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In this paper the geometry of the chargeless spinning black hole in 2+1 dimensions, with a negative
cosmological constant and without couplings to matter is analysed. It is shown that the black hole
arises as a quotient space of three dimensional anti-de Sitter space by a discrete subgroup of its
isometry group. A brief analysis of AdS space, as well as the SO(2,2) group is given. The surface
r = 0 is shown to be a singularity in the causal structure, meaning that continuing through it would
result with closed timelike curves. Kruskal coordinates and Penrose diagrams are presented as well.

1. INTRODUCTION

The appeal of analysing a black hole in 2+1 dimen-
sions is that it would provide a simpler insight into fun-
damental concepts regarding both classical and quantum
gravity.

The 2+1 black hole displays similar properties to its
3+1 dimensional counterpart. It has an event horizon
and in the rotating case an inner horizon and ergosphere
as well. But unlike the 3+1 case, it is asymptotically
anti-de Sitter and does not have a curvature singularity.

The structure of the paper is as follows: In the second
section we discuss the physical properties of the black
hole. Since any solution of Einstein’s field equations in
vacuum with negative cosmological constant in 241 di-
mensions has a constant negative curvature, it is locally
isomorphic to anti-de Sitter. After we develop some the-
ory on anti-de Sitter space and its isometry group, we
show in section three that the black hole solution can be
obtained as a quotient space of AdSs space by a discrete
subgroup of its isometry group. Through this construc-
tion we show that the hypersurface » = 0 is not a cur-
vature singularity, but rather a singularity in the causal
structure. In section 4 we inspect the global properties
of the black hole by exhibiting Kruskal coordinates and
Penrose diagrams, both for a general spinning black hole
and for its extreme states, which are the massless, non-
rotating black hole (”vacuum”) and the black hole with
maximal angular momentum. Section 5 is devoted to
concluding remarks.

2. BLACK HOLE

The metric of the BTZ black hole is given in
”Schwarzschild” coordinates by

ds® = —(N*)2dt* + (N 1) 2dr? + r?(d¢ + N?dt)?,
(2.1)

where the so-called lapse and shift functions, respectively,
are given by

NL = <_M n (;)2 + <2Jr>2>1/2 (2.2)

5,2 (2.3)
with —co <t < 00, 0 < r < ooand 0 < ¢ < 2m. |
denotes the radius of curvature of anti-de Sitter space
and is given by [72 = —\, where X is the cosmological
constant. M is the mass of the black hole, and J its
angular momentum. The metric (1.1) is stationary and
axially symmetric, with Killing vectors d; and 94. The
lapse function N+ vanishes for two values of 7 given by

M v\
re =1 5 1+ 1_(1\4l> , (2.4)
whereas ggg vanishes for
Terg = VMI. (2.5)
These three special values of r obey
T— <1y < Terg. (2.6)

In comparison with the 3+1 dimensional Kerr black hole,
we can conclude that r, given by the coordinate singu-
larity of the radial part of the metric, represents the outer
event horizon, r_ the inner event horizon and the region
between 7.4 and r is the ergosphere. In the ergosphere,
all physical observers are dragged along by the rotation
of the black hole. By observing the solutions (2.4), we see
that for |J| > M1 the event horizons disappear, leaving a
metric that has a naked conical singularity at » = 0. At
a conical singularity spacetime is inextendible, that is,
it cannot be isometrically embedded into another larger
spacetime as a proper subset, geodesics are incomplete,
but curvature components do not diverge near the singu-
larity. We would like to exclude those solutions from the
physical spectrum. Therefore, the solutions that describe
a black hole should satisfy the conditions

M >0, |J| <ML (2.7)



By letting the black hole ”disappear”, we obtain the vac-
uum state. This is achieved by letting the horizon size go
to zero, that is, letting M — 0, which in turn, because of
(2.7), requires J — 0. The line element in this situation
is

ds? = —(r/1)2dt* + (r/1)"2dr® + r2d¢°. (2.8)
As M grows negative, we obtain solutions that posses
naked conical singularities, just as the 341 counterpart
has curvature singularities for negative mass. As before,
we exclude those solutions from the physical spectrum.
As we reach the values M = —1 and J = 0, we obtain
again a physical solution that has no singularities, as well
as no horizon, namely, anti-de Sitter space with the line
element

ds® = —(1+ (r/D)*)dt* + (1 + (r/1)*) " dr® + r?dg?.
(2.9)

We see, therefore, that anti-de Sitter space represent a
sort of "bound state”, separated from the black hole so-
lution by a mass gap of one unit. We cannot continu-
ously deform this state into one of the black hole states
because we would have to go through a series of naked
singularities, which we have previously excluded from our
configuration space.

3. BLACK HOLE AS ANTI-DE SITTER SPACE
FACTORED BY A SUBGROUP OF ITS
SYMMETRY GROUP

In the following discussion we show that the black hole
arises as a quotient space of anti-de Sitter space by a dis-
crete subgroup of its isometry group SO(2,2). We show
that the singularity obtained at » = 0 is a causal singular-
ity, and not a curvature singularity. We also analyse the
properties of anti-de Sitter space and the algebra so(2, 2).

3.1. Anti-de Sitter space in 241 dimensions

Anti-de Sitter space is a maximally symmetric pseudo-
Riemannian manifold of constant negative scalar curva-
ture. As such, it is an exact solution of Einstein’s field
equations for an empty universe with a negative cosmo-
logical constant. We can analyse some of its properties by
embedding it in a four dimensional flat space of signature
(- —++)

ds* = —du® — dv® + dz® + dy?, (3.1)
with the constraint of a hyperboloid
—u? —v? 42 oyt = -1 (3.2)

The embedding allows for an easier analysis due to sim-
pler properties of flat space. We can construct another

coordinate system that covers the entire manifold given
by transformations

u = [ coshy sinA, v =1 coshu cosA,

x = [ sinhy sinf, y =1 sinhy cosf,
with [ sinhy = /22 +y?2 and 0 < p < 00, 0 < X\ < 2.
Inserting the transformations into the flat space metric
gives

ds* = 1? [~cosh®udA\? + dp® + sinh®udo)] . (3.5)
Since A is an angle, anti-de Sitter space possesses closed
timelike curves. To remedy this, one does not identify
points A and A + 27. The space thus obtained represents
the universal covering of the original AdSs space, which
is usually referred to as AdS3 space. If this ”unwrapped”
A is denoted by t/l, and we define r = [ sinhyu, the line
element is given by

ds® = —(1+ (r/)*)dt* + (1 + (/D)) "Hdr® + r?de?,
(3.6)

which corresponds to the metric (2.1) with M = —1 and
J =0, as argued in the previous section.

3.2. Isometries

Anti-de Sitter space inherits the isometries of the em-
bedding space that preserve the hyperboloid for the same
reason that the isometries of S? are inherited from rota-
tions in R3. The group of rotations and boosts in four
dimensional space of signature (— — ++) is SO(2,2), so
we expect that this group is the group of isometries of
AdS5 as well. On account of this argumentation one con-
cludes that the Killing vectors of AdS3 are

0

Jap = _:Eaﬁa

l‘b@ (37)

where 2% = (v, u, z,y). Explicitly, we have 6 Killing vec-
tors, as expected for a space with constant curvature

0 0 0 0
Jo1—0%—ua, J02—$%+U%7
Jog = E_ng J —xg—i—uﬁ 3.8
08 =Yg oy’ 12 = Ton P (3.8)
0 0 0
J13—y%+u8fy, J23—y%—$@~

By using transformations (3.3) and (3.4), we see that
the vector Jp; = Oy generates time translations (because
of the ”"unwrapping” of the coordinate \), and Jog =
Oy generates rotations in the z — y plane. A general
Killing vector can be written as a linear combination of
the vectors (3.8), which is given by

1
£= iwabJab, wt = —ybe, (3.9)



The vector is thus determined by an antisymmetric ten-
sor in R*. These tensors can be classified according to
their eigenvalues by means of the Jordan-Chevalley de-
composition, given in the next subsection.

3.3. One-parameter subgroups of SO(2,2)

In order to obtain the black hole metric from the anti-
de Sitter metric, one identifies points along an orbit gen-
erated by the action of a subgroup of SO(2,2), that is,
by constructing a quotient space. The subgroup is shown
to be a discrete one-parameter subgroup defined by the
exponential mapping of a Killing vector. Therefore, the
task is to classify all one-parameter subgroups up to an
equivalence relation. Two one-parameter subgroups ¢(t)
and h(t) are equivalent if they are conjugate, i.e.

gt) =k 'h(t)k, ke SO(2,2). (3.10)
Since one-parameter subgroups are obtained by exponen-
tiation of generators of the Lie algebra so(2,2), which are
given by antisymmetric tensors w®, we can instead anal-
yse elements of so(2,2). In that case, the equivalence
relation from (3.10) translates into a transformation law
for wab
W' =k wk. (3.11)
Therefore, we classify antisymmetric tensors under the
equivalence relation (3.11).

Any linear operator M can be uniquely decomposed as
a sum of a linear operator S that is diagonalizable over
C (semi-simple) and a nilpotent operator N (NP =
for some p) that commute. This is called the Jordan-
Chevalley decomposition of M. The eigenvalues of S
coincide with those of M. If the eigenvalues are non-
degenerate, the operator M is diagonalizable and the op-
erator N is identically zero. In that case, the operator M
is completely determined by its eigenvalues (up to a sim-
ilarity operation). In cases where some of the eigenvalues
are repeated, the nilpotent part may not be zero and one
requires information about it as well to fully characterize
the operator M.

Utilizing this method one can classify the elements of
$0(2,2). Since the matrix wgy is real and antisymmetric,
there are restrictions on possible eigenvalues. Possible
types of so(2,2) operators according to their eigenvalues
are the following:

Type I (N =0)

I,: 4 complex roots A, —A, A", =A* (A # £A*).

Ibi 4 real roots )\17 —)\17 /\27 —)\2.

I.: 4 imaginary roots A1, —A1, Aa, —As.

I;: 2 real roots A\; and —\1, and two imaginary roots

A2, —Aa.
Type II (N # 0, N? = 0)

I1,: 2 real double roots, A and —A\.

IT;: 2 imaginary double roots, A and —A\.

I1.: 1 double root, zero, and 2 simple roots, A and —\

(real or imaginary).
Type IIT (N? # 0, N3 = 0): one quadrupole root, zero.
Type IV (N2 # 0, N* = 0): one quadrupole root, zero.
We can further subdivide type IIT accord-
ing to the mnorm of its only non-null eigenvec-
tor, which can be +1, thus obtaining types III*.
We can define two quadratic Casimir invariants

1
Ig = fe“dewawad.

b
I = w™wgp, >

(3.12)
Given that for all types of operators the eigenvalues
are characterized by two independent real numbers, the
knowledge of the two Casimir invariants (3.12) is equiva-
lent to knowing the eigenvalues for any type of operator.
Possible Killing vectors, as constructed in (3.9) are given
in table (1), alongside the corresponding Casimir invari-

ants. For a more detailed analysis, consult the appendix
Ain [1].

3.4. Identifications

Any Killing vector £ defines a one-parameter subgroup
of isometries by means of exponential mapping, which
defines the mapping of points in anti-de Sitter

P — e®P. (3.13)

If one takes o to be an integer multiple of 27, the map-
ping (3.13) defines the discrete subgroup used to make
the identifications necessary to construct the black hole
metric. Since the identification subgroup is a subgroup
of the isometry group of the anti-de Sitter space, the quo-
tient space obtained by identifying points on the orbits
generated by (3.13) inherits a well defined metric from
the AdS3 space with the same constant negative curva-
ture, and is therefore a solution to Einstein field equa-
tions as well. The construction of the aforementioned
quotient space results in identifying points on the same
orbit, which creates closed curves out of lines connecting
two points in the original space. In order for the quotient
space to be a physical solution to Einstein equations, it
must have a well defined causal structure, i.e. the newly-
obtained closed curves must not be timelike or null, since
they would imply time-travel. A necessary, and as will
be shown, sufficient condition for the absence of closed
timelike curves is that the Killing vector ¢ be spacelike,
ie.

£-£>0.

Not all Killing vectors fulfil the condition (3.14) every-
where in the original anti-de Sitter space, specifically the
one chosen to define the identification subgroup. There-
fore, the regions where the vector ¢ is timelike or null
must be excluded from the AdSs3 space. Because the
norm of Killing vectors is constant along their orbits, the
resulting space, denoted by (AdSs)’, is also invariant un-
der (3.13) and the quotient can still be taken.

(3.14)



FIG. 1. Classification of one-parameter subgroups of SO(2,2). [1]

Type | Killing vector % I ll I
I, | b(Jo1 + Joz) — a(Jpz + J12) b? — a2 b +a>
Iy | AMiJi2 + AoJos —%(A’f +A2) | A
L. | b1Jor + baJas %(b‘f + b3) by bo
IL, | MJoa + Ji2) + Jor — Jo2 — J1a + Jaa —A? A2
or
AM—Joz + Jiz) — Jia + Jaz (A F#0) A&t — 2
II; | (b—1)Jos +(b—1)Joz + Joz — J13 b b2
T+ | —Jp + Jog 0 0
111~ | —Jp + Joo 0 0

In general, one can find geodesics that go from a region
where £ - £ > 0 to a region where £ - £ < 0, that is, the
space (AdSs)’ is geodesically incomplete. The border
between these two regions, the surface £ - & = 0 can be
considered a true singularity in the quotient space, and it
is a singularity in the causal structure because continuing
past it would produce closed timelike curves. We see
that in 2+1 dimensions without couplings to matter there
are no possibilities for curvature singularities because the
Riemann tensor is everywhere regular and given by

R;uj/\p = _Z_Q(gukgup - guz\gup)' (3'15)

Also, the Kretschmann scalar, RW,\pR“”)"’, often used
to verify the presence of a curvature singularity, is iden-
tically zero everywhere.

3.5. Explicit construction of the black hole metric

In this subsection it is shown that the black hole metric
can be obtained by making the identifications (3.13) with
the Killing vector

§= %le - %Jos — Jiz + Jas,
where Jg, are defined in (3.8). If one uses the defini-
tion (3.9), the corresponding antisymmetric tensor w is
shown to have, by solving the equation (wap—Agas)I” = 0,
4 real eigenvalues, namely, +r, /Il and +r_/I. The cor-
responding Casimir invariants, as defined in (3.12) are

ol

I
(3.17)

(3.16)

2 4
I = —ﬁ(ri +r2)=—-2M, L= — T =

Here it is evident, as well as from the form of the met-
ric (1.1), that the black hole solution is characterized by

only two parameters, namely the mass and angular mo-
mentum, as indicated by the no-hair theorem.

According to the classification made in the previous
section, the Killing vector (3.16) is of type I, when r; #
r_, of type IT, when 7, = r_ # 0 and of type ITT" when
r4 = r_ = 0. Firstly, we consider the non-extreme case
where 72 — r? > 0. From the table (1) we see that the
general vector of type I, can be written as

r r_
/ +
§ = —Jiz — —Jos,

z l (3.18)

which is obtained from £ by an SO(2,2) transformation.
The norm of £’ is given by

I T%r 2 2 2 2 2
R R NI CAT)
which can also be written as
2 2
5/.5’:&( 2 4?) 442, (3.20)

using the constraint (3.2). The region £ -£’ > 0 gives the
inequality

_212

r- 2 2
-5 <u” —z° < +o0.
ry —r2

(3.21)
This region can be divided into an infinite number of
regions of three different types which are bounded by
null surfaces u? — 2% = 0 or v2 — y? = 0. A hypersurface
3 is said to be null if its normal vector is a null vector
(here normal means that it is orthogonal to all vectors in
T, C T,M). If a hypersurface is defined by setting a
function f to a constant, normal vectors are constructed
as

XM =g"V,f. (3.22)



To see that X* is orthogonal to any V € T3, we take
the derivative along the integral curve generated by V
V¥V ,, which lies on the hypersurface ¥. Since the func-
tion f is constant along 3, we have V¥V, f = 0, which
gives g, V¥ X#* = 0. We can therefore convince ourselves
that the surfaces u?—2% = 0 and v2—y? = I — (u?—22) =
0 are in fact null.

The regions into which we divide the region £ - & > 0
are:

Type I: Smallest connected regions with u? — 2 > [2
with y and u of definite sign. From the inequality one
can see that these regions have no intersection with the

= 0 plane. We call regions of this type ”the outer
regions”. The norm of the Killing vector (3.18) fulfils
r3 <¢ ¢ < oo

Type II: Smallest connected regions with 0 < u? —
22 < [? with u and v of definite sign. We call regions of
this type ”the intermediate regions”. The norm of the
Killing vector (3.18) fulfils r2 < ¢'- ¢ < r?.

2 2

Type IIT Smallest connected regions with l2 <
u? — 22 < 0 with 2 and v of definite sign. From the
inequality one can see that these regions have no inter-
section with the z = 0 plane. We call regions of this type
”the inner regions”, which exist only for r_ % 0. The
norm of the Killing vector (3.18) fulfils 0 < & - & < r2.
These regions are shown in figure (2).

From figure (2) one can see that each region of type I
has one region of type II in its future and one in its past.
For r_ # 0, two situations can occur for each region of
type II. It can have one region of type II and two regions
of type I in its future as well as one region of type II
and two regions of type III in its past, and vice versa.
Each region of type III has one region of type II in its
future as well as in its past. We can choose one of each
contiguous regions of type I, IT and III and parametrise
them with parameters (¢, 7, ¢) as follows (for definiteness
it is assumed that u,y > 0 in I, u,—v > 0 in II and
x,—v > 0 in III).

Region I r > ry:

(
(3.23)
(

Region I r_ <r < ry:

u = /A(r) cosh(t, ),
x = \/A(r) sinhg(t, ¢)
—B(r) coshi(t, ¢),
—B(r) sinhi(t, ¢).

)

(3.24)
y=—

v=—

Region ITI 0 < r < 7r_:

u = /—A(r) coshe(t, p),
z = /= A(r) sinho(t, 9),
y = —V/—=B(r) coshi(t,¢),
v = —+/—B(r) sinht(t, ).

(3.25)

The functions A(r), B(r), i(t, ¢) and ¢(t, ¢) are defined
as
(ot (-t
Al = (_> Bl =4 <_) /
H10)= 1t —r-0). 3(t,6) = J(-r—t +7.0).
(3.26)

By inserting (3.23)-(3.26) into the flat space metric, one
obtains
ds* = —(N*

V2dt? + (N1)"2dr? 4+ 12(do + N®dt)?,

(3.27)

with —oo < t,¢ < 400. The coordinate ¢ in this case is
not periodic. By inserting the transformations in (3.18),
one obtains

0
0¢’
If we construct the quotient space with the identification
group as defined in (3.13), that implies the identification

¢ = (3.28)

¢ — ¢+ 2km, (3.29)
because the operator e®¢’ resembles the operator of rota-
tions by the angle ¢. Therefore, the identification (3.29)
recovers the black hole metric, as claimed at the begin-
ning of this subsection.

As we have stated previously, we have only taken one of
each three regions to construct the metric (3.27), there-
fore the coordinate system t, r, ¢ does not cover the
entire region £ - ¢ > 0. One would have to repeat each
of the regions an infinite number of times to cover the
entire region ¢’ - ¢ > 0. This occurs because we have
used the universal cover of anti-de Sitter space for the
construction of the quotient space.

It is worthwhile to consider the extreme case where
r+ = r—. The above derivation cannot be repeated in
this case because the Killing vectors (3.16) and (3.18)
are not of the same type, according to the classification
in subsection (3.3). The vector ¢ is of type I1,, and ¢’ is of
type I with doubly degenerate roots. Hence, we cannot
map one to the other by means of a SO(2, 2) transforma-
tion. Nevertheless, we can argue that the identifications
defined by ¢ yield the extreme black hole metric without
explicitly constructing coordinate transformations that
bring & into 0. Firstly, we note that the metric (3.27)
is regular even if we set r_ = ry, that is, even when
J = MIl. In the construction of the black hole metric
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FIG. 2. (a) Section with surface y = 0 when r_ # 0. The solid lines are the curves £'-¢’ = 0, y = 0, which are timelike (normal
vector is spacelike). The dotted lines are £’ - &' = r2 (u2 -zt = 0), bounding regions IT and ITI. The lines formed by dots and
segments are £’ - &' =13, y=0.

(b) Section with surface z = 0 when r_ # 0. The surface x = 0 has £’ - ¢’ > 0 everywhere for r_ # 0. The horizontal solid lines
are the curves & - ¢/ = r2, 2 = 0. The lightlike lines formed by dots and segments are ¢’ - ¢’ = r3. The region & - ¢ >0,z =0
splits into disconnected components separated by the horizontal lines and containing two regions I and two regions II.

(c) Section with surface y = 0 where r_ = 0. The solid lines have £ -¢’ = 0, y = 0. The lines formed by dots and segments have
¢ ¢ =r3. The region ¢ - ¢ > 0 splits into disconnected components separated by the horizontal lines with each component
consisting of two regions IT (and two regions I, not seen in this figure since they have no intersection with y = 0). Regions ITI
have disappeared because of r_ = 0. Note that the Killing vector & is now tangent to the lightlike curves u? — 2% =0, y = 0.
In all three figures A is the ”time” coordinate defined in (3.3). [1]



we have observed the case when ri — 72 > 0 and be-
fore ¢ was identified as an angle, it described a portion
of the original anti-de Sitter space, and would so even
in the limit 74 —r_ — 0. Secondly, 0y is a Killing vec-
tor regardless of the values of 4 and r_. Therefore, its
Casimir invariants remain the same as defined in (3.17).
By looking at table (1) and comparing the correspond-
ing Casimir invariants, one can see that the vector 9, is
either of type I, with coincident roots or type 1I,. To
convince ourselves that it is of type II,, we look at the
norm of the vector &, which is 7’3_, and the norm of Oy,
which is r2. The first is a constant, which corresponds to
the type I, for degenerate roots, whereas the norm of a
type 11, vector is not a constant in general. Therefore,
the vector Jy is of type II, and corresponds to the vector
(3.16).

We should also verify that our construction has no
closed causal curves, that is, that there are no non-
spacelike, future-directed curves joining a point and its
image generated by e?*7¢ in the region &-¢ > 0 of anti-de
Sitter space. Since the surfaces r = r4 and r = r_ are
null, a causal curve which leaves through either one of
it can never re-enter. Since we have required that the
vector £ be spacelike, the image of a point generated by
¢ has to remain in the same region as the starting point,
because they are bounded by null surfaces. Therefore,
we can inspect the regions of type I, IT or ITI separately.

In each of the regions the metric takes the form

ds® = —(N*)2dt* + (N*)2dr? + r?(d¢ + N?dt)?,
(3.30)
where —o0 < ¢ < 0o. Consider a causal curve t(A), 7(\)
and ¢(\), where the parametrization is such that the
tangent vector (dt/d\,dr/d),d¢/d\) does not vanish for

any value of A. For a curve to be causal, it has to satisfy
the condition

o (3 o (5

dt  do\>
+r? <N¢+¢) <0.

(3.31)

d\  dA

The identification joins points (tg, 7o, ¢o) and (to, 70, o+
2km). For some value of A, dt/d) is zero since we return
to the same point in time. If (N+)2 > 0, it follows from
(3.31) that dr/d\ = d¢/dX = 0, leading to a contradic-
tion. On the other hand, if (N+)2 < 0, the fact that
dr/d\ = 0 implies that dt/d\ = d¢/dX = 0, which is also
a contradiction.

If we were to keep the region £ - £ < 0, we could exit
and re-enter the regions of type III through the surface
&+ & =0, which is timelike (has spacelike normal vector)
for J # 0 (for J = 0 it is null, so it wouldn’t be pos-
sible). If an observer is located at r > ry, for them it
doesn’t really matter if we include the region £ - ¢ < 0
because r = ry is the event horizon in any case, and an
outside observer cannot probe spacetime inside the event
horizon.

3.6. Smoothness of the quotient space

In this section we are concerned with the question of
smoothness, that is, whether or not the quotient space
inherits the smoothness of anti-de Sitter space. We verify
this by proving that the quotient space is a Hausdorff
manifold.

Quotient spaces are Hausdorff manifolds if and only
if the action of the identification subgroup H =
{exp(2kw€), k € Z} is properly discontinuous, i.e., if the
following properties hold:

(i) Each point @ € AdS has a neighbourhood U such
that (exp(2kn&))(U)NU =0 for all k € Z, k # 0;

(ii) If P,Q € AdS do not belong to the same orbit of H
(meaning that there is no k for which (exp(2kn€))(P) =
@), then there are neighbourhoods B and B’ of P and
Q respectively such that (exp(2kw€))(B)N B’ = ( for all
kel

Firstly, we define the Euclidean norm on R* as

(=) + (=) + (. —2) + (y—y)2
(3.32)

The norm of the Killing vector

(0 (2,2
&= ; <u8x + x&u) i (Uay + Yae (3.33)
is bounded from bellow by r_ (we have used the condition

(3.2)).

Let Qo be a point of AdS with coordinates
(ug,vo, T, Yo) that satisfies u2 + v — 23 — y2 = % Its
successive images @), are given by

uy, = (cosh na)ug + (sinh na)zg, (3.34)
xy, = (sinh na)ug + (cosh na)xo, (3.35)
vy, = (cosh nB)vy — (sinh nB)yo, (3.36)
Yn = —(sinh nB)ug + (cosh npB)yo, (3.37)

with n € Z, a = 2nry/l, § = 2nr_/l. The Euclidean
distance dg(Qo,@n), (n # 0) is shown to be bounded
from bellow

(tp — u0)2 + (T — xO)Q + (v — U0>2 + (Yn — y(z))

> [ (un — 1) = (&n — 20)?| + [(vn — v0)* = (yn — 13)
= 2(cosh na — 1)|ug — x3| + 2(cosh nf — 1)|v§ — yg|
> 2(cosh f — 1)[|ug — 3| + |vg — w5l

> 2(cosh B — 1)|ug — x2 +v3 — 7|

= 20%(cosh 3 — 1), (3.38)

which gives dg(Qo, Qrn) > 11/2(cosh 8 —1) > 0, (n # 0).
We see that the bound does not depend on Q.

Let P be another point of AdS with coordinates
(up, Vo, To,Yo). From the third step in the previous cal-
culation one can see that the distance between P, and



Qo goes to infinity as n — +oo. Therefore, there is a
minimal ”distance of approach” of the orbit of Py to Qg
(it may even be zero, that is, there can be a k for which
P, = Qo) and it varies continuously as one varies P,
continuously.

Let U be the open ball centred around ()¢ with radius
r < %\/Q(COSh B —1). The image of any point inside
this ball by exp(2kn&), k # 0 cannot be inside the ball
according to the bound calculated in (3.38). This proves
(i).

To prove (ii), we look at a point Py that cannot be
mapped to Qp by any exp(2kw€). In the open ball U
there can be either one image of Py or none at all. In
the latter case, points sufficiently close to Py would also
not have an image in U, which automatically proves (ii).
Assuming that there is one image of Py in U, say Py,
we observe an open ball B’ centred around Py that is
completely in U. All the images of the points in B’ lie
outside U. Let B” be an open ball around @ such that
B’NB’ = (). Then B = (exp(—2kn§))(B’) and B” satisfy
(ii).

For mathematical simplicity we have used the sim-
pler version of the Killing vector &, (3.18), which is ap-
propriate for |J| < MI. It would be simple to verify
the result holds also for the case J = MI. It would
also be worthy to note that the calculation would fail if
there was no angular momentum because then the vec-
tor & = ry/l(ud, + x0,) would vanish along the line
u = x = 0, which is the line of fixed points. Therefore,
the bound on the distance would be zero and both (i)
and (ii) would fail if we were to choose the point Qp on
the line u = x = 0.

3.7. Killing vectors

We have started our construction of the black hole met-
ric from the anti-de Sitter space that possesses 6 Killing
vectors, the maximum for a three-dimensional manifold.
By inspecting the metric of the black hole, we have con-
cluded that it possesses two Killing vectors, 0; and 0y,
which commute. One might wonder if there are other
Killing vectors. In order for an AdS vector field 7 to in-
duce a well defined vector field in the quotient space, n
must be invariant under the transformations of the iden-
tification subgroup, that is

(™) *n =,

so that we do not end up with a multivalued vector field
at a single point. Using the definition of a pushforward
on a vector field, (3.39) turns into

(3.39)

e*™Ene 2 = g, (3.40)
that is

(2™ 5] = 0. (3.41)

We can perform the aforementioned Jordan-Chevalley
decomposition of &£

£=s5+n, (3.42)

where s is the semi-simple part, n is the nilpotent
part, and the two commute. For exp(27{) the semi-
simple part is exp(2ws), and the nilpotent part is
exp(2ms)[exp(2mn) — 1]. If a matrix commutes with
exp(27€), it must separately commute with exp(27s) and
exp(27n) because the semi-simple and nilpotent parts of
a matrix can be expressed as polynomials of that ma-
trix. If a matrix commutes with exp(27s), whose eigen-
values are real and positive (because eigenvalues of £ and
s are real, as discussed previously), it also commutes with
log(exp(27s)) = 2ws. We can also express n as a polyno-
mial of [exp(27n)—1], which means that n also commutes
with 7. In conclusion, we have the following result

[n,n] =0=[¢,n]=0.

We have therefore reduced the problem of finding all
Killing vectors to finding all elements of so(2,2) that
commute with . In order to do that, we first perform
the decomposition so(2,2) = so(2,1)®so(2,1) (most eas-
ily seen by observing the commutation relations of the
Killing vectors (3.8)). The vector £ then takes the form

e=etye, (3.44)

where we denote the self-dual part as £+, and the anti-
self-dual as £€~. We can perform the same decomposition
for n. Equation (3.43) is equivalent to

€, nt1=0, [¢,n7]=0,

because the self-dual and anti-self-dual parts commute,
given that they belong to different subspaces of so(2,2).
The three dimensional algebra so(2,1) is given by the
commutation relations

[Ls,Ly] = +L4,
Ly, L_]=—Ls.

[s,n] =0, (3.43)

(3.45)

(3.46)

Therefore, the only elements that commute with a non-
zero element of so(2, 1) must be multiples of that element.
Since both ¢* are non-zero for the black hole, we have

nt=aft, T =6, a,fER (3.47)

In conclusion, the general Killing vector is a linear combi-
nation of the two Killing vectors we have already found,
ﬁt and 5‘¢

4. GLOBAL STRUCTURE

The next step is to observe the global properties of the
241 black hole by constructing Kruskal coordinates and
Penrose diagrams. We will find some similarities with the
3+1 dimensional counterpart, which we have anticipated
at the beginning of this paper.



4.1. Kruskal coordinates

In this section we wish to maximally extend the space-
time of the black hole to cover the entire manifold. We
see that the line element

ds® = —(N1)2dt? + (N1)2dr? + 12(d¢ + N?dt)?,

(4.1)

has a coordinate singularity for (N1)2? = 0, that is for
r = ry. We therefore try to construct a coordinate patch
around those values in order to bring the metric (4.1) to
the form

ds® = Q*(du® — dv®) 4 r*(d¢ + N?dt)?, (4.2)

where ¢t = t(u,v). We see that the metric (4.2) has no

singularities of any kind.
Firstly, we start with r.

areound ry are defined by
Patch K :

The Kruskal coordinates

. er <y Uy = v/A(r) sinh a4 t, (4.3)
- Ve = VA(@r) cosh at,
Y << oo Uy = /—A(r) cosh ayt, (4.4)
* Vi = +/—A(r) sinh ayt,
with
o r_/ry
Alr) = ( TT:T”) (T - T‘) . (45)
+ r T_
2 _ .2
ri —re
@ = "

The angular coordinate on K, denoted by ¢, is cho-
sen so that
N®(ry) =0. (4.6)

By inserting the coordinate transformations into (4.1),
we recover the metric (4.2) with the factor

2 2 2 r—/r4
N e e
pr— 4.
() aﬁ_ﬂlz e (A7)

for r_ < r < co. Because of the condition (4.6), the term
N?dt remains regular at r = 7.

Analogously, we construct the coordinate patch around
r=7_ as

Patch K_:

O<r<r_ U-=VB(r) C.OSh a-t, (4.8)
V_ = /B(r) sinh a_t,
Uy = +/—DB(r) sinh a_t,
_ 4.9
T STSTH {VJ,_\/B(T) cosh a_t, (4.9)

with
A T4y r/r=
B(r) - ( > < ) L (10)
r4r_ —r+ry
-
- 12r_

In this case we choose the coordinate ¢_ so that
N?(r_) = 0. We again obtain the metric (4.2) with the
factor

(2 —r2)(r+r_)? (g —r\"
OP(r) = =+ 4.11
(r) a? r2[2 ry T (410

for0<r<ry.

We denote the overlap of the patches (the region r_ <
r < ry)as K. We can see that the Kruskal patches would
not exist in the case ry = r_, and that we would only
need one patch, K to cover the entire space when there
is only one root J = 0. As in the 341 case, we obtain the
maximal extension by glueing together an infinite num-
ber of K and K_ patches. We refrain from illustrating
Kruskal diagrams and move forward to constructing Pen-
rose diagrams, as they are more illuminating.

4.2. Penrose diagrams

Penrose diagrams are frequently used to illustrate the
causal structures of spacetimes containing black holes.
The goal of Penrose diagrams is to represent the entire
spacetime on a finite graph, all the while keeping light
cones at 45~ (in a unit-independent form this condition
means that we want coordinates, for example T and R,
in which null rays satisfy dT'/dR = 41). The spatial
dimension is represented horizontally, and the temporal
vertically. The Penrose metric is thus locally conformally
equivalent to the black hole metric, meaning that they
differ by a multiplicative factor, given by the square of a
smooth, real-valued function.

In the case of r4 # r_ we achieve this by the change
of coordinates

U+V =tan (p—;—q) U-V =tan (p;q) . (4.12)

The inverse transformation is conventionally defined so
that the inverse tangent lies between —m/2 and /2.

Consider first the case J =0, i.e. r— = 0. From (4.12),
(4.3) and (4.4) one can see that r = oo is mapped into
the lines p = +7/2, the singularity » = 0 is mapped into
the lines ¢ = 4+m/2, and the horizon r = r is mapped
into p = +q. Both Kruskal and Penrose diagrams are
shown in figure (3).



(a) (b)

FIG. 3. (a) Kruskal and (b) Penrose diagrams for the case
J=0.[1]

Next one might consider the rotating case. We perform
the same coordinate transformations (4.12), but now for
both patches K| and K_ separately. Therefore, we get
a Penrose diagram for each patch. Both diagrams con-
tain the overlapping region K and those parts should be
identified. As we have stated before, we need to glue
together an infinite number of patches to get the maxi-
mal extension of the black hole. The starting black hole
metric covered only the region K and had one region of
type III in figure (4.a) or I in figure (4.b). We now in-
clude both regions in each diagram so that the maximal
extension is given in (4.c).

4.3. Extreme cases M =0 and M =|J|/I

Firstly, we inspect the M = 0 case. The metric is
ds? = —(r/1)2dt* + (r/1)"2dr® + r?d¢*. (4.13)

We now define dimensionless null coordinates (meaning
that the corresponding one-form has zero norm)

u=t/l—1/r, v=—t/l—1/r (4.14)
The metric in these coordinates is
ds* = r’dudv + r’d¢?. (4.15)
We now define the Penrose coordinates as
u = tan Pty , v=tan P9y, (4.16)
2 2
The relationship between r, p and q is
r=— lw, (4.17)
sin p
and the metric takes the form
alp2 — dq2
ds* = > ——— +r?d¢>. (4.18)

sin“p

10

{ b) Patch K,

L=l

rs

r&m

(c)

FIG. 4. Penrose diagrams for J # 0: (a) Patch K_; (b) Patch
K; (c) Maximally extended black hole solution. [1]

From (4.17) we see that the origin is mapped to segments
of the lines p = 7+ ¢ running from p = 0 to p = m, while
spacelike infinity is mapped to p = w. The corresponding
Penrose diagram is depicted in figure (5.a).

Now we look into the case M = |J|/I, that is, r_ = r.
The metric is

(r? — 71)2 2 212
dt® + :

ds* = —
s r2]2 (r2 —ry)

Sdr® + r?(N?dt + dg)?,
(4.19)

where r = ry = I4/M/2 is the horizon. In this case we



define the null coordinates

u=t+r*, v=—t+1% (4.20)

where r* is the so-called tortoise coordinate, defined as

7"*7"4_
T+ Ty

. (4.21)

r**/ dr =l +£ln
) (NH)2 T 2(r2 —ri) dry

We define the Penrose coordinates in the same way as in
the previous case, (4.16), and we obtain the line element

A(NS)22(dp? — dg?)

ds® =
(cos p + cos q)?2

+r2(N?dt + do)?. (4.22)

The relationship between r, p and ¢ is given by

Cos p+cos q —rl l r—ry

2(r2 —r3) + ar,

(4.23)

sin p A

From the previous relation one can see that the the lines
r =17y are at +45 , r = 0 is at p = (km)* (meaning that
we approach that value from above), and the spacelike
infinity is at p = (k) (meaning that we approach that
value from below). We divide the spacetime into regions
0 <7 <ryandry <r < oo. Both Penrose diagrams
are triangles with line segments corresponding to r = r
at +£45° and vertical lines corresponding to 7 = 0 in the
first case and r = oo in the second case. To achieve
the maximal extension, one must glue an infinite number
of these triangles together, which we glue along the lines
r = r4. In order to do that, the two types of regions must
have a different determination of the arctangent in (4.16),
that is, they must take values in different intervals. For
example, we can choose that the first region is bounded
by p=0(r=0),p+q=m and p— ¢ = 7, whereas the
other region is bounded by p = 7 (r = ), p+ ¢ ==
and p — ¢ = —m. Once this is done, one can safely cross
the line r = r, because the zero of N+ is cancelled by
the zero in the denominator of the metric (4.22). The
Penrose diagram is depicted in figure (5.b).
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{a) M=Q=4 (b M=lasL|wD

FIG. 5. Penrose diagrams for the extreme cases: (a) M = 0;
(b) M = [J|/1. [1]

5. CONCLUSION

In this paper we have analysed a 2+1 dimensional spin-
ning black hole with no charge that is a solution to Ein-
stein’s field equations in vacuum with a negative cos-
mological constant. We have shown that it can be con-
structed as a quotient space of anti-de Sitter space by a
discrete subgroup of its isometry group SO(2,2). The so-
lution does not display a curvature singularity, unlike the
3+1 dimensional black hole, and is also not asymptoti-
cally Minkowski, but rather anti-de Sitter. Nevertheless,
it displays some properties similar to the 341 black hole
which makes it worthwhile the analysis, mostly as a tool
for better intuition, due to the simpler calculus. For the
same reason, the hope is that it can provide a better
insight into quantum gravity as well.
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