta^{2}) + E^{q}(x, \eta, \Delta^{2}) \Big] = J^{q}(\Delta^{2}) \qquad \text{[Ji '97]}$$



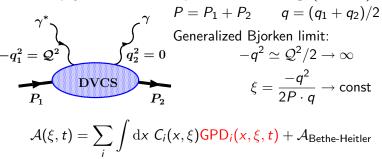
• Measurements at DESY, JLab, CERN (COMPASS)



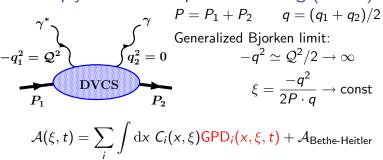
- Measurements at DESY, JLab, CERN (COMPASS)
- At large energies, flavour singlet GPDs dominate



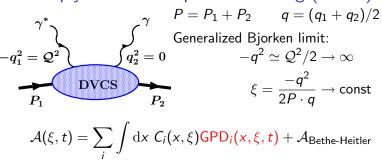
- Measurements at DESY, JLab, CERN (COMPASS)
- At large energies, flavour singlet GPDs dominate
- gluon contribution to $C_i(x,\xi)$ starts at NLO



- Measurements at DESY, JLab, CERN (COMPASS)
- At large energies, flavour singlet GPDs dominate
- gluon contribution to $C_i(x,\xi)$ starts at NLO
- DIS experience at small x: gluons \gg sea quarks



- Measurements at DESY, JLab, CERN (COMPASS)
- At large energies, flavour singlet GPDs dominate
- gluon contribution to $C_i(x,\xi)$ starts at NLO
- DIS experience at small x: gluons \gg sea quarks
- ⇒ need NNLO to stabilize perturbation series and investigate convergence



- Measurements at DESY, JLab, CERN (COMPASS)
- At large energies, flavour singlet GPDs dominate
- gluon contribution to $C_i(x,\xi)$ starts at NLO
- DIS experience at small x: gluons \gg sea quarks
- ⇒ need NNLO to stabilize perturbation series and investigate convergence ⇒ conformal approach

$$J_{\text{em}}(x)J_{\text{em}}(0) \longrightarrow \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \left(\frac{1}{x^{2}}\right)^{2} x_{-}^{n+k+1} C_{n,k} O_{n,k}$$
$$O_{n,k} \equiv (i\partial_{+})^{k} \bar{\psi} \gamma^{+} (i \stackrel{\leftrightarrow}{D}_{+})^{n} \psi$$
$$\stackrel{\rightarrow}{D}_{+} \equiv \stackrel{\rightarrow}{D}_{+} - \stackrel{\rightarrow}{D}_{+}$$

$$J_{\text{em}}(x)J_{\text{em}}(0) \longrightarrow \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \left(\frac{1}{x^{2}}\right)^{2} x_{-}^{n+k+1} C_{n,k} O_{n,k}$$

$$k = 0: O_{n,0} \equiv \bar{\psi} \gamma^{+} (i \stackrel{\leftrightarrow}{D}_{+})^{n} \psi$$

$$\stackrel{\leftrightarrow}{D}_{+} \equiv \stackrel{\leftarrow}{D}_{+} - \stackrel{\leftarrow}{D}_{+}$$

• $C_{n,0}$ and γ_n of $O_{n,0}$ well known from DIS

$$J_{\text{em}}(x)J_{\text{em}}(0) \longrightarrow \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \left(\frac{1}{x^{2}}\right)^{2} x_{-}^{n+k+1} C_{n,k} O_{n,k}$$

$$k = 0: O_{n,0} \equiv \bar{\psi} \gamma^{+} (i \stackrel{\leftrightarrow}{D}_{+})^{n} \psi$$

$$\stackrel{\rightarrow}{D}_{+} \equiv \stackrel{\rightarrow}{D}_{+} - \stackrel{\leftarrow}{D}_{+}$$

- $C_{n,0}$ and γ_n of $O_{n,0}$ well known from DIS
- matrix elements of $O_{n,0}$ equal to Mellin moments of GPDs

$$\langle P_2 | O_{n,0} | P_1 \rangle = (P^+)^{n+1} \int_{-1}^1 dx \, x^n F^q(x, \eta, \Delta^2)$$

$$J_{\text{em}}(x)J_{\text{em}}(0) \longrightarrow \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \left(\frac{1}{x^{2}}\right)^{2} x_{-}^{n+k+1} C_{n,k} O_{n,k}$$
$$O_{n,k} \equiv (i\partial_{+})^{k} \bar{\psi} \gamma^{+} (i \stackrel{\leftrightarrow}{D}_{+})^{n} \psi \qquad i\partial_{+} \stackrel{\text{M.E.}}{\longrightarrow} -\Delta_{+}$$
$$\stackrel{\leftrightarrow}{D}_{+} \equiv \stackrel{\rightarrow}{D}_{+} - \stackrel{\leftarrow}{D}_{+}$$

- $C_{n,0}$ and γ_n of $O_{n,0}$ well known from DIS
- matrix elements of $O_{n,0}$ equal to Mellin moments of GPDs

$$\langle P_2|O_{n,0}|P_1\rangle = (P^+)^{n+1} \int_{-1}^1 dx \, x^n F^q(x,\eta,\Delta^2)$$

• $O_{n,k}$ (for fixed n+k) mix under evolution ...

$$J_{\text{em}}(x)J_{\text{em}}(0) \longrightarrow \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \left(\frac{1}{x^{2}}\right)^{2} x_{-}^{n+k+1} C_{n,k} O_{n,k}$$
$$O_{n,k} \equiv (i\partial_{+})^{k} \bar{\psi} \gamma^{+} (i \stackrel{\leftrightarrow}{D}_{+})^{n} \psi \qquad i\partial_{+} \stackrel{\text{M.E.}}{\longrightarrow} -\Delta_{+}$$
$$\stackrel{\leftrightarrow}{D}_{+} \equiv \stackrel{\rightarrow}{D}_{+} - \stackrel{\leftarrow}{D}_{+}$$

- $C_{n,0}$ and γ_n of $O_{n,0}$ well known from DIS
- matrix elements of $O_{n,0}$ equal to Mellin moments of GPDs

$$\langle P_2|O_{n,0}|P_1\rangle = (P^+)^{n+1}\int_{-1}^1 dx \, x^n F^q(x,\eta,\Delta^2)$$

- $O_{n,k}$ (for fixed n + k) mix under evolution . . .
- ... so instead of $O_{n,k}$ choose their linear combinations which diagonalize LO evolution operator

$$\mathbb{O}_{n,n+k} = (i\partial^+)^{n+k} \, \bar{\psi} \, \gamma^+ \, C_n^{3/2} \left(\frac{D^+}{\partial^+}\right) \psi$$

• they have well-defined conformal spin j = n + 2 (see talk by D. Müller)

$$\mathbb{O}_{n,n+k} = (i\partial^+)^{n+k} \, \bar{\psi} \, \gamma^+ \, C_n^{3/2} \left(\frac{\stackrel{\leftrightarrow}{D^+}}{\partial^+} \right) \psi$$

- they have well-defined conformal spin i = n + 2(see talk by D. Müller)
- massless QCD is conformally symmetric at the tree level ⇒ conformal spin is conserved
- mixing of operators with different *n* is forbidden by conformal symmetry, while mixing of those with different n + k is forbidden by Lorentz symmetry

$$\mathbb{O}_{n,n+k} = (i\partial^+)^{n+k} \, \bar{\psi} \, \gamma^+ \, C_n^{3/2} \left(\frac{\stackrel{\leftrightarrow}{D^+}}{\partial^+} \right) \psi$$

- they have well-defined conformal spin i = n + 2(see talk by D. Müller)
- massless QCD is conformally symmetric at the tree level ⇒ conformal spin is conserved
- mixing of operators with different *n* is forbidden by conformal symmetry, while mixing of those with different n + k is forbidden by Lorentz symmetry $\Rightarrow \mathbb{O}_{n,n+k}$ don't mix at LO

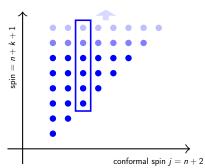
$$\mathbb{O}_{n,n+k} = (i\partial^+)^{n+k} \, \bar{\psi} \, \gamma^+ \, C_n^{3/2} \left(\frac{\stackrel{\leftrightarrow}{D^+}}{\partial^+} \right) \psi$$

- they have well-defined conformal spin j=n+2 (see talk by D. Müller)
- massless QCD is conformally symmetric at the tree level
 ⇒ conformal spin is conserved
- mixing of operators with different n is forbidden by conformal symmetry, while mixing of those with different n+k is forbidden by Lorentz symmetry $\Rightarrow \mathbb{O}_{n,n+k}$ don't mix at LO
- conformal symmetry broken at the loop level (renormalization introduces mass scale, dimensional transmutation) ⇒
 - running of the coupling constant
 - anomalous dimensions of operators $\gamma_{jk} = \delta_{jk} \gamma_j + \gamma_{jk}^{ND}$

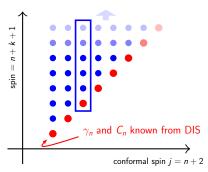
$$\mathbb{O}_{n,n+k} = (i\partial^+)^{n+k} \, \bar{\psi} \, \gamma^+ \, C_n^{3/2} \left(\frac{\stackrel{\leftrightarrow}{D^+}}{\partial^+} \right) \psi$$

- they have well-defined conformal spin j=n+2 (see talk by D. Müller)
- massless QCD is conformally symmetric at the tree level
 ⇒ conformal spin is conserved
- mixing of operators with different n is forbidden by conformal symmetry, while mixing of those with different n+k is forbidden by Lorentz symmetry $\Rightarrow \mathbb{O}_{n,n+k}$ don't mix at LO
- conformal symmetry broken at the loop level (renormalization introduces mass scale, dimensional transmutation) ⇒
 - running of the coupling constant
 - anomalous dimensions of operators $\gamma_{jk} = \delta_{jk} \gamma_j + \gamma_{jk}^{ND}$
 - $\Rightarrow \mathbb{O}_{n,n+k}$ start to mix at NLO

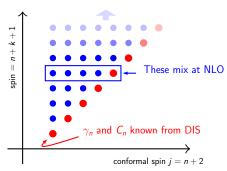
Conformal Towers



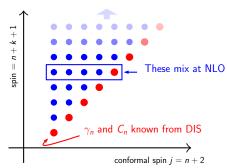
Conformal Towers



Conformal Towers



Conformal Towers

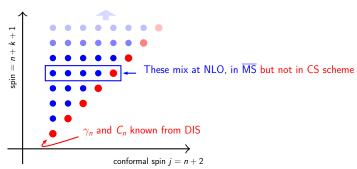


Diagonalize in artificial $\beta = 0$ theory by changing scheme

$$\mathbb{O}^{\mathrm{CS}} = B^{-1} \mathbb{O}^{\overline{\mathrm{MS}}}$$
 so that

$$\gamma_{jk}^{\mathsf{CS}} = \delta_{jk} \gamma_k$$

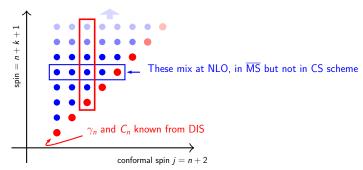
Conformal Towers



• Diagonalize in artificial $\beta = 0$ theory by changing scheme

$$\mathbb{O}^{\mathrm{CS}} = B^{-1} \mathbb{O}^{\overline{\mathrm{MS}}}$$
 so that $\gamma_{ik}^{\mathsf{CS}} = \delta_{ik} \gamma_k$

Conformal Towers



• Diagonalize in artificial $\beta = 0$ theory by changing scheme

$$\mathbb{O}^{\mathrm{CS}} = B^{-1} \mathbb{O}^{\overline{\mathrm{MS}}}$$
 so that $\gamma_{jk}^{\mathsf{CS}} = \delta_{jk} \gamma_k$

• $C_{n,k} = (-1)^k \frac{(n+2)_k}{k!(2n+4)_k} C_{n,0}$ \Rightarrow summing complete tower

$$\beta \neq 0$$

$$\gamma_{jk}^{\mathsf{CS}} = \delta_{jk} \gamma_k + \frac{\beta}{\mathsf{g}} \Delta_{jk}$$

$$\beta \neq 0$$

$$\gamma_{jk}^{CS} = \delta_{jk}\gamma_k + \frac{\beta}{g}\Delta_{jk}$$

• However, there is also ambiguity in $\overline{\text{MS}} \to \text{CS}$ rotation matrix:

$$B = B^{(\beta=0)} + \frac{\beta}{g} \delta B$$

$$\beta \neq 0$$

$$\gamma_{jk}^{CS} = \delta_{jk}\gamma_k + \frac{\beta}{g}\Delta_{jk}$$

• However, there is also ambiguity in $\overline{MS} \to CS$ rotation matrix:

$$B = B^{(\beta=0)} + \frac{\beta}{g} \delta B$$

• By judicious choice of δB one can "push" mixing to NNLO ($\overline{\text{CS}}$ scheme, [Melic et al. '03])

$$\gamma_{jk}^{\mathsf{CS}} = \delta_{jk} \gamma_k + \frac{\beta}{\mathsf{g}} \Delta_{jk}$$

• However, there is also ambiguity in $\overline{\text{MS}} \to \text{CS}$ rotation matrix:

$$B = B^{(\beta=0)} + \frac{\beta}{g} \delta B$$

- By judicious choice of δB one can "push" mixing to NNLO $\overline{(\text{CS})}$ scheme, [Melic et al. '03])
- The $B^{(\beta=0)}$ is constrained by conformal Ward identities

$$B_{jk}^{(\beta=0)\text{NLO}} = \delta_{jk} - \frac{\alpha_s}{2\pi} \theta(j > k) \frac{\gamma_{jk}^{c(0)}}{a_{jk}} \qquad \text{[Müller '94]}$$

$$\beta \neq 0$$

$$\gamma_{jk}^{\mathsf{CS}} = \delta_{jk} \gamma_k + \frac{\beta}{\mathsf{g}} \Delta_{jk}$$

• However, there is also ambiguity in $\overline{MS} \to CS$ rotation matrix:

$$B = B^{(\beta=0)} + \frac{\beta}{g} \delta B$$

- By judicious choice of δB one can "push" mixing to NNLO $(\overline{CS} \text{ scheme}, [Melic et al. '03])$
- The $B^{(\beta=0)}$ is constrained by conformal Ward identities

$$B_{jk}^{(\beta=0)\mathrm{NLO}} = \delta_{jk} - \frac{\alpha_s}{2\pi} \theta(j>k) \frac{\gamma_{jk}^{c(0)}}{a_{jk}} \qquad \substack{(a_{jk} - \text{known matrix}) \\ [\text{Müller '94}]}$$

• Knowledge of $B^{
m NLO}$ enables reconstruction of $\overline{
m MS}$ $\gamma^{(1)}_{
m ND}$

DVCS amplitude in terms of conformal moments:

$${}^{S}\mathcal{H}(\xi, \Delta^{2}, \mathcal{Q}^{2}) = 2\sum_{j=0}^{\infty} \xi^{-j-1} \mathbf{C}_{j}(\mathcal{Q}^{2}/\mu^{2}, \alpha_{s}(\mu)) \mathbf{H}_{j}(\xi = \eta, \Delta^{2}, \mu^{2})$$
$$H_{j}^{q}(\eta, \ldots) = \frac{\Gamma(3/2)\Gamma(j+1)}{2^{j+1}\Gamma(j+3/2)} \int_{-1}^{1} dx \, \eta^{j-1} C_{j}^{3/2}(x/\eta) H^{q}(x, \eta, \ldots)$$

DVCS amplitude in terms of conformal moments:

$${}^{S}\mathcal{H}(\xi, \Delta^{2}, \mathcal{Q}^{2}) = 2\sum_{j=0}^{\infty} \xi^{-j-1} \mathbf{C}_{j}(\mathcal{Q}^{2}/\mu^{2}, \alpha_{s}(\mu)) \mathbf{H}_{j}(\xi = \eta, \Delta^{2}, \mu^{2})$$

$$H_{j}^{q}(\eta, \ldots) = \frac{\Gamma(3/2)\Gamma(j+1)}{2^{j+1}\Gamma(j+3/2)} \int_{-1}^{1} dx \, \eta^{j-1} C_{j}^{3/2}(x/\eta) H^{q}(x, \eta, \ldots)$$

• ... analogous to Mellin moments in DIS: $x^n \to C_n^{3/2}(x)$

DVCS amplitude in terms of conformal moments:

$${}^{S}\mathcal{H}(\xi, \Delta^{2}, \mathcal{Q}^{2}) = 2\sum_{j=0}^{\infty} \xi^{-j-1} \mathbf{C}_{j}(\mathcal{Q}^{2}/\mu^{2}, \alpha_{s}(\mu)) \mathbf{H}_{j}(\xi = \eta, \Delta^{2}, \mu^{2})$$

$$H_{j}^{q}(\eta, \ldots) = \frac{\Gamma(3/2)\Gamma(j+1)}{2^{j+1}\Gamma(j+3/2)} \int_{-1}^{1} dx \, \eta^{j-1} C_{j}^{3/2}(x/\eta) H^{q}(x, \eta, \ldots)$$

- ... analogous to Mellin moments in DIS: $x^n \to C_n^{3/2}(x)$
- Series is summed using Mellin-Barnes integral [Müller, Schäfer '06]

$${}^{\mathrm{S}}\mathcal{H} = \frac{1}{2i} \int_{c-i\infty}^{c+i\infty} dj \, \xi^{-j-1} \left[i + \tan \left(\frac{\pi j}{2} \right) \right] \mathbf{C}_j \mathbf{H}_j$$

DVCS amplitude in terms of conformal moments:

$${}^{S}\mathcal{H}(\xi, \Delta^{2}, \mathcal{Q}^{2}) = 2\sum_{j=0}^{\infty} \xi^{-j-1} \mathbf{C}_{j}(\mathcal{Q}^{2}/\mu^{2}, \alpha_{s}(\mu)) \mathbf{H}_{j}(\xi = \eta, \Delta^{2}, \mu^{2})$$
$$H_{j}^{q}(\eta, \ldots) = \frac{\Gamma(3/2)\Gamma(j+1)}{2^{j+1}\Gamma(j+3/2)} \int_{-1}^{1} dx \, \eta^{j-1} C_{j}^{3/2}(x/\eta) H^{q}(x, \eta, \ldots)$$

- ... analogous to Mellin moments in DIS: $x^n \to C_n^{3/2}(x)$
- Series is summed using Mellin-Barnes integral [Müller, Schäfer '06]

$${}^{\mathrm{S}}\mathcal{H} = rac{1}{2i} \int_{c-i\infty}^{c+i\infty} \! dj \, \xi^{-j-1} \left[i + an\left(rac{\pi j}{2}
ight)
ight] \mathbf{C}_j \mathbf{H}_j$$

• Here, Wilson coefficients C_i read . . .

NNLO DVCS II

$$C_{j}(Q^{2}/\mu^{2}, Q^{2}/\mu^{*2}, \alpha_{s}(\mu)) = \sum_{k=j}^{\infty} C_{k}(1, \alpha_{s}(Q)) \mathcal{P} \exp \left\{ \int_{Q}^{\mu} \frac{d\mu'}{\mu'} \left[\gamma_{j}(\alpha_{s}(\mu')) \delta_{kj} + \frac{\beta}{g} \Delta_{kj}(\alpha_{s}(\mu'), \mu'/\mu^{*}) \right] \right\}$$

with

$$C_{j}(1,\alpha_{s}(Q)) = \frac{2^{1+j+\gamma_{j}(\alpha_{s})/2}\Gamma\left(\frac{5}{2}+j+\gamma_{j}(\alpha_{s})/2\right)}{\Gamma(3/2)\Gamma\left(3+j+\gamma_{j}(\alpha_{s})/2\right)} c_{j}^{\overline{\mathsf{MS}},\mathsf{DIS}}(\alpha_{s})$$

• $\frac{2^{\cdots}\Gamma(\cdots)}{\Gamma(3/2)\Gamma(\cdots)}$ is result of resumming the conformal tower j

NNLO DVCS II

$$C_{j}(Q^{2}/\mu^{2}, Q^{2}/\mu^{*2}, \alpha_{s}(\mu)) = \sum_{k=j}^{\infty} C_{k}(1, \alpha_{s}(Q)) \mathcal{P} \exp \left\{ \int_{Q}^{\mu} \frac{d\mu'}{\mu'} \left[\gamma_{j}(\alpha_{s}(\mu')) \delta_{kj} + \frac{\beta}{g} \Delta_{kj}(\alpha_{s}(\mu'), \mu'/\mu^{*}) \right] \right\}$$

with

$$C_{j}(1,\alpha_{s}(Q)) = \frac{2^{1+j+\gamma_{j}(\alpha_{s})/2}\Gamma\left(\frac{5}{2}+j+\gamma_{j}(\alpha_{s})/2\right)}{\Gamma(3/2)\Gamma\left(3+j+\gamma_{j}(\alpha_{s})/2\right)} c_{j}^{\overline{\mathsf{MS}},\mathsf{DIS}}(\alpha_{s})$$

- $\frac{2^{\cdots}\Gamma(\cdots)}{\Gamma(3/2)\Gamma(\cdots)}$ is result of resumming the conformal tower j
- $c_j^{ extsf{MS,DIS}}(lpha_s)$ from [Zijlstra, v. Neerven '92, '94, v. Neerven and Vogt '00]

NNLO DVCS II

$$C_{j}(Q^{2}/\mu^{2}, Q^{2}/\mu^{*2}, \alpha_{s}(\mu)) = \sum_{k=j}^{\infty} C_{k}(1, \alpha_{s}(Q)) \mathcal{P} \exp \left\{ \int_{Q}^{\mu} \frac{d\mu'}{\mu'} \left[\gamma_{j}(\alpha_{s}(\mu')) \delta_{kj} + \frac{\beta}{g} \Delta_{kj}(\alpha_{s}(\mu'), \mu'/\mu^{*}) \right] \right\}$$

with

$$C_{j}(1,\alpha_{s}(Q)) = \frac{2^{1+j+\gamma_{j}(\alpha_{s})/2}\Gamma\left(\frac{5}{2}+j+\gamma_{j}(\alpha_{s})/2\right)}{\Gamma(3/2)\Gamma\left(3+j+\gamma_{j}(\alpha_{s})/2\right)} c_{j}^{\overline{\mathsf{MS}},\mathsf{DIS}}(\alpha_{s})$$

- $\frac{2^{\cdots}\Gamma(\cdots)}{\Gamma(3/2)\Gamma(\cdots)}$ is result of resumming the conformal tower j
- $c_i^{\text{MS,DIS}}(\alpha_s)$ from [Zijlstra, v. Neerven '92, '94, v. Neerven and Vogt '00]
- Finally, evolution of conformal moments is given by ...

NNLO DVCS III

$$\mu \frac{d}{d\mu} H_j(\dots, \mu^2) = -\gamma_j(\alpha_s(\mu)) H_j(\dots, \mu^2)$$
$$- \frac{\beta(\alpha_s(\mu))}{g(\mu)} \sum_{k=0}^{j-2} \eta^{j-k} \Delta_{jk} \left(\alpha_s(\mu), \frac{\mu}{\mu^*}\right) H_k(\dots, \mu^2)$$

- Δ_{jk} unknown correction, starts at NNLO, and can be suppressed by choice initial condition — neglected
- γ_i from [Vogt, Moch and Vermaseren '04]

NNLO DVCS III

$$\mu \frac{d}{d\mu} H_j(\dots, \mu^2) = -\gamma_j(\alpha_s(\mu)) H_j(\dots, \mu^2)$$
$$- \frac{\beta(\alpha_s(\mu))}{g(\mu)} \sum_{k=0}^{j-2} \eta^{j-k} \Delta_{jk} \left(\alpha_s(\mu), \frac{\mu}{\mu^*}\right) H_k(\dots, \mu^2)$$

- Δ_{jk} unknown correction, starts at NNLO, and can be suppressed by choice initial condition — neglected
- γ_i from [Vogt, Moch and Vermaseren '04]
- We have used these expressions to
 - investigate size of NNLO corrections to non-singlet [Müller '06] and singlet [K.K., Müller, Passek-Kumerički and Schäfer '06] Compton form factors
 - 2. perform fits to DVCS (and DIS) data and extract information about GPDs [Müller et al., in preparation]

• We use simple Regge-inspired ansatz for GPDs . . .

$$\mathbf{H}_{j}(\xi,\Delta^{2},\mathcal{Q}_{0}^{2}) = \left(\begin{array}{c} \mathit{N}_{\Sigma}^{\prime} \mathit{F}_{\Sigma}(\Delta^{2}) \, \mathsf{B} \left(1+j-\alpha_{\Sigma}(\Delta^{2}),8\right) \\ \mathit{N}_{G}^{\prime} \mathit{F}_{G}(\Delta^{2}) \, \mathsf{B} \left(1+j-\alpha_{G}(\Delta^{2}),6\right) \end{array}\right)$$

$$\alpha_a(\Delta^2) = \alpha_a(0) + 0.25\Delta^2$$
 $F_a(\Delta^2) = \left(1 - \frac{\Delta^2}{m_a^2}\right)^{-3}$

We use simple Regge-inspired ansatz for GPDs . . .

$$\mathbf{H}_{j}(\xi, \Delta^{2}, \mathcal{Q}_{0}^{2}) = \begin{pmatrix} N'_{\Sigma} F_{\Sigma}(\Delta^{2}) B(1 + j - \alpha_{\Sigma}(\Delta^{2}), 8) \\ N'_{G} F_{G}(\Delta^{2}) B(1 + j - \alpha_{G}(\Delta^{2}), 6) \end{pmatrix}$$

$$\alpha_a(\Delta^2) = \alpha_a(0) + 0.25\Delta^2$$
 $F_a(\Delta^2) = \left(1 - \frac{\Delta^2}{m_a^2}\right)^{-3}$

• ... corresponding in forward case ($\Delta = 0$) to PDFs of form

$$\Sigma(x) = N'_{\Sigma} x^{-\alpha_{\Sigma}(0)} (1-x)^7$$
; $G(x) = N'_{G} x^{-\alpha_{G}(0)} (1-x)^5$

• We use simple Regge-inspired ansatz for GPDs . . .

$$\mathbf{H}_{j}(\xi, \Delta^{2}, \mathcal{Q}_{0}^{2}) = \begin{pmatrix} N_{\Sigma}' F_{\Sigma}(\Delta^{2}) B(1 + j - \alpha_{\Sigma}(\Delta^{2}), 8) \\ N_{G}' F_{G}(\Delta^{2}) B(1 + j - \alpha_{G}(\Delta^{2}), 6) \end{pmatrix}$$

$$\alpha_a(\Delta^2) = \alpha_a(0) + 0.25\Delta^2$$
 $F_a(\Delta^2) = \left(1 - \frac{\Delta^2}{m_a^2}\right)^{-3}$

ullet . . . corresponding in forward case $(\Delta=0)$ to PDFs of form

$$\Sigma(x) = N'_{\Sigma} x^{-\alpha_{\Sigma}(0)} (1-x)^7; \qquad G(x) = N'_{G} x^{-\alpha_{G}(0)} (1-x)^5$$

• small ξ (small x) \Rightarrow neglect valence quarks contribution

• We use simple Regge-inspired ansatz for GPDs ...

$$\mathbf{H}_{j}(\xi, \Delta^{2}, \mathcal{Q}_{0}^{2}) = \left(\begin{array}{c} \textit{N}_{\Sigma}^{\prime} \textit{F}_{\Sigma}(\Delta^{2}) \, \mathsf{B} \left(1 + j - \alpha_{\Sigma}(\Delta^{2}), 8 \right) \\ \textit{N}_{G}^{\prime} \textit{F}_{G}(\Delta^{2}) \, \mathsf{B} \left(1 + j - \alpha_{G}(\Delta^{2}), 6 \right) \end{array} \right)$$

$$\alpha_a(\Delta^2) = \alpha_a(0) + 0.25\Delta^2$$
 $F_a(\Delta^2) = \left(1 - \frac{\Delta^2}{m_a^2}\right)^{-3}$

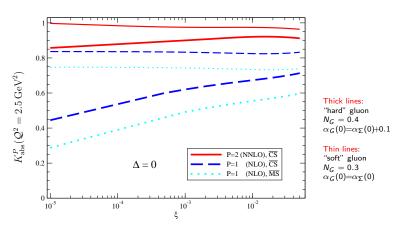
ullet . . . corresponding in forward case $(\Delta=0)$ to PDFs of form

$$\Sigma(x) = N'_{\Sigma} x^{-\alpha_{\Sigma}(0)} (1-x)^7; \qquad G(x) = N'_{G} x^{-\alpha_{G}(0)} (1-x)^5$$

- small ξ (small x) \Rightarrow neglect valence quarks contribution
- We calculate K-factors

$$\mathcal{K}^{P}_{abs} = \frac{\left| {}^{S}\mathcal{H}^{N^{P}LO} \right|}{\left| {}^{S}\mathcal{H}^{N^{P-1}LO} \right|} \, ; \qquad \mathcal{K}^{P}_{arg} = \frac{arg \left({}^{S}\mathcal{H}^{N^{P}LO} \right)}{arg \left({}^{S}\mathcal{H}^{N^{P-1}LO} \right)} \, .$$

Size of Radiative Corrections - Modulus

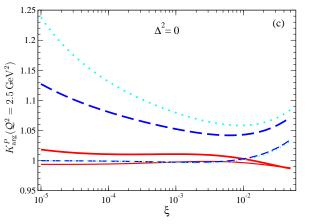


- NLO: up to 40–70% ($\overline{\mathrm{MS}}$); up to 30–55% ($\overline{\mathrm{CS}}$)
- ["hard"]

• NNLO: 8-14% ("hard"); 1-4% ("soft")

 $[\overline{\mathrm{CS}}]$

Size of Radiative Corrections - phase



Thick lines: "hard" gluon $N_G = 0.4$ $\alpha_G(0) = \alpha_{\Sigma}(0) + 0.1$

Thin lines:

"soft" gluon $N_G = 0.3$ $\alpha_G(0) = \alpha_{\Sigma}(0)$

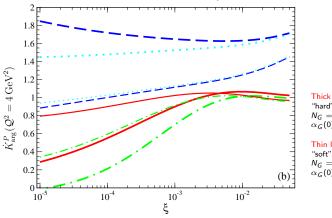
• NLO: up to 24% $(\overline{\rm MS})$; up to 13% $(\overline{\rm CS})$

["hard"]

NNLO and "soft" NLO — less than 5%

Scale Dependence

Same K-factors, but with $\mathcal{H} \to \mathrm{d}\mathcal{H}/\mathrm{d}\ln\mathcal{Q}^2$

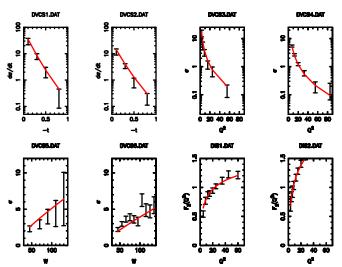


Thick lines: "hard" gluon $N_G = 0.4$ $\alpha_G(0)=\alpha_{\Sigma}(0)+0.1$

Thin lines: "soft" gluon $N_G = 0.3$ $\alpha_{\mathcal{S}}(0) = \alpha_{\mathcal{S}}(0)$

- NLO: even 100%
- NNLO: somewhat smaller, but acceptable only for larger ξ

GPD Fits



- $N_{\Sigma}=0.143,\ \alpha_{\Sigma}(0)=1.10,\ m_{\Sigma}=1.26,\ N_{G}=0.549,\ \alpha_{G}(0)=0.915,\ m_{G}=1.66,\ \mathcal{Q}_{0}^{2}=2.5\ \text{GeV}^{2}$
- χ^2 /(number of degrees of freedom) = 53.8/64

Summary

 Generalized parton distributions offer unified description of the proton structure. They are experimentally accessible via DVCS.

- Generalized parton distributions offer unified description of the proton structure. They are experimentally accessible via DVCS.
- Conformal symmetry enables elegant approach to radiative corrections to DVCS amplitude.

Generalized parton distributions offer unified description of the proton structure. They are experimentally accessible via DVCS.

- Conformal symmetry enables elegant approach to radiative corrections to DVCS amplitude.
- NLO corrections can be sizable, and are strongly dependent on the gluonic input.

Summary

- Generalized parton distributions offer unified description of the proton structure. They are experimentally accessible via DVCS.
- Conformal symmetry enables elegant approach to radiative corrections to DVCS amplitude.
- NLO corrections can be sizable, and are strongly dependent on the gluonic input.
- NNLO corrections are small to moderate, supporting perturbative framework of DVCS.

Summary

- Generalized parton distributions offer unified description of the proton structure. They are experimentally accessible via DVCS.
- Conformal symmetry enables elegant approach to radiative corrections to DVCS amplitude.
- NLO corrections can be sizable, and are strongly dependent on the gluonic input.
- NNLO corrections are small to moderate, supporting perturbative framework of DVCS.
- scale dependence not so conclusive, large NNLO effects for $\xi \lesssim 10^{-3}$.

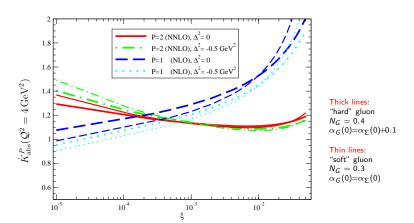
Summar

- Generalized parton distributions offer unified description of the proton structure. They are experimentally accessible via DVCS.
- Conformal symmetry enables elegant approach to radiative corrections to DVCS amplitude.
- NLO corrections can be sizable, and are strongly dependent on the gluonic input.
- NNLO corrections are small to moderate, supporting perturbative framework of DVCS.
- scale dependence not so conclusive, large NNLO effects for $\xi \lesssim 10^{-3}$.

Conformal algebra

• Conformal group restricted to light-cone $\sim O(2,1)$ $L_+ = -iP_+$ $[L_0, L_\mp] = \mp L_\mp$ conf.spin j: $L_- = \frac{i}{2}K_- \qquad [L_-, L_+] = -2L_0 \qquad [L^2, \mathbb{O}_{n,n+k}] = \\ Casimir: \qquad \qquad j(j-1)\mathbb{O}_{n,k}$ $L_0 = \frac{i}{2}(D+M_{-+}) \qquad L^2 = L_0^2 - L_0 + L_-L_+$ (D- dilatations, K_- — special conformal transformation (SCT))

Scale Dependence - Modulus



- NLO: even 100%
- NNLO: smaller (largest for "hard" gluons)