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Here we look at the isometries, the distance preserving transformations, of spacetime. This leads
us to two important properties: isotropy and homogeneity which we explore through Lie groups and
algebras resulting in the Bianchi cosmological models.

I. INTRODUCTION

Our goal here is to look at the isometries of spacetime
and all the consequences they entail. These wonderful
consequences are, namely, the isotropy and homogeneity
of the spacetime. We will start off easy by looking at
the maximally symmetric spacetimes, but will abandon
them fairly quickly for they are ’not reasonable models of
the real world’[1]; p.323. After that come the Robertson-
Walker metric and the Friedmann equations where we
will leave the universe homogeneous and isotropic in
space, but let it evolve in time.

The bulk of the work here, however, will be in ex-
loring the generalization of these concepts via Lie groups
and algebras, moving over to the homogeneous spaces
and Killing vectors and all the way over to the Bianchi
cosmological models and its many types, finally wrap-
ping it all up with the generalized Friedmann equations.
So, let’s get started.

II. MAXIMALLY SYMMETRIC UNIVERSES

Contemporary cosmological models are based on the
Copernican principle; the idea that the universe is pretty
much the same everywhere. The Copernican principle
can be more formally understood through two math-
emtically precise properties; isotropy and homogeneity.
Their rigorous definitions are left for later in the text, for
we do not need them here. Suffice to say isotropy states
the space looks the same no matter in what direction you
look and homogeneity is the statement the metric is the
same throughout the manifold. The isotropy and homo-
geneity imply the space is maximally symmetric and we
can write the Riemann tensor as[1];Eq.8.1:

Rρσµν = κ(gρµgσν − gρνgσµ), (1)

where κ is the measure of the Ricci curvature:

κ =
R

n(n− 1)
, (2)

and n is the dimension of the space in question. We have
3 spacetimes of maximal symmetry: Minkowski (κ = 0),
de Sitter (κ > 0) and anti-de Sitter (κ < 0), the details of
which are not as interesting here. We will however check

if they are the solutions of the Einstein’s equation. Start
by taking the trace of Eq. (1):

Rµν = 3κgµν , R = 12κ. (3)

The Einstein tensor is then:

Gµν = Rµν −
1

2
Rgµν = −3κgµν . (4)

The Einstein’s equation Gµν = 8πGTµν then implies the
energy-momentum tensor is proportional to the metric:

Tµν = − 3κ

8πG
gµν . (5)

The energy density and pressure are given by:

ρ = −p =
3κ

8πG
. (6)

If ρ is positive, we get the de Sitter solution, if it is
negative, the anti-de Sitter. But in our universe, we have
ordinary matter and radiation, as well a possible vacuum
energy. Our maximally symmetric spacetimes are not
compatible with a dynamically interesting amount of
matter and/or radiation.

The maximally symmetric spacetimes are, therefore, not
reasonable models of the real world so why bother with
them here? Simply; to show how fundamental isotropy
and homogeneity are in considering cosmological models.
Now we will discard these properties in time, but keep
them in space.

III. ROBERTSON-WALKER METRICS

Consider our spacetime to be R× Σ, where R repres-
ents the time direction and Σ is a maximally symmetric
3-manifold. The spacetime metric then takes the form
of:

ds2 = −dt2 +R2(t)dσ2, (7)

where t is the timelike coordinate, R(t) is a function
called the scale factor and dσ2 the metric on Σ. We now
look at the maximally symmetric Euclidean 3-metrics γij
that obey:

(3)Rijkl = k(γikγjl − γilγjk), (8)
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which is just Eq. (1) written with different leters,

k =(3) R/6 (9)

for convenience and the superscript (3) to remind us it is
associated with the 3-metric. The Ricci tensor is then:

(3)Rjl = 2kγjl. (10)

If the space is to be maximally symmetric, then it will
certainly be spherically symmetric and have the metric
of the form:

dσ2 = γijdu
iduj = e2β(r̃)dr̃2 + r̃2dΩ2, (11)

where r̃ is the radial coordinate and dΩ2 = dθ2 +
sin2 θdφ2. The components of the Ricci tensor are then:

R11 =
2

r̃
∂1β,

R22 = e−2β(r̃∂β − 1) + 1,

R33 = [e−2β(r̃∂β − 1) + 1] sin2 θ.

(12)

Using (9) we can solve for β:

β = −1

2
ln(1− kr̃2). (13)

And the 3-metric is:

dσ2 =
dr̃2

1− kr̃2
+ r̃2dΩ2. (14)

k sets the curvature and it is common to normalize this
so k ∈ {−1, 0, 1}. The choice k = −1 corresponds to
constant negative curvature on Σ and is called ’open’,
the k = +1 to positive and is called ’closed’. The k = 0
corresponds to zero curvature on Σ and is called flat. It is
beneficial to introduce a new radial coordinate χ defined
by:

dχ =
dr̃√

1− kr̃2
, (15)

which can be solved for r̃ and gives sin(χ) for k = +1,
sinh(χ) for k = −1 and χ for k = 0. For the flat case,
k = 0, the metric on Σ becomes:

dσ2 = dx2 + dy2 + dz2, (16)

which is just the R3. For the closed case, k = +1, we
get:

dσ2 = dχ2 + sin2 χdΩ2, (17)

which is a metric of a 3-sphere. And for the open case,
k = −1, we obtain:

dσ2 = dχ2 + sinh2 χdΩ2, (18)

which is a three-dimensional space of negative curvature.
When we put it all together, we can write the metric for
our R× Σ as follows:

ds2 = −dt2 +R2(t)

[
dr̃2

1− kr̃2
+ r2dΩ2

]
(19)

This is the Robertson-Walker metric. We can work with
the dimensionless factor a(t) = R(t)/R0, a coordinate
with dimensions of distance r = R0r̃ and a curvature
parameter with dimensions of (length)−2 κ = k/R2

0. The
metric is then:

ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2dΩ2

]
(20)

Setting ȧ ≡ da/dt, we get the nonzero components of the
Ricci tensor:

R00 = −3
ä

a
,

R11 =
aä+ 2ȧ2 + 2κ

1− κr2
,

R22 = r2(aä+ 2ȧ2 + κ),

R33 = r2(aä+ 2ȧ2 + κ) sin2 θ.

(21)

The Ricci scalar is:

R = 6

[
ä

a

(
ȧ

a

)2

+
κ

a2

]
. (22)

IV. THE FRIEDMANN EQUATIONS

We can derive the Friedmann equations from the
Robertson-Walker metric and the Einstein equation. Let
us model matter and energy by a perfect fluid. Let us
set the four velocity to:

Uµ = (1, 0, 0, 0), (23)

and the energy-momentum tensor:

Tµν = (ρ+ p)UµUν + pgµν (24)

with one index raised takes the form:

Tµν = diag(−ρ, p, p, p). (25)

Then, the trace is:

T = Tµµ = −ρ+ 3p. (26)

The Einstein equation can be written in the form:

Rµν = 8πG(Tµν −
1

2
gµνT ). (27)

The µν = 00 equation is:

−3
ä

a
= 4πG(ρ+ 3p), (28)

and the µν = ij equations give:

ä

a
+ 2

(
ȧ

a

)2

+ 2
κ

a2
= 4πG(ρ− 3p). (29)
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Using Eq. (28) we can do away with the second deriv-
atives in Eq. (29) and we finally obtain the Friedmann
equations: (

ȧ

a

)2

=
8πG

3
ρ− κ

a2
,

ä

a
= −2πG

3
(ρ+ 3p).

(30)

Here we can introduce a few useful parameters. The
Hubble parameter is defined as:

H =
ȧ

a
. (31)

The value of the Hubble parameter at the present time
is the Hubble constant H0 = 70 ± 10 kms−1Mpc−1.
The cosmological scales are set by the Hubble length
dH = H−1

0 c = 3 × 103h−1Mpc and the Hubble time
tH = H−1

0 = 9.78×109h−1yr. Another useful parameter
is the density parameter:

Ω =
8πG

3H2
ρ =

ρ

ρcrit
, (32)

where the critical density is defined by ρcrit =
3H2/(8πG). We have:

ρ < ρcrit ↔ Ω < 1 ↔ κ < 0 ↔ open,

ρ = ρcrit ↔ Ω = 1 ↔ κ = 0 ↔ flat,

ρ > ρcrit ↔ Ω > 1 ↔ κ > 0 ↔ closed.

(33)

The density parameter tells us which of the three
Robertson-Walker geometries describes our universe.

Okay, by now we have forgotten all about the iso-
tropy and homogeneity. So let’s get back to them. We
can start with a gentelman called Lie.

V. LIE GROUPS AND LIE ALGEBRAS

Definition: A Lie group, G, is a topological space that
has the following properties:

1.G is a manifold.
2.The group multiplicationm : G×G 7→ G is smooth.
3. Inversion i : G 7→ G is smooth.

An example of one such group is the SO(3) group. To
show it has these three properties is not really that hard.
The multiplication and inversion are continuous opera-
tions. Each element in SO(3) corresponds to rotation
and rotations are continous operations. SO(3)[2]; p.402

is equal to the manifold P3 and we have satisfied all 3
conditions for it being a Lie group. Moving on.

Definition: A real (or complex) Lie algebra, g is
a (finite) dimensional vector space equipped with a

bilinear map [−,−] : g × g 7→ g which satisfies the
following properties:

1. [X,X] = 0∀X ∈ g
2. Jacobi’s identity:

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y]] = 0.

An example of a Lie algebra is the space of all n × n
matrices gl(n) with the bilinear map defined by
[A,B] = AB − BA. The Lie algebra of SO(3), usually
written as so(3) consists of all skew-symmetric matrices
(those with [A,B] = −[B,A]).

There is a connection between these two concepts;
a Lie algebra is a vector space, while a Lie group is a
group manifold. We have the following theorem.

Theorem: Let G be a Lie group. The tangent
space of G at the identity element, TeG, is a Lie algebra,
i.e.

g = TeG.

We can, by calculating the tangent space of a Lie group,
find a corresponding Lie algebra.

Each element of a Lie algebra can be considered as
a vector at the unit element of a manifold, so if X is a
vector in the Lie algebra, we can define the local flow φt
of the vector X by:

(φt)
−1 ∂φt

∂t
= X,

φ0(e) = e,
(34)

where e is the unit element. The solution to these equa-
tions is an exponential map[2];sec.6.9 :

φt(e) = exp(tX). (35)

We can then define the exponential map exp : g 7→ G as:

exp(X) = φ1(e) ∈ G, (36)

and use it to get from the Lie algebra to the Lie group.
The inverse can also be defined:

log : U ⊂ G 7→ g,
log ≡ exp−1

∣∣
U
.

(37)

Let {Xi} be the basis for the Lie algebra g. We define
the structure constants Ckij by:

[Xi,Xj ] = CkijXk, (38)

which are antisymmetric in the lower indices.
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VI. HOMOGENEOUS SPACES

Let us now introduce the concept of homogeneous
spaces. Simply put, a homogeneous space is a space
where you can get from one point to any other point
using an isometry. Firstly, let us define an isometry.

Definition: Isometry. Let M and N be metric
spaces with metrics dM and dN . A map φ : M → N
is called an isometry or distance preserving if for any
p, q ∈M one has dN (φ(p), φ(q)) = dM (p, q).

Now consider a space M with a metric g. We
define the isometry group Isom(M) by:

Isom(M) ≡ {φ : M →M |φ is an isometry}. (39)

The isometry group will, in general, be a Lie group
(Myers–Steenrod theorem[3]). A Killing vector field
generates an isometry[2];p.422, i.e. the Killing vector field
forms a finite dimensional vector space isomorphic to
the Lie algebra of Isom(M).

Now we can define the isotropy subgroup of a point
p ∈M by:

Ip(M) = {φ ∈ Isom(M)|φ(p) = p}. (40)

I.e., the isotropy subgroup is the subgroup of the
isometry group that leaves the point p fixed. Finally we
can define a homogeneous space.

Definition: Homogeneous space. If for each pair
of points p, q ∈ M there exist φ ∈ Isom(M) so that
φ(p) = q, we say thatM is a homogeneous (or transitive)
space.

Let the dimension of Isom(M) be n and Ip(M) be m.
A necessary condition for M to be homogeneous is that
n > dim(M). We call M simply transitive if it is ho-
mogeneous and n = dim(M) and multiply transitive
if it is homogeneous and n > dim(M). E.g. the
maximally symmetric spaces are multiply transitive.

Consider the subspace of M given by:

Hp = {q ∈M |q = φ(p) for aφ ∈ Isom(M)}, (41)

for a point p ∈ M . The subspace Hp is called the orbit
of p under the isometry group. All the points we can
reach by the action of an isometry on p, is in the orbit
of p. If Hp = M , M is transitive.

By now we have seen what Lie algebra and groups
are, how are they connected and what all of this has
to do with homogeneous spaces. Let us now construct
spaces that are simply transitive. If we consider simply
transitive spaces, there exist a set of Killing vetor fields
that obey:

[ξi, ξj ] = Dk
ijξ. (42)

These can be taken to be the basis vectors. However,
it is more convenient to define a basis ei at a point p.
We define a left invariant frame by Lie transporting this
basis around the space:

£ξjei = [ξj , ei] = 0. (43)

Since:

£ξj [ei, ek] = 0, (44)

for some constants CKij we have:

[ei, ej ] = Ckijek. (45)

One might wonder if these two Lie algebras are just dif-
ferent representations of the Lie algebra of the isometry
group. She might be discouraged to try to prove it in the
face of some tedious math (tedious to type it out any-
how), but here goes: Assume the vector fields ξi and ej
coincide at the point p. Then there exists an invertible
matrix αij such that:

ej = αijξi, α
i
j

∣∣
p

= δij . (46)

In general, the matrix is dependant on the position, but
the structure constants are not. We have:

£ξjei = [ξj , ei] = αki [ξj , ξk] + ξj(α
k
i )ξk =

= (αliD
k
jl + ξj(α

k
i )ξk) = 0,

(47)

so that:

Dk
ij = −βljξi(αkl ), (48)

where βlj = (α−1)lj , and, similarly:

Ckij = −αljei(βkl ). (49)

Since the structure constants are not dependent on the
position, we can evaluate them at the point p where βlj =

αlj = δlj and ξi = ei. The derivative of βkl can be written
in terms of the derivative αkl :

ξi(β
k
l ) = −βknβml ξi(αnm). (50)

At the point p this reduces to:

ξi(β
k
l ) = −ξi(αkl ), (51)

giving us:

Ckij = −αljei(βkl ) = ξi(α
k
j ) = −Dk

ij . (52)

The tedious proof is done and done.

We say the frame ej defines a left invariant frame
and the frame ξi a right invariant frame. Now we can
construct a homogeneous space as follows. Take the
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structure constants of a Lie algebra, Ckij , and define a
left invariant frame:

[ei, ej ] = Ckijek. (53)

If ωk is the dual basis to ek, then:

dωk = −1

2
Ckijω

i ∧ ωj . (54)

These basis 1-forms will be left invariant £ξiωk = 0 and
using them we can equip the space with an invariant met-
ric given by:

ds2 = gijω
i ⊗ ωj , (55)

where the metric coefficients gij are constants. This met-
ric is a homogeneous metric on the said space.

VII. THE BIANCHI MODELS

In cosmology, we are interested in three-dimensional
spatial sections. The Bianchi models are cosmological
models that have spatially homogeneous sections, invari-
ant under the action of a three-dimensional Lie group.
We assume the four-dimensional space to be:

M = R× Σt, (56)

where R is the time variable and each Σt is labeled with
the time variable. Σt is a homogeneous three-dimensional
space by construction. We have three different possibil-
ities:

1. dim Isom(M) = 6 : Σt is a multiply transitive space of
maximal symmetry. These are the
Friedmann-Robertson-Walker models.

2. dim Isom(M) = 4 : Σt is a multiply transitive space
with an isotropy subgroup Ip(M) = SO(2).

3. dim Isom(M) = 3 : Σt is a simply transitive space.

All of the spaces in the categories 1 and 2 bar one (the one
where Σt has the covering space R× S2) has a subgroup
H ⊂ Isom(M) such that H acts simply transitive on
Σt. So we can just consider the simply transitive spaces.
What possibilities do we then have for Σt? We need a
classification of three-dimensional Lie algebras. The clas-
sification in question is called the Bianchi classification
and each Lie algebra is labeled by a number I-IX. By
using one of these algebras we can construct a spatially
homogeneous cosmological model, i.e. a Bianchi model.
The table listing the Bianchi models is given in Table 1.

Bianchi Type ai n Structure constants
I 0 0 Cijk = 0

II 0 diag(1,0,0)
C1

23=−C1
32 = 1,

rest of Cijk = 0

III
1
2δ

3
i − 1

2A
C1

13=−C1
31 = 1,

rest of Cijk = 0

IV δ3i diag(1,0,0)
C1

13=−C1
31 = 1,

C1
23=−C1

32 = 1,
C2

23=−C2
32 = 1

V δ3i 0
C1

13=−C1
31 = 1,

C2
23=−C2

32 = 1,
rest of Cijk = 0

VIh h̃
2 δ

3
i

1
2 (h̃− 2)A

C1
13=−C1

31 = 1,
C2

23=−C2
32 = (h̃−1),

rest of Cijk = 0

VIIh h̃
2 δ

3
i

diag(-1,-1,0)
+ h̃

2A

C2
13=−C2

31 = 1,
C1

23=−C1
32 = 1,

C2
23=−C2

32 = h̃,
rest of Cijk = 0

VIII 0 diag(-1,1,1)

C1
23=−C1

32 = 1,
C2

31=−C2
13 = 1,

C3
12=−C3

21 = 1,
rest of Cijk = 0

IX 0 1 Cijk = εijk
Table 1: The Bianchi models in terms of their structure
constants. A is just the first Gell-Mann matrix[2],t.15.1
The group parameter h = −h̃2/(h̃− 2)2 for the Bianchi
type VIh model and h = h̃2/(4− h̃2) for the Bianchi

type VIIh model.

In column 2 and 3 the Bianchi types are written in
terms of the Behr decomposition in which the structure
constants are decomposed in terms of the trace-free part
and the trace part:

Ckij = εijln
lk + al(δ

k
iδ
l
j − δkjδli), (57)

where ai is the ’vector’ part of the Lie algebra. The trace
of Ckij is:

Cjij = −2ai. (58)

We can always choose a basis such that ai = aδ3i . We
usually call the models with Cjij = 0 the class A models.
Those with Cjij 6= 0 are called class B models.

There are a couple of things to note. Bianchi type
I corresponds to flat spatial section. Thus, it general-
izes the Friedmann-Robertson-Walker model. Bianchi
type IX corresponds to the Lie algebra so(3). The class
A models are: I, II, VI0, VII0 and IX. We have VI−1=III.
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The Bianchi models are then constructed as fol-
lows. For the specific Bianchi type, we choose an
invariant basis {ωi} that satisfies:

dωk = −1

2
Ckijω

i ∧ ωj . (59)

The Bianchi model of the corresponding type can now be
written as:

ds2 = −dt2 + gij(t)ω
i ⊗ ωj . (60)

VIII. THE ORTHONORMAL FRAME
APPROACH TO THE BIANCHI MODELS

Assume the energy-momentum tensor has the form:

Tµν = ρuµuν + phµν + πµν , (61)

where uµν is the 4-velocity of the fluid flow. We will also
assume the 4-velocity is orthogonal to the hypersurfaces
Σt spanned by the action of the isometry group. If this
is the case we say the fluid in non-tilted, else it is called
tilted. This assumption implies that the vorticity and the
4-acceleration of the fluid are 0, i.e. ωµν = 0, uνµ;ν = 0.
We split the expansion tensor into trace and trace-free
parts:

θµν = Uµ;ν =
1

3
θhµν + σµν . (62)

The commutator functions cαµν are given by:

[eµ, eν ] = cαµνeα. (63)

The functions are related to the connection coefficients
via cαµν = Γανµ − Γαµν . In an orthonormal frame, the
rotation forms possess the antisymmetry, which makes it
possible to write the connection coefficients in terms of
the structure coefficients:

Γαµν =
1

2
(gαβc

β
νµ + gµβc

β
αν − gνβcβµα). (64)

Since the vector uµν is orthogonal to the hypersurfaces
Σt we have θµν = Γtµν and hence catb = −(Γatb − Γabt).
The antisymmetry of the rotation form implies:

Γabt = −Γbat ≡ εabcΩc, (65)

where we have defined a rotation vector Ωc by:

Ωa =
1

2
εαβγδuβeγ · ėδ. (66)

The structure coefficients can therefore be written as:

catb = −θab + εabcΩ
c. (67)

The vector Ωc can be interpreted as the local angular
velocity, in the rest frame of the observer with 4-velocity

uµ, of a set of Fermi-propagated axes with respect to the
spatial fram {ea}. The remaining structure constants are
all purely spatial and they must correspond to one of the
Bianchi algebras. We write them as:

ckij = εijln
lk + al(δ

k
iδ
l
j − δkjδli), (68)

where nlk is a symmetric matrix. nlk and ai are only
functions of time and we can find the evolution of these
function by applying the Jacobi identity. The Jac-
obi identity holds, in particular, for the set of vectors
(u, ea, eb) which leads to the identity:

u(ckab) + cktdc
d
ab + ckadc

d
bt + ckbdc

d
ta = 0. (69)

Contracting we get:

nijai = 0, (70)

the propagation equation for ai:

u(ai) +
1

3
θai + σija

j + εijka
jΩk = 0, (71)

and the trace-free part:

u(ai) +
1

3
θnab + 2nk(aεb)klΩ

l − 2n k(aσ
k
b) = 0. (72)

Out of these, of particular interest is the Eq. (69) which
implies ai is in the kernel of the matrix nij . Since nij is
a symmetric matrix, we can diagonalize it and, without
any loss of generality, assume that:

nij = diag(n1, n2, n3) ai = (0, 0, a). (73)

The Bianchi models can now be characterised by the rel-
ative signs of the eigenvalues n1, n2, n3 and a as in Table
2.

Class Type a n1 n2 n1
A I 0 0 0 0

II 0 + 0 0
VI0 0 + − 0
VII0 0 + + 0
IX 0 + + −
VIII 0 + + +

B V + 0 0 0
IV + + 0 0
VIh + + − 0
VIIh + + + 0

Table 2: The Bianchi types in terms of the algebraic
properties of the structure coefficients.

IX. EINSTEIN’S FIELD EQUATIONS FOR
BIANCHI TYPE UNIVERSES

The results of the previous section can be used to
obtain the Einstein equations for Bianchi type uni-
verses. The Ricci tensor can be found by contracting

6



the Riemann tensor. The three-dimensional Ricci tensor
is given by[2];eq.15.71:

(3)Rab = ΓdabΓ
c
dc − ΓdbcΓ

c
ad. (74)

Using Eq. (64) and Eq. (68) we get:

Rab = −2εcd(anb)cad + 2nadn
d
b − nnab−

− hab
(

2a2 + ncdn
cd − 1

2
n2

)
,

(75)

where n = ndd. We have[2],eq.15.73:

σ̇ab = u(σab)− Γµaνσµbu
ν − Γµbνσaµu

ν , (76)

which can be written, using Eq. (65), as:

σ̇ab = u(σab)− 2σd(aεb)cdΩ
c. (77)

Einstein field equations then give us the shear propaga-
tion equations:

u(σab) + θσab − 2σd(aεb)cdΩ
c +(3) Rab−

− 1

3
h
(3)
ab R = κπab,

(78)

the Raychauduri’s equation:

θ̇ +
1

3
θ2 + σabσ

ab +
κ

2
(ρ+ 3p)− Λ = 0, (79)

and the Friedman equation:

1

3
θ2 =

1

2
σabσ

ab − 1

2

(3)

R+ κρ+ Λ, (80)

where:

(3)R =(3) Raa = −
(

6a2 + ncdn
cd − 1

2
n2

)
. (81)

These are the equations for Bianchi type universes. Fin.

X. SUMMARY

In this text I have gone over some properties of
spacetime, namely, the isotropy and homogeneity which
trace their roots to little something we call isometries;
the distance preserving transformations.

Over the course of this work I have touched upon
things like maximally symmetric universes; they don’t
work (well, they do, but they don’t correspond to
reality), then the maximally-symmetric-in-space-only-
universes which gave us the Friedmann equations. All of
this could be, and was, made more mathematically rigor-
ous via the Lie groups and algebras which led to, again,
homogeneous spaces, whose mostly exciting, sometimes
tedious, mathematical framework was developed here.
This culminated in the Bianchi cosmological models.

The last part of this report dealt with the orthonormal
approach to the Bianchi models and the field equations.
I ommited some stuff, just simply cited many more, and
could have certainly included such things as model 8
geometries, compact quotients etc. which would make
this work truely gargantuan and at which point one
might as well just read the book[2].
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