## DIfferential forms

## Abstract index notation

## Coffee \& Chalk Press

Ivica Smolić
(c)(1)(®)
$M$ is a smooth $m$-manifold with a metric $g_{a b}$ which has $s$ negative eigenvalues. Metric determinant is denoted by $g=\operatorname{det}\left(g_{\mu \nu}\right)$.

- Base of $p$-forms via wedge product,

$$
\mathrm{d} x^{\mu_{1}} \wedge \ldots \wedge \mathrm{~d} x^{\mu_{p}}=\sum_{\pi \in S_{p}} \operatorname{sgn}(\pi) \mathrm{d} x^{\mu_{\pi(1)}} \otimes \cdots \otimes \mathrm{d} x^{\mu_{\pi(p)}}
$$

- General $p$-form $\omega \in \Omega^{p}$,

$$
\boldsymbol{\omega}=\frac{1}{p!} \omega_{\mu_{1} \ldots \mu_{p}} \mathrm{~d} x^{\mu_{1}} \wedge \ldots \wedge \mathrm{~d} x^{\mu_{p}}
$$

- Unless otherwise stated, we assume:

$$
f \in \Omega^{0} ; \boldsymbol{\alpha}, \boldsymbol{\omega} \in \Omega^{p} ; \boldsymbol{\beta} \in \Omega^{q} ; \boldsymbol{\gamma} \in \Omega^{p-1} ; X, Y \in T M
$$

## - Generalized Kronecker delta

$$
\begin{gathered}
\delta_{b_{1} \cdots b_{n}}^{a_{1} \cdots a_{n}}:=n!\delta_{b_{1}}^{\left[a_{1}\right.} \delta_{b_{2}}^{a_{2}} \cdots \delta_{b_{n}}^{\left.a_{n}\right]} \\
\operatorname{det}(A):=n!A_{[1}^{1} A_{2}^{2} \cdots A^{n}{ }_{n]}=A_{\mu_{1}}^{1} \cdots A_{\mu_{n}}^{n} \delta_{1 \cdots n}^{\mu_{1} \cdots \mu_{n}} \\
n!A_{\left[\mu_{1}\right.}^{1} A_{\mu_{2}}^{2} \cdots A_{\left.\mu_{n}\right]}^{n}=\operatorname{det}(A) \delta_{\mu_{1} \cdots \mu_{n}}^{1 \cdots} \\
\delta_{a_{1} \cdots a_{k} b_{k+1} \cdots b_{n}}^{a_{1} \cdots a_{k} a_{k+1} \cdots a_{n}}=\binom{m-n+k}{k} k!\delta_{b_{k+1} \cdots b_{n}}^{a_{k+1} \cdots a_{n}}
\end{gathered}
$$

. Volume form $\boldsymbol{\epsilon} \in \Omega^{m}, \boldsymbol{\epsilon}:=\sqrt{|g|} \mathrm{d} x^{1} \wedge \ldots \wedge \mathrm{~d} x^{m}$

$$
\begin{aligned}
& \epsilon_{\mu_{1} \cdots \mu_{m}}=\sqrt{|g|} \delta_{\mu_{1} \cdots \mu_{m}}^{1 \cdots m}, \quad \epsilon^{\mu_{1} \cdots \mu_{m}}=\frac{(-1)^{s}}{\sqrt{|g|}} \delta_{1 \cdots m}^{\mu_{1} \cdots \mu_{m}} \\
& \epsilon^{a_{1} \cdots a_{k} a_{k+1} \cdots a_{m}} \epsilon_{a_{1} \cdots a_{k} b_{k+1} \cdots b_{m}}=(-1)^{s} k!\delta_{b_{k+1} \cdots b_{m}}^{a_{k+1} \cdots a_{m}}
\end{aligned}
$$

## Operators on differential forms

- Contraction with vector $i_{X}: \Omega^{p} \rightarrow \Omega^{p-1}$

$$
i_{X} f=0, \quad\left(i_{X} \boldsymbol{\omega}\right)\left(X_{1}, \ldots, X_{p-1}\right)=\boldsymbol{\omega}\left(X, X_{1}, \ldots, X_{p-1}\right)
$$

- Hodge dual $\star: \Omega^{p} \rightarrow \Omega^{m-p}$

$$
\begin{gathered}
\star \omega=\frac{\omega_{\mu_{1} \ldots \mu_{p}}^{p!(m-p)!} \epsilon_{\mu_{p+1} \ldots \mu_{m}}^{\mu_{1} \ldots \mu_{p}} \mathrm{~d} x^{\mu_{p+1}} \wedge \ldots \wedge \mathrm{~d} x^{\mu_{m}}}{\star 1=\boldsymbol{\epsilon}, \quad \star \boldsymbol{\epsilon}=(-1)^{s}, \quad i_{X} \boldsymbol{\epsilon}=\star X}
\end{gathered}
$$

- Exterior derivative $\mathrm{d}: \Omega^{p} \rightarrow \Omega^{p+1}$

$$
\mathrm{d} \boldsymbol{\omega}=\frac{1}{p!} \partial_{\sigma} \omega_{\mu_{1} \ldots \mu_{p}} \mathrm{~d} x^{\sigma} \wedge \mathrm{d} x^{\mu_{1}} \wedge \ldots \wedge \mathrm{~d} x^{\mu_{p}}
$$

- Lie derivative $£_{X}: \Omega^{p} \rightarrow \Omega^{p}$

$$
£_{X} \boldsymbol{\omega}=\left(i_{X} \mathrm{~d}+\mathrm{d} i_{X}\right) \boldsymbol{\omega}
$$

- Coderivative $\delta\left(\right.$ or $\left.^{\dagger}\right): \Omega^{p} \rightarrow \Omega^{p-1}$

$$
\delta f=0, \quad \delta \boldsymbol{\omega}=(-1)^{m(p+1)+s} \star \mathrm{~d} \star \boldsymbol{\omega}
$$

- Laplace-Beltrami operator (Laplacian) $\Delta: \Omega^{p} \rightarrow \Omega^{p}$

$$
\Delta=\mathrm{d} \delta+\delta \mathrm{d}=(\mathrm{d}+\delta)^{2}
$$

$$
\begin{aligned}
(\boldsymbol{\alpha} \wedge \boldsymbol{\beta})_{a_{1} \ldots a_{p} b_{1} \ldots b_{q}} & =\frac{(p+q)!}{p!q!} \alpha_{\left[a_{1} \ldots a_{p}\right.} \beta_{\left.b_{1} \ldots b_{q}\right]} \\
(\star \boldsymbol{\omega})_{a_{p+1} \ldots a_{m}} & =\frac{1}{p!} \omega_{a_{1} \ldots a_{p}} \epsilon^{a_{1} \ldots a_{p}}{ }_{a_{p+1} \ldots a_{m}} \\
\left(i_{X} \boldsymbol{\omega}\right)_{a_{1} \ldots a_{p-1}} & =X^{b} \omega_{b a_{1} \ldots a_{p-1}} \\
(\mathrm{~d} \boldsymbol{\omega})_{a_{1} \ldots a_{p+1}} & =(p+1) \nabla_{\left[a_{1}\right.} \omega_{\left.a_{2} \ldots a_{p+1}\right]} \\
(\delta \boldsymbol{\omega})_{a_{1} \ldots a_{p-1}} & =\nabla^{b} \omega_{b a_{1} \ldots a_{p-1}}
\end{aligned}
$$

Thm. $\star \star=(-1)^{p(m-p)+s}, \quad i_{X}^{2}=\mathrm{d}^{2}=\delta^{2}=0$
Thm. $\mathfrak{£}_{X}(f \boldsymbol{\epsilon})=\delta(f \mathbf{X}) \boldsymbol{\epsilon}$
Thm. $\delta(f \boldsymbol{\alpha})=i_{X} \boldsymbol{\alpha}+f \delta \boldsymbol{\alpha}$ with $X^{a}=\nabla^{a} f$
Thm. $i_{X} \mathrm{~d} \star \boldsymbol{\alpha}=\star(\mathbf{X} \wedge \delta \boldsymbol{\alpha})$

## Leibniz

$$
\begin{aligned}
i_{X}(\boldsymbol{\alpha} \wedge \boldsymbol{\beta}) & =\left(i_{X} \boldsymbol{\alpha}\right) \wedge \boldsymbol{\beta}+(-1)^{p} \boldsymbol{\alpha} \wedge\left(i_{X} \boldsymbol{\beta}\right) \\
\mathrm{d}(\boldsymbol{\alpha} \wedge \boldsymbol{\beta}) & =(\mathrm{d} \boldsymbol{\alpha}) \wedge \boldsymbol{\beta}+(-1)^{p} \boldsymbol{\alpha} \wedge(\mathrm{~d} \boldsymbol{\beta}) \\
£_{X}(\boldsymbol{\alpha} \wedge \boldsymbol{\beta}) & =\left(£_{X} \boldsymbol{\alpha}\right) \wedge \boldsymbol{\beta}+\boldsymbol{\alpha} \wedge\left(£_{X} \boldsymbol{\beta}\right)
\end{aligned}
$$

## Commuting

$$
\begin{gathered}
\boldsymbol{\alpha} \wedge \boldsymbol{\beta}=(-1)^{p q} \boldsymbol{\beta} \wedge \boldsymbol{\alpha} \\
i_{X} \star \boldsymbol{\alpha}=\star(\boldsymbol{\alpha} \wedge \mathbf{X}), \quad i_{X} \boldsymbol{\alpha}=(-1)^{m(p+1)+s} \star(\mathbf{X} \wedge \star \boldsymbol{\alpha}) \\
{\left[£_{X}, £_{Y}\right]=£_{[X, Y]}, \quad\left[£_{X}, i_{Y}\right]=i_{[X, Y]}, \quad\left[£_{X}, \mathrm{~d}\right]=0} \\
£_{X} \star \boldsymbol{\alpha}-\star £_{X} \boldsymbol{\alpha}=(\delta \mathbf{X}) \star \boldsymbol{\alpha}+\star \widehat{\boldsymbol{\alpha}} \quad \text { with } \\
\widehat{\alpha}_{a_{1} \ldots a_{p}}:=p\left(£_{X} g^{b c}\right) g_{b\left[a_{1}\right.} \alpha_{\left.|c| a_{2} \ldots a_{p}\right]} \\
\mathrm{d} \star=(-1)^{p+1} \star \delta, \quad \delta \star=(-1)^{p} \star \mathrm{~d} \\
\star \Delta=\Delta \star, \quad \mathrm{d} \Delta=\Delta \mathrm{d}, \quad \delta \Delta=\Delta \delta
\end{gathered}
$$

## Inner products

$$
(\boldsymbol{\alpha} \mid \boldsymbol{\omega}):=\frac{1}{p!} \alpha_{a_{1} \ldots a_{p}} \omega^{a_{1} \ldots a_{p}}
$$

Normalization of the volume form, $(\boldsymbol{\epsilon} \mid \boldsymbol{\epsilon})=(-1)^{s}$.
Thm. $(\boldsymbol{\alpha} \mid \boldsymbol{\omega}) \boldsymbol{\epsilon}=\boldsymbol{\alpha} \wedge \star \boldsymbol{\omega}=\boldsymbol{\omega} \wedge \star \boldsymbol{\alpha}=(-1)^{s}(\star \boldsymbol{\alpha} \mid \star \omega) \boldsymbol{\epsilon}$
Thm. $(\mathbf{X} \wedge \boldsymbol{\gamma} \mid \boldsymbol{\alpha})=\left(\boldsymbol{\gamma} \mid i_{X} \boldsymbol{\alpha}\right)$
Thm. $(\mathbf{X} \mid \mathbf{Y})(\boldsymbol{\alpha} \mid \boldsymbol{\alpha})=(-1)^{s}\left(i_{X} \star \boldsymbol{\alpha} \mid i_{Y} \star \boldsymbol{\alpha}\right)+\left(i_{X} \boldsymbol{\alpha} \mid i_{Y} \boldsymbol{\alpha}\right)$

$$
\langle\boldsymbol{\alpha}, \boldsymbol{\omega}\rangle:=\int_{M} \boldsymbol{\alpha} \wedge \star \boldsymbol{\omega}
$$

Thm. If $s=0$ then $\langle\boldsymbol{\alpha}, \boldsymbol{\alpha}\rangle \geq 0$ and $\langle\boldsymbol{\alpha}, \boldsymbol{\alpha}\rangle=0$ iff $\boldsymbol{\alpha}=0$.
Thm. If $s=0$ then $-\Delta$ is a positive operator in a sense that

$$
\langle\boldsymbol{\omega},-\Delta \boldsymbol{\omega}\rangle=\langle\mathrm{d} \boldsymbol{\omega}, \mathrm{~d} \boldsymbol{\omega}\rangle+\langle\delta \boldsymbol{\omega}, \delta \boldsymbol{\omega}\rangle \geq 0
$$

Consequently $\Delta \boldsymbol{\omega}=0$ iff $\mathrm{d} \boldsymbol{\omega}=0$ and $\delta \boldsymbol{\omega}=0$.

## Pullback

For a $C^{\infty} \operatorname{map} \phi: S \rightarrow M$, we define $\phi^{*}: \Omega^{p}(M) \rightarrow \Omega^{p}(S)$,

$$
\begin{gathered}
\left(\phi^{*} \boldsymbol{\omega}\right)\left(X_{1}, \ldots, X_{p}\right):=\boldsymbol{\omega}\left(\phi_{*} X_{1}, \ldots, \phi_{*} X_{p}\right) \\
\left.\left(\phi^{*} \boldsymbol{\omega}\right)_{\sigma_{1} \ldots \sigma_{p}}\right|_{s}=\left.\left.\left.\frac{\partial\left(x^{\mu_{1}} \circ \phi\right)}{\partial y^{\sigma_{1}}}\right|_{s} \ldots \frac{\partial\left(x^{\mu_{p}} \circ \phi\right)}{\partial y^{\sigma_{p}}}\right|_{s} \omega_{\mu_{1} \ldots \mu_{p}}\right|_{\phi(s)} \\
\phi^{*}(\boldsymbol{\alpha} \wedge \boldsymbol{\beta})=\left(\phi^{*} \boldsymbol{\alpha}\right) \wedge\left(\phi^{*} \boldsymbol{\beta}\right), \quad \phi^{*} \mathrm{~d}=\mathrm{d} \phi^{*} \\
\text { N.B. } \phi^{*}(\star \omega) \neq \star\left(\phi^{*} \omega\right)
\end{gathered}
$$

Stokes's theorem. Let $M$ be a smooth orientable $m$-manifold boundary $\partial M$ and inclusion $\imath: \partial M \rightarrow M$. Then for any compactly supported $\boldsymbol{\omega} \in \Omega^{m-1}(M)$,

$$
\int_{M} \mathrm{~d} \boldsymbol{\omega}=\int_{\partial M} \imath^{*} \boldsymbol{\omega}
$$

Corollary $\langle\mathrm{d} \boldsymbol{\gamma}, \boldsymbol{\alpha}\rangle+\langle\boldsymbol{\gamma}, \delta \boldsymbol{\alpha}\rangle=\int_{\partial M} \gamma \wedge \star \boldsymbol{\alpha}$
Green's identity for $\boldsymbol{\alpha}, \boldsymbol{\beta} \in \Omega^{p}(M)$
$\int_{M}(\Delta \boldsymbol{\alpha} \wedge \star \boldsymbol{\beta}-\Delta \boldsymbol{\beta} \wedge \star \boldsymbol{\alpha})=\int_{\partial M}(\delta \boldsymbol{\alpha} \wedge \star \boldsymbol{\beta}-\delta \boldsymbol{\beta} \wedge \star \boldsymbol{\alpha}+\boldsymbol{\beta} \wedge \star \mathrm{d} \boldsymbol{\alpha}-\boldsymbol{\alpha} \wedge \star \mathrm{d} \boldsymbol{\beta})$

Frobenius's theorem. Let $M$ be a smooth $m$-manifold and $\mathcal{D}$ a $k$ dim distribution (subbundle of $T M$ ), defined by $(m-k)$ linearly independent 1 -forms $\left\{\boldsymbol{\theta}^{(1)}, \ldots, \boldsymbol{\theta}^{(m-k)}\right\}$, so that at each point $p \in M$ we have $\left.\mathcal{D}\right|_{p}=\bigcap_{i} \operatorname{Ker}\left(\left.\boldsymbol{\theta}^{(i)}\right|_{p}\right)$. Then the following conditions are equivalent

- $\mathcal{D}$ is involutive, $(\forall X, Y \in \mathcal{D}):[X, Y] \in \mathcal{D}$
- $\mathcal{D}$ is totally integrable: for any $p \in M$ there is a nbh $O_{p}$ and functions $h_{j}^{i}, f_{j}: O_{p} \rightarrow \mathbb{R}$, such that

$$
\boldsymbol{\theta}^{(i)}=\sum_{j=1}^{m-k} h_{j}^{i} \mathrm{~d} f_{j}
$$

- the condition

$$
\boldsymbol{\theta}^{(1)} \wedge \ldots \wedge \boldsymbol{\theta}^{(m-k)} \wedge \mathrm{d} \boldsymbol{\theta}^{(i)}=0
$$

holds for any $i \in\{1, \ldots, m-k\}$.

## De Rham cohomology

$$
\begin{aligned}
\text { closed forms } & Z^{r}(M)=\left\{\boldsymbol{\omega} \in \Omega^{r} \mid \mathrm{d} \boldsymbol{\omega}=0\right\} \\
\text { exact forms } & B^{r}(M)=\left\{\boldsymbol{\omega} \in \Omega^{r} \mid \exists \boldsymbol{\gamma} \in \Omega^{r-1}: \boldsymbol{\omega}=\mathrm{d} \boldsymbol{\gamma}\right\} \\
& H_{\mathrm{dR}}^{r}(M)=Z^{r}(M) / B^{r}(M)
\end{aligned}
$$

Euler-Poincaré characteristic $\chi(M)=\sum_{r=0}^{m}(-1)^{r} b^{r}$ with Betti numbers $b^{r}=\operatorname{dim} H_{\mathrm{dR}}^{r}(M)$. For $n \geq 1$ the de Rham cohomology groups of spheres $\mathbb{S}^{n}$ are $H_{\mathrm{dR}}^{r}\left(\mathbb{S}^{n}\right)=\left(\delta_{r 0}+\delta_{r n}\right) \mathbb{R}$.

Thm. If $M$ is a connected smooth manifold with finite fundamental group, then $H_{\mathrm{dR}}^{r}(M)=0$. Poincaré lemma. Every closed form on a contractible open set is exact.

Hodge decomposition theorem. On any closed orientable Riemannian manifold $M$, for any $\boldsymbol{\omega} \in \Omega^{p}(M)$ there is a unique global decomposition

$$
\boldsymbol{\omega}=\mathrm{d} \boldsymbol{\alpha}+\delta \boldsymbol{\beta}+\boldsymbol{\chi}
$$

with $\boldsymbol{\alpha} \in \Omega^{p-1}, \boldsymbol{\beta} \in \Omega^{p+1}$ and $\boldsymbol{\chi} \in \Omega^{p}$ is harmonic, $\Delta \boldsymbol{\chi}=0$.

## Maxwell's equations

$$
\begin{gathered}
(m, s)=(4,1) \\
\mathrm{d} \mathbf{F}=4 \pi \star \mathbf{j}_{\mathrm{m}}, \quad \mathrm{~d} \star \mathbf{F}=4 \pi \star \mathbf{j}_{\mathrm{e}}
\end{gathered}
$$

Electro/magnetic decomposition via $X^{a}$ with $N=X_{a} X^{a}$ :

$$
\begin{gathered}
\mathbf{E}=-i_{X} \mathbf{F}, \quad \mathbf{B}=i_{X} \star \mathbf{F} \\
-N \mathbf{F}=\mathbf{X} \wedge \mathbf{E}+\star(\mathbf{X} \wedge \mathbf{B}) \\
N(\mathbf{F} \mid \mathbf{F})=(\mathbf{E} \mid \mathbf{E})-(\mathbf{B} \mid \mathbf{B}) \\
N(\mathbf{F} \mid \star \mathbf{F})=-2(\mathbf{E} \mid \mathbf{B})
\end{gathered}
$$

Maxwell's equations via $\delta=-\star \mathrm{d} \star$ and $\boldsymbol{\omega}=-\star(\mathbf{X} \wedge \mathrm{d} \mathbf{X})$,

$$
\begin{aligned}
-\delta \mathbf{E} & =\frac{\left(\mathbf{E} \mid i_{X} \mathrm{~d} \mathbf{X}\right)}{N}-\frac{(\mathbf{B} \mid \boldsymbol{\omega})}{N}+4 \pi\left(\mathbf{X} \mid \mathbf{j}_{\mathrm{e}}\right) \\
-\delta \mathbf{B} & =\frac{\left(\mathbf{B} \mid i_{X} \mathrm{~d} \mathbf{X}\right)}{N}+\frac{(\mathbf{E} \mid \boldsymbol{\omega})}{N}+4 \pi\left(\mathbf{X} \mid \mathbf{j}_{\mathrm{m}}\right) \\
-\mathrm{d} \mathbf{E} & =£_{X} \mathbf{F}+4 \pi \star\left(\mathbf{X} \wedge \mathbf{j}_{\mathrm{m}}\right) \\
\mathrm{d} \mathbf{B} & =£_{X} \star \mathbf{F}+4 \pi \star\left(\mathbf{X} \wedge \mathbf{j}_{\mathrm{e}}\right)
\end{aligned}
$$

## Killing vectors

Thm. For a Killing vector $K^{a}$ with $N=K_{a} K^{a}$ we have

$$
\begin{gathered}
£_{K} \mathbf{K}=0, \quad \delta \mathbf{K}=0, \quad \mathrm{~d} \star \mathrm{~d} \mathbf{K}=2 \star \mathbf{R}(K), \quad \mathrm{d} N=-i_{K} \mathrm{~d} \mathbf{K} \\
£_{K} \boldsymbol{\alpha}=\delta(\mathbf{K} \wedge \boldsymbol{\alpha})+\mathbf{K} \wedge \delta \boldsymbol{\alpha}, \quad £_{K} \star \boldsymbol{\alpha}=\star £_{K} \boldsymbol{\alpha}
\end{gathered}
$$

Thm. $(m, s)=(4,1)$. Let $\left(M, g_{a b}\right)$ be a Lorentzian 4-manifold with the Killing vector field $K^{a}$. Then the twist 1 -form $\omega_{a}$, defined as

$$
\boldsymbol{\omega}:=-\star(\mathbf{K} \wedge \mathrm{d} \mathbf{K}), \quad \omega_{a}=\epsilon_{a b c d} K^{b} \nabla^{c} K^{d}
$$

satisfies the following relations

$$
\begin{aligned}
& \mathrm{d} \boldsymbol{\omega}=-2 \star(\mathbf{K}\wedge \mathbf{R}(K)), \quad N \delta \boldsymbol{\omega}=2(\boldsymbol{\omega} \mid \mathrm{d} N) \\
&(\boldsymbol{\omega} \mid \boldsymbol{\omega})=(\mathrm{d} N \mid \mathrm{d} N)-N \Delta N-2 N R(K, K) \\
& N \mathrm{~d} \mathbf{K}=\star(\mathbf{K} \wedge \boldsymbol{\omega})-\mathbf{K} \wedge \mathrm{d} N \\
& N(\mathrm{~d} \mathbf{K} \mid \mathrm{d} \mathbf{K})=(\mathrm{d} N \mid \mathrm{d} N)-(\boldsymbol{\omega} \mid \boldsymbol{\omega}) \\
& \delta\left(\frac{\mathbf{K}}{N}\right)=0, \quad \delta\left(\frac{\boldsymbol{\omega}}{N^{2}}\right)=0 \\
& \delta\left(\frac{\mathrm{~d} N}{N}\right)=-\frac{(\boldsymbol{\omega} \mid \boldsymbol{\omega})+2 N R(K, K)}{N^{2}} \\
& \delta\left(\frac{\mathbf{E}}{N}\right)=\frac{(\boldsymbol{\omega} \mid \mathbf{B})}{N^{2}}-\frac{4 \pi}{N}\left(\mathbf{K} \mid \mathbf{j}_{\mathrm{e}}\right) \\
& \delta\left(\frac{\mathbf{B}}{N}\right)=-\frac{(\boldsymbol{\omega} \mid \mathbf{E})}{N^{2}}-\frac{4 \pi}{N}\left(\mathbf{K} \mid \mathbf{j}_{\mathrm{m}}\right)
\end{aligned}
$$

