
Getting acqainted with ε and δ
Coffee & Chalk Press

Ivica Smolić cbnd

Intro

After the long historical struggle with the notions of the infinites-
imal, the continuity and the limit, modern definitions and notation
appeared in the works of the 19th century mathematicians, most no-
tably Bernard Bolzano and Karl Weierstraß. In this brief lecture we
shall look under the hood of the modern notions of continuous func-
tions and limits.

Continuity of functions

Belowwe give two examples, on the left is the graph of a function f ,
continuous at the point a, while on the right is the graph of a function
g, which has a discontinuity (jump) at the point a.
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So, how to precisely define the qualitative difference between the be-
haviour of functions f and g at the point a? In other words, how to
precisely define when some function is continuous at a given point in
its domain?

Prosaic descriptions

There are two vague ways to explain the continuity of a function f
at the point a, either

“If we move a little bit away from a in the domain, then the values of
the map f move a little bit away from f(a) in the codomain.”

or

“If we take some point in the codomain close to f(a), then there is
some point close to a which f maps to this shifted value.”

None of this is true for the function g: If we move to the left from a it
immediately “jumps” to some larger values and there are values just
above the g(a) to which none of the points close to a are mapped by g.
In order to make all this more concrete we have to find an appropriate
mathematical conceptualization of the phrases “little bit away” and
“close to” that we’ve used above.

Neighbourhoods

Suppose that we are given some point of the real line and we want
to describe which points are “close to it”. One way to do this is to
choose a fixed scale, say a real number s > 0, and then proclaim that
all points y ∈ R for which |y − x| < s holds are “close” to the given
x ∈ R. All definitions built from such a notion would suffer from a
question that would immediately follow after any of them: Does this
definition depend on the choice of s and, if yes, how exactly? We can
avoid this inconvenience if we just give up on the fixed scale s, and go
with the arbitrary neighbourhoods of a point.

Let us first recall what are the open subsets of the real numbers. We
say that a set O ⊆ R is open if for any point x ∈ O there is δ > 0,
such that ⟨x− δ, x+ δ⟩ ⊆ O. There are numerous examples, such
as the empty set ∅, the whole R, all intervals ⟨a, b⟩ with a < b, all
unions ⟨a, b⟩ ∪ ⟨c, d⟩ with a < b < c < d, etc. On the other hand the

sets [a, b] and [a, b⟩ are not open since in both cases there is no δ > 0,
such that the interval ⟨a− δ, a+ δ⟩ is a subset of a given set.

A neighbourhood of a point x ∈ R is any open subset ofR, con-
taining that point. For example,O = ⟨−1, 2⟩, U = ⟨0, 3⟩∪ ⟨5, 6⟩ and
V = R are three examples of neighbourhoods of the point x = 1.
Note that a neighbourhood of a point doesn’t have to be a connected
open set! One particularly simple and useful type of a neighbourhood
is an open interval centered at the given point: For any x ∈ R and
ε > 0 we introduce

B(x, ε) := ⟨x− ε, x+ ε⟩ ,

with “B” standing for “ball” (here, an open 1-dimensional ball).

Building the definition

Now we can take a step closer to the precise mathematical defini-
tion, by utilizing the neighbourhoods in translation of the two vague
descriptions from above.

⋆ Attempt #1.

“Each neighbourhood of the point a is mapped by f to a
neighbourhood of f(a).”

This definition, however, would exclude some functions which we
would like to call “continuous”. For example, the function f(x) = x2 :
R → R certainly looks continuous at a = 0, but there is no neigh-
bourhood of this point which f maps to a neighbourhood of f(0) = 0.

⋆ Attempt #2.

“For each neighbourhood V of f(a), there is a neighbourhood O of
a which is mapped by f to a subset of V .”

Although seemingly more complicated than the previous one (it
sounds somehow “backwards”), this definitionwill turn out to bemore
useful and closer to our intuitive notion of “continuity”.

We canmake it a little bit more economical by replacing completely
arbitrary neighbourhoods with the simple ones, V = B(f(a), ε) and
O = B(a, δ). Do we lose any generality with such a choice? No, since
for any neighbourhoodW of f(a), by definition of an open set, there
is an open ball B(f(a), ε) ⊆ W and, by our economized definition,
an associated neighbourhoodB(a, δ), open set which is mapped by f
into a subset of B(f(a), ε), hence also a subset ofW .

Polishing the phrasing

We’re almost there, but first we’ll introduce one more useful nota-
tion. For any map f : X → Y and a subset A ⊆ X , by f(A) we
denote the image of A, that is the set of all points to which f maps
points from A,

f(A) := {f(a) ∈ Y | a ∈ A} .

For example, if f(x) = x2 : R→ R, then f([−1, 2]) = [0, 4].

Finally, we say that the function f : R→ R is continuous at the
point a ∈ R if for each real ε > 0 (this number measures the size
of the neighbourhood in the codomain) there exists a real δ > 0 (this
number measures the size of the neighbourhood in the domain), such
that

f(B(a, δ)) ⊆ B(f(a), ε) .

There are various ways to rephrase this definition. First note that
f(A) ⊆ Z means that f(a) ∈ Z holds for any a ∈ A. Thus, we
may say that f is continuous at a if for all ε > 0 there exists δ > 0,
such that x ∈ B(a, δ) implies f(x) ∈ B(f(a), ε), that is

(∀ ε > 0)(∃ δ > 0) : x ∈ B(a, δ) ⇒ f(x) ∈ B(f(a), ε) .



Yet another equivalent formulation of this definition, the one which
is more frequently found in textbooks on real analysis, says that f is
continuous at a if

(∀ ε > 0)(∃ δ > 0) : |x− a| < δ ⇒ |f(x)− f(a)| < ε .

One technical remark: What if the domain of f is not the entireR but
some other nonempty subsetD ⊆ R? Well, we just have to be careful
that all the objects in the definition make sense, most notably, that we
always insert into f(x) a point x from the domain D. Hence, we say
a function f : D → R is continuous at the point a ∈ D if

(∀ ε > 0)(∃ δ > 0)(∀x ∈ D) : x ∈ B(a, δ) ⇒ f(x) ∈ B(f(a), ε) .

One must not be misled by the seemingly “broken appearance” of
some function. For example, the function h(x) = 1/x : R× → R,
where R× = ⟨−∞, 0⟩ ∪ ⟨0,+∞⟩, is continuous at all points of its
domain, despite the “jump at the origin” (x = 0 is not an element of
its domain!).

Limits

Now, let us look back again at the graph of the function g from
above.
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We see that, as we approach the point a from the right, the values
of the function g approach the value L1. On the other hand, as we ap-
proach the point a from the left, the values of the function g approach
the value L2 (despite the fact that g(a) = L1). The process of “ap-
proaching” lies at the heart of the notion of the “limit” and we would
like to crystallize it into a proper mathematical definition. Again, we
can reach for the concept of neighbourhoods to build the definition
that we aspire to. For example, if we introduce the right neighbour-
hood ⟨a, a+ δ⟩ and the left neighbourhood ⟨a− δ, a⟩ of a point a,
then the definition would run as follows,

“The L1 is the limit from the right of g at a, in a sense that for any
neighbourhood V of L1 there is a right neighbourhood of a which is

mapped by g into a subset of V .”

More precisely, for any function g : D → R, defined on a nonempty
domainD ⊆ R, we write

L1 = lim
x→a+

g(x) := lim
ε→0+

g(a+ ε) if

(∀ ε > 0)(∃ δ > 0)(∀x ∈ D) : 0 < x−a < δ ⇒ g(x) ∈ B(L1, ε) .

Here the notation “→ a+” and “→ 0+” emphasizes that we are ap-
proaching to a and to 0 from the right. Completely analogously, we
may define the limit from the left, by writing

L2 = lim
x→a−

g(x) := lim
ε→0+

g(a− ε) if

(∀ ε > 0)(∃ δ > 0)(∀x ∈ D) : 0 < a−x < δ ⇒ g(x) ∈ B(L2, ε) .

If these two one-sided limits exist and coincide then we speak of the
limit of a function at a given point. More precisely, for any function
f : D → R, defined on a nonempty domainD ⊆ R, we write

L = lim
x→a

f(x) if

(∀ ε > 0)(∃ δ > 0)(∀x ∈ D) : 0 < |x−a| < δ ⇒ f(x) ∈ B(L, ε) .

A function may have a well-defined limit at a point, which is still dif-
ferent from the value of the function at that point. For example, sup-
pose that f : R → R is defined as f(a) = b and f(x) = c ̸= b for
any x ̸= a, as shown on the picture below,
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Then
lim
x→a

f(x) = c ̸= b = f(a) .

If we compare the definitions of the continuity of a function at a
point with the definition of the limit at that point, it is not difficult
to notice a striking similarity: The limit of a continuous function at a
point of its domain is always well-defined and equal to the value of
such a function at that point; Conversely, if the limit of a function f
exists at a given point a of its domain and it is equal to the value f(a)
of that function, then f is continuous at the point a.

Note that in all these definitions of limits the point a doesn’t have to
be an element of the domain of the function. For example, if f(x) =
x + c : ⟨0, 1⟩ → R with some c ∈ R, then limx→0+ f(x) = c .
This may be cause of some confusion if we erroneously try to eval-
uate a limit just by inserting the value of the limiting argument in
the function. For example, if f(x) = sin(x)/x : R× → R, then
limx→0 f(x) = 1 is a well-defined limit, in contrast with the unde-
fined expression 0/0.

Curious examples

Here we take a look at some more involved examples. It is not
difficult to invent a function which is continuous on all of its domain
except at one point. But, how about the function which is nowhere
continuous? A famous example is the Dirichlet function D : R →
R, with value 1 at all the rational points of the real line, and zero at
all the others,

D(x) =

{
1 , x ∈ Q
0 , x ∈ R−Q

A more intriguing example is a function which is continuous at ex-
actly one point of its domain: The function xD(x) : R → R is only
continuous at the origin. First, for any ε > 0 we may choose any
δ > 0, such that δ < ε; then for any x ∈ B(0, δ) we have

|xD(x)− 0| ≤ |x| < δ < ε .

Hence xD(x) is by definition continuous at x = 0. Intuitively, by
multiplying the Dirichlet function D with x we have “pacified” its
jumping at the origin. The reader is invited to prove that the function
xD(x) is indeed discontinuous at any x ̸= 0.

The function may not have well-defined one-sided limits, although
itself may be well-defined at that point. For example, function ϕ :
R→ R, defined as

ϕ(x) =

{
sin(1/x) , x > 0

0 , x ≤ 0

doesn’t have a well-defined limit from the right at x = 0, although
ϕ(0) = 0. Another similar example, the functionψ : R→ R, defined
as

ψ(x) =

{
sin(1/x) , x ̸= 0

0 , x = 0

doesn’t have a well-defined limit from the right, nor the limit from the
left at x = 0, although ψ(0) = 0.
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