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Abstract

The general concept of duality is of great importance since dualities are known to

be deeply connected with non-perturbative Physics. In contrast to symmetries, which

are related to intrinsic properties of one single theory, dualities relate two (or more)

seemingly different theories with each other. However, the first hint for an underly-

ing duality is the observation that two different physical theories possess the same

symmetries. The first such example ever is classical Electromagnetism, described by

Maxwell equations in 4 dimensions. The remarkable symmetry of these equation un-

der the exchange of the electric and the magnetic fields lead to the discovery of the

prototype example of duality, which is the Electric/Magnetic one. Here we are going

to discuss this duality in the simplest setting, using tools from differential geometry.
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1 Introduction

In this small essay I will try to explain the very basic ideas behind the Electric/Magnetic

duality, without getting any technical about it. To achieve this, I will only analyze in depth

the case of differential form duality since it already captures all of the essential features

and also does not require much knowledge, either on the general research field or on specific

mathematical technicalities. It is my belief that the master student audience for which this

note is intended will benefit much more from learning the basic concept than from having

to endure a long analysis at higher-loop orders. Besides the differential form case, I will

also briefly mention the case of linearized gravity because of its physical importance.

A general free gauge field A propagating in D-dimensional Minkowski space always

lives in an irreducible representation of the Lorentz group SO(D − 1, 1). However, in

any covariant gauge theory involving such gauge fields, the physical field Aphys with the

true propagating degrees of freedom is found after gauge fixing. The field equations for

the physical field will then reduce to the free wave equation �Aphys = 0 and no gauge

invariance remains in the theory.

In the physical theory, the field should not only be SO(D − 1, 1)-irreducible but also

irreducible under the little group SO(D−2) ⊂ SO(D−1, 1). This basically means that the

physical field will have to be fully traceless with respect to the SO(D−2)-invariant metric.

In addition, it will be represented by a tensor with the same number of indices (and index

symmetries) as in the pre-gauge-fixed case, but now these indices will run from 1 to D− 2.

These being said, an arbitrary physical theory corresponding to a particular irreducible

tensor representation of SO(D − 2) can arise from a number of different covariant gauge

theories. The key feature here is that different irreducible representations of SO(D − 1, 1)

may correspond to equivalent irreducible representations of SO(D − 2), after full gauge

fixing.

In the simplest setting, one considers a gauge theory for a p-form and another gauge

theory for a (D− p− 2)-form, which are both irreducible representations of SO(D− 1, 1).

These gauge fields have different number of components, namely
(
D
p

)
and

(
D

D−p−2

)
. How-

ever, after gauge fixing, the physical field in the first case is a p-form representation of
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SO(D− 2) with
(
D−2
p

)
components, while in the second case it is a (D− p− 2)-form repre-

sentation of SO(D− 2) with
(

D−2
D−p−2

)
components. Therefore the degrees of freedom of the

two physical fields end up being the same, which was to be expected since they are related

by Hodge duality. Thus, the initial covariant gauge theories are physically equivalent, or

electric/magnetic duals of one another.

A quite illustrative diagram depicting Electric/Magnetic duality is the following:

SO(D − 1, 1){R} SO(D − 1, 1){R′}

SO(D − 2){R} SO(D − 2){R′}

At the top level we have two covariant dual (indicated by the blue double-arrow) gauge

theories involving two gauge fields in different irreducible representations R,R′ of SO(D−

1, 1). The black arrows indicate full gauge fixing, leading to two physical theories at the

bottom level. These theories propagate the same number of degrees of freedom, which

implies that the representations R,R′ are equivalent (indicated by the red double-line)

when seen as irreducible representations of the little group SO(D − 2).

2 The prototype example of EM duality

Consider the Maxwell theory in 4-dimensional Minkowski space. This is a covariant gauge

theory describing a free 1-form connection A1, by means of its 2-form curvature F2 := dA1.

The equations dictating the dynamics of A1 are the well-known Maxwell equations

dF2 = 0 , d ? F2 = 0 , (2.1)

which can be seen to possess a remarkable symmetry. Indeed, they are invariant under the

transformation

F2 7→ ?F2 . (2.2)

To see this, note that the Hodge operator ? squares to −1 when acting on a 2-form due to

the signature of the Minkowski metric.
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This symmetry of the physical laws leads to a very interesting observation. First of all,

we can introduce another 2-form G2 ≡ ?F2. This 2-form solves the Maxwell equations as a

consequence of the above symmetry, thus

dG2 = 0 , d ? G2 = 0 . (2.3)

The first equation above, which is the so-called Bianchi identity, implies that G2 is also a

curvature. Indeed, using the Poincaré lemma one can locally identify G2 with the curvature

of another 1-form connection

G2 := dB1 . (2.4)

Thus, the Maxwell theory in D = 4 can be described by two different 1-form connections

A1 and B1. We will refer to these as the electric and, respectively, the magnetic dual

representations of Maxwell theory. This is the prototype example of Electric/Magnetic

duality. However, the fact that both the electric and the magnetic descriptions are 1-forms

may seem quite strange or, even, redundant. This is the so-called self-duality of the Maxwell

theory and it is only present in D = 4.

We now want to give an example where no self-duality is present. If one considers the

Maxwell theory in D = 5, then the Maxwell equations (2.1) are unchanged and so is their

symmetry (2.2). The difference now is that the Hodge dual of F2 is no longer a 2-form, but

a 3-form G3 ≡ ?F2. This means that the Bianchi identity on G3 will render it a curvature

of a 2-form connection G3 := dB2. Thus, we see that 5D classical electromagnetism can be

described using either the 1-form A1 (electric) or the 2-form B2 (magnetic) connection.

3 General differential form duality

This discussion can be easily generalized to any gauge theory describing the dynamics of

a free p-form connection in D dimensions. We will denote the p-form connection in the

electric representation by Ap and the corresponding curvature will be the (p + 1)-form

Fp+1 := dAp. The generalized Maxwell equations are then given by

dFp+1 = 0 , d ? Fp+1 = 0 , (3.1)
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which are again invariant under the transformation

Fp+1 7→ ?Fp+1 . (3.2)

We now set GD−p−1 ≡ ?Fp+1 and note the Bianchi identity dGD−p−1 = 0. Using the

Poincaré lemma, we introduce the magnetic representation BD−p−2 by locally identifying

GD−p−1 := dBD−p−2. This is the most general example involving differential forms. As

already mentioned, the underlying reason for this duality is that, while Ap and BD−p−1

are in different representations of the Lorentz group SO(D − 1, 1), they correspond to

equivalent representations of the little group SO(D − 2) after full gauge fixing.

Let us now explain what the parent theory approach is. A natural way to relate dual

theories is in terms of a parent Lagrangian. This is typically of first order in derivatives

and contains two independent fields such that integrating out each of them leads to the

two dual second order theories. Parent Lagrangians are simple to construct and analyze

for differential form dualities and we are, hence, going to present this approach for the

aforementioned p-form duality in D dimensions. The parent Lagrangian we construct is of

the form

L = Fp+1 ∧ (?Fp+1 + dBD−p−2) , (3.3)

and it involves the two independent differential form fields Fp+1 and BD−p−2. It is also

of first order in derivatives, in contrast to the standard Lagrangian kinetic terms. For

completeness, we also note that the corresponding action can be obtained by integration

over the D-dimensional spacetime as S =
∫
dDxL. It is easy to check that the field

equations for the two fields read as

dFp+1 = 0 , ?Fp+1 = −1

2
dBD−p−2 . (3.4)

The first equation corresponds to the Bianchi identity on Fp+1 and can be locally solved

by Poincaré lemma to give

Fp+1 := dAp . (3.5)

Plugging this back into the parent Lagrangian gives the standard second order kinetic term

for the “electric” p-form field

L1 = dAp ∧ ? dAp . (3.6)
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Note that the second term in the parent Lagrangian is a total derivative since the exterior

derivative d squares to zero, i.e.

dAp ∧ dBD−p−2 = d(Ap ∧ dBD−p−2) + (−1)pAp ∧ d 2BD−p−2 = d(Ap ∧ dBD−p−2) + 0 ,

and is therefore unimportant at the classical level. This is however surely not true at the

quantum level, but we will always discard any such surface term since we are working with

classical theories.

The second field equation, which is also called the duality relation, can be easily solved

in terms of Fp+1 since the Hodge star operator ? squares to (−1)D(p+1)+p when acting on a

(p+ 1)-form. Thus, we get

? Fp+1 = −1

2
dBD−p−2 ⇒ Fp+1 =

(−1)D(p+1)+p+1

2
? dBD−p−2 (3.7)

and substituting in the parent Lagrangian leads to the second order kinetic term for the

“magnetic” (D − p− 2)-form field

L2 =
1

4
dBD−p−2 ∧ ? dBD−p−2 . (3.8)

We observe that the first order parent Lagrangian L is on-shell equivalent to the two second

order Lagrangians L1, L2 and, thus, dictates the dynamics of both the “electric” field Ap

and the “magnetic” field BD−p−2.

4 EM duality in linearized gravity

It is possible to extend the above arguments to fields that are not differential forms, i.e.

fully antisymmetric matrices. The most simple and physically relevant example is that of

the linearized graviton. Suppose that we perturb the metric tensor g (graviton) around

the Minkowski metric η by a small perturbation h (linearized graviton). The linearized

graviton h is a symmetric 2-tensor and not a 2-form. It can be expanded as

h1,1 = h(ij) dx
i ⊗ dxj . (4.1)
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Thus, the linearized graviton can be thought of as being a composite object constructed

out of two 1-forms. In group-theoretical terminology, it corresponds to an irreducible rep-

resentation of SO(D − 1, 1) having the symmetries of a (1,1) Young tableau.

Another important notion in gravity is the one of the Riemann curvature. At the lin-

earized level, it is defined with respect to the linearized graviton as

R2,2 =
1

4
Rijkl dx

i ∧ dxj ⊗ dxk ∧ dxl , R2,2 := d d̃ h1,1 , (4.2)

where d, d̃ are exterior derivatives acting on the first and second slot of h1,1. In component

form, the above definition reads as Rijkl := 4h[j,i][l,k]. The above definition implies the index

symmetries

Rijkl = R[ij][kl] , Rijkl = Rklij , R[ijk]l = 0 = Ri[jkl] (4.3)

and, thus, R2,2 is thus in an irreducible representation related to a (2,2) Young tableau.

More specifically, the last two symmetries above indicate that

tr ? R2,2 = 0 . (4.4)

Moreover, the Riemann tensor satisfies the two Bianchi identities

dR2,2 = 0 = d̃ R2,2 (4.5)

and the linearized Einstein equations correspond to the vanishing of its trace, namely

trR2,2 = 0 . (4.6)

Note that d̃R2,2 = 0 also implies d̃ ? R2,2 = 0, since ? commutes with d̃. Finally, the

Riemann tensor can also be seen to be divergenceless

d ? R2,2 = 0 , (4.7)

which is due to the tracelessness condition (4.6) and the second Bianchi identity in (4.5).

What we have just shown should be quite obvious by now. The system of Bianchi identities

(4.5) and Einstein equations (4.6) is invariant under the duality transformation

R2,2 7→ ?R2,2 , (4.8)
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since this transformation maps them to (4.7) and (4.4) respectively. This is in full ac-

cordance with the Maxwell equations, which were invariant under F 7→ ?F . Here, an

alternative tensor can be defined as

GD−2,2 := ?R2,2 (4.9)

obeying the same Bianchi identities and Einstein field equations as R2,2. This tensor has

D indices and it is antisymmetric in the first D − 2 and in the last 2. Moreover, its index

symmetries, inherited by the index symmetries of R2,2, relate it to a (D − 2, 2) Young

tableau representation. This time, one should use a generalized version of the Poincaré

lemma and locally identify GD−2,2 as the Riemann tensor of a (D − 3, 1) Young tableau

field kD−3,1:

GD−2,2 := d d̃ kD−3,1 . (4.10)

The newly introduced field kD−3,1 is the magnetic representation of the linearized graviton,

with h1,1 being the electric one. We observe again that in D = 4 self-duality is present,

a trait shared with the D = 4 Maxwell theory. However, self-duality is broken in other

number of dimensions. For example, in D = 5 the electric representation h1,1 is dual to

a magnetic k2,1 field. This 3-tensor field is also known in the literature as the Curtright

field [5].

Finally, this case (and many more involving objects which are not differential forms) can

also be studied in the context of parent Lagrangians using tools from Graded Geometry [6].
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