ZFC In A NUTSHELL

Coffee \& Chalk Press

Ivica Smolić

Ernst F.F. Zermelo	$(1871-1953)$
Adolf A.H. Fraenkel	$(1891-1965)$
Axiom of Choice	$(1904-)$

$\begin{array}{cl}\text { Adolf A.H. Fraenkel } & (1891-1965) \\ \text { Axiom of Choice } & (1904-)\end{array}$

1. The Axiom of Extensionality a set is completely characterized by its elements alone

If every element of X is an element of Y and every element of Y is an element of X, then $X=Y$.

$$
\forall X \forall Y(\forall a(a \in X \leftrightarrow a \in Y) \rightarrow X=Y)
$$

By an axiom of predicate calculus we have the converse
$\forall X \forall Y(X=Y \rightarrow \forall a(a \in X \leftrightarrow a \in Y))$.
2. The Axiom Schema of Separation
a recipe to construct a set
If φ is a formula (with parameter p) then for any X and p there exists a set S that contains all those $a \in X$ for which φ holds.

$$
\forall X \exists S \forall a(a \in S \leftrightarrow a \in X \wedge \varphi(a, p))
$$

3. The Axiom of Union
 an union of sets, to merge them all

For any F, there exists a set U (usually denoted by $\bigcup F$) such that $x \in U$ iff $x \in A$ for some $A \in F$.

$$
\forall F \exists U \forall x(x \in U \leftrightarrow \exists A(A \in F \wedge x \in A))
$$

4. The Axiom of Power Set
 the set of all subsets

For any X, there exists a set P (usually denoted by $\mathscr{P}(X)$ or 2^{X}), such that $A \in P$ iff $A \subseteq X$.

$$
\forall X \exists P \forall A(A \in P \leftrightarrow \forall a(a \in A \rightarrow a \in X))
$$

The origin of the name "power set" is related to the fact that for any set X we have $\left|2^{X}\right|=2^{|X|}$.

5. The Axiom of Infinity
 a blueprint for the set of natural numbers

An inductive set exists.

$$
\exists S(\emptyset \in S \wedge(\forall x \in S) x \cup\{x\} \in S)
$$

where the empty set \emptyset is defined below.

6. The Axiom Schema of Replacement
 image of a set is a set

Let $\varphi(x, y, p)$ be a formula (with some parameter p) such that for every x there is a unique y for which $\varphi(x, y, p)$ holds. Then for every set X there is a set Y which collects all the y 's as x ranges over X.

$$
\begin{aligned}
& \forall x \forall y \forall z((\varphi(x, y, p) \wedge \varphi(x, z, p) \rightarrow y=z) \rightarrow \\
& \rightarrow \forall X \exists Y \forall y(y \in Y \leftrightarrow(\exists x \in X) \varphi(x, y, p)))
\end{aligned}
$$

7. The Axiom of Foundation sets are forbidden to devour themselves

All sets are well-founded: Every non-empty set S contains an element A such that S and A are disjoint sets.

$$
\forall S(\exists X(X \in S) \rightarrow \exists A(A \in X \wedge \nexists B(B \in A \wedge B \in S)))
$$

This implies, for example, that no set is an element of itself.

8. The Axiom of Choice
 abandon all explicitness ye who enter here

Given any set A of pairwise disjoint non-empty sets, there exists at least one set C that contains exactly one element in common with each of the sets in A.

$$
\forall A(\varphi(A) \rightarrow(\exists C) \psi(A, C))
$$

$$
\begin{aligned}
& \varphi(A) \equiv \forall a(a \in A \rightarrow \exists x(x \in a)) \wedge \\
& \quad \wedge \forall a \forall b(a \in A \wedge b \in A \wedge \exists x(x \in a \wedge x \in b) \rightarrow a=b) \\
& \psi(A, C) \equiv \forall a(a \in A \rightarrow \exists x(x \in a \wedge x \in C)) \wedge \\
& \quad \wedge \forall a(a \in A \rightarrow \forall x \forall y(x \in a \wedge x \in C \wedge y \in a \wedge y \in C \rightarrow x=y))
\end{aligned}
$$

Redundant axioms

Very often, for practical reasons, several other "axioms" are included in the list.

o. The Axiom of Existence

let there be nothing!
There exists a set E which has no elements.

$$
\exists E \forall X(X \notin E)
$$

- The axiom of infinity implies that there exists at least one set, S. Then the axiom schema of separation implies the existence of the empty set $E=\{A \in S \mid A \neq A\}$ which, by the axiom of extensionality, is unique. This set is known as the empty set and is usually denoted by \emptyset.

> 2½. The Axiom of Pairing
> a pairs of sets, and nothing else

For any A and B, there is C such that $X \in C$ iff $X=A$ or $X=B$,

$$
\forall A \forall B \exists C \forall X(X \in C \leftrightarrow X=A \vee X=B)
$$

- From the existence of the empty set \emptyset and the axiom of power set (applied twice) there are sets $\mathscr{P}(\emptyset)=\{\emptyset\}$ and $\mathscr{P}(\mathscr{P}(\emptyset))=\{\emptyset,\{\emptyset\}\}$. The idea is to replace the elements of the set $\mathscr{P}(\mathscr{P}(\emptyset))$ with given sets A and B. Using the axiom schema of replacement with the formula

$$
\varphi(X, Y, A, B) \equiv(X=\emptyset \wedge Y=A) \vee(X=\{\emptyset\} \wedge Y=B)
$$

we define the set

$$
\{A, B\} \equiv\{Y \mid \exists X \in \mathscr{P}(\mathscr{P}(\emptyset)): \varphi(X, Y, A, B)\}
$$

This allows us, for example, to define the union of two sets,

$$
A \cup B \equiv \bigcup\{A, B\}
$$

