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In this paper I give a short review of the black hole uniqueness theorem in static vacuum space-
times, due to Werner Israel 1967. First I introduce the terminology and preliminary results from
differential geometry and general relativity, followed by the theorem itself.

I. Preliminary Remarks and Notation

First I will introduce my notation and conventions.
I will be using natural units, in which GN = c = ~ = 1,

where GN is the Newton gravitational constant, and c is
the speed of light.

Index convetions are as follows:

• Greek indices µ, ν, ρ, ... - tensor components, in
a coordinate system

• lower case Latin indices from the beginning of the
alphabet a, b, c, ... - abstract index notation

• lower case Latin indices starting with i, j, k, ... -
spatial indices x,y,z,...

• upper case Latin indices A,B - angular spatial
indices, corresopnding to φ, θ in spherical co-
ordinates

The metric of the entire 4 dimensional spacetime is
written as g(4) while the (induced) metric of a 3 dimen-
sional hypersurface is g. Analogously, the metric of a 2
dimensional surface is denoted by g̃.

The Levi-Civita symbol that is the same in every co-
ordinate system is written as ∈, while the Levi-Civita
tensor is ε

The Lie derivative of an arbitrary (p,q)-tensor T with
respect to a vector field K is denoted by: £KT

a1...ap
b1...bq

I will occasionaly write the partial and covariant deri-
vative in shorter notation as:

∂cT
a1...ap
b1...bq

= T
a1...ap
b1...bq,c

∇cT
a1...ap
b1...bq

= T
a1...ap
b1...bq ;c

(Note: the order of upper and lower incidices on ten-
sor quantities usually matters. Only in this section will
T
a1...ap
b1...bq

be written so ambiguously. This is done to save

space and since the ordering of indices is irrelevant here
and could be anything)

The Riemann tensor, Ricci tensor and Ricci scalar with
respect to a space-time metric g(4) are denoted respecti-

vely as R
(4)
abcd, R

(4)
ab and R(4). The same quantities with

respect to a hypersurface metric g are written with an R
instead of R(4).
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II. Manifolds, Spacetimes & Black Holes

This section will collect most of the differential geome-
try and general relativity results necessary for understan-
ding the proof.

A spacetime is a smooth Lorentzian manifold -

(M, g
(4)
ab ). Here, Lorentzian means g is non-degenerate

and has signature (1, n), where (n+1) is the number of
spacetime dimensions.

Some definitions necessary for the proof, relating to
spacetimes and specifically black holes, are given here:

A. Hypersurfaces, normal and tangent vectors

Say we have a spacetime (N , g(4)) of dimension n+1.
A hypersurface, call it Σ, is a n dimensional manifold
embedded in N .

1. Embeddings

This can be achieved one of two ways, the first one
being more formal: One defines an embedding map
Φ : Σ → N , where Φ is a map between manifolds with
certain nice properties (injective, structure-perserving,
etc.) and Σ is an n dimensional manifold which exists
independently of N . Equipping N with coordinates xα

and Σ with coordinates ya(x), one can pull back the exis-

ting metric g
(4)
αβ on N to Σ in the standard way, using:

gab = EαaE
β
ng

(4)
αβ (1)

where Eαa = ∂xα

∂ya is the Jacobian.

The second approach, loosely speaking, identifies Σ
with a subspace of N through a relation:

Σ = {x ∈ N | S(x) = 0}
where S(x) is a scalar function on N . This is in direct
analogy with the familiar case in R3, where the relation
f(x, y, z) = 0 defines a 2 dimensional surface. The metric
on Σ is then the induced metric:

g(x) = g(4)(x) |S(xµ)=0

These definitions become equivalent on spaces equipped
with metrics, which is usually what we’re working with
anyway, so the second less abstract definition is what I’ll
be using from now on.



2

2. Normal and tangent vectors (fields)

A vector normal to the hypersurface S(x) = 0 is given
by:

Nµ = ∂µS(x) (2)

The logic here is that S(x) = 0 is a condition that holds
on a specific hypersurface in N . As soon as we move
away from the hypersurface, the relation doesn’t hold
anymore, and therefore taking the derivative of S(x) in a
certain direction tells us ”how much we’re moving away
from the hypersurface”.

A tangent vector is defined as:

V µ∂µS(x) = 0 (3)

which intuitively makes sense - a vector orthogonal to the
normal vector is indeed a tangent vector. A hypersurface
is called timelike if it’s normal vector field is everywhere
spacelike (∂µS(x)∂µS(x) > 0) and vice-versa it is called
spacelike if it’s normal vector field is everywhere timelike
(∂µS(x)∂µS(x) < 0). This intuitively makes sense as the
tangent vectors, i.e. the vectors that ”live on the hyper-
surface”, will be timelike/spacelike if the hypersurface is
timelike/spacelike respectively.

A vector field:

Nα = f(x)g(4)αβ∂βS(x) (4)

where f is a scalar (non-vanishing) function, satisfies con-
dition (3) the same way (2) does and is therefore just as
valid in the role of a vector field normal to the hypersur-
face S(x) = 0.

This can be used to normalize a normal vector field (4)
by choosing f(x) as (| ∂µS(x)∂µS(x) |)−1/2. Using this
we have:

NµN
µ = (| ∂νS(x)∂νS(x) |)−1∂µS(x)∂µS(x)

= sgn(∂µS(x)∂µS(x)) ≡ ε
where ε depends on if the vector field is timelike (-1),
spacelike (+1) or null (0).

B. Foliations

A foliation is, informally, the decomposition of a ma-
nifold of dimension p into submanifolds of dimension q,
satisfying some properties that guarantee it behaves ni-
cely. This decomposition is then parametrized by (p-q)
parameters. The submanifolds are called leaves of the
foliation. Two simplet examples of foliations in R3 are:

• Choosing z as the parameter; z = const. gives us
xy planes as leaves which cover the manifold as we
vary z from −∞ to +∞.

• Choosing r, in spherical coordinates, as the para-
meter; r = const. gives us spheres of radius r as
leaves which cover the manifold as we vary r from
0 to +∞.

These two examples, in a slightly more complicated form,
appear in Israel’s proof later on and are therefore impor-

tant to understand intuitively. While this all seems vague
and hand-wavey, foliations are a fairly robust topic that
would require a heap of definitions and it doesn’t seem
economical to introduce all of them since they would ne-
ver be used - an intuitive notion will do for understanding
the proof. A complete, formal definition can be found in
the literature3.

One important result required for the proof is that
given a nowhere vanishing vector field dN on some
manifold Σ, one can foliate the manifold with leaves
Ξ = Σ |N=const., with parameter N. It is also the case
that these leaves all have the same topology. These are
some highly non-trivial claims and I won’t directly sup-
port them here, but they can be found in the literature
on foliations3 and in the general relativity textbooks by
Straumann6 and Heusler7.

C. Hypersurface orthogonality & Frobenius
integrabilty

Say S(x) = 0 specifies a hypersurface in some space-
time. A feature of the vector field

Nα = f(x)∂αS(x) (5)

is that it is everywhere orthogonal to the hypersurface
S(x) = 0, by definition. We are now interested in finding
a condition on an arbitrary vector field ξα that guarantees
that it can be written as (5) - or in other words that there
exists a hypersurface S(x) such that ξα is orthogonal to
it at every point. This proposition is reminiscent (and is
in fact a generalization to manifolds) of the well known
statement that a vector field with vanishing rotation can
be written as the gradient of a scalar field.

A useful quantity to consider for this will be the ”ro-
tation” of a vector field:

∇aξb −∇bξa = ∂aξb − ∂bξa (6)

Looking at the identity for scalar functions:

∇a(∂bS(x))−∇b(∂aS(x)) = ∂a∂bS(x)− ∂b∂aS(x) = 0

it is clear that a normal vector field written as a four-
derivative of a scalar function has vanishing rotation.
More generally a normal vector field of the form (5) wo-
uld satisfy:

∇aNb −∇bNa =

∇a(f(x)∂bS(x))−∇b(f(x)∂aS(x)) =

���
��f∂a(∂bS)−���

��f∂b(∂aS) + (∂af)(∂bS)− (∂bf)(∂aS) =

(∂af)(∂bS)− (∂bf)(∂aS) =

(∂a ln f)Nb − (∂b ln f)Na

Or in short:

∇[aNb] = (∂[a ln f)Nb]

If we now suspect that an arbitrary vector field ξa could
be written as (5), i.e. normal to some hypersurface, a
necessary condition would be that it at least satisfy the



3

same equation:

∇[aξb] = (∂[a ln f)ξb] (7)

The trouble with this is that we don’t know f(x) and
therefore can’t check this, given only ξa. Luckily, mul-
tiplying (7) by ξc and antisymmetrizing all three indices
gives:

ξ[c∇aξb] = 0 (8)

where ξ[c(∂a ln f)ξb] vanishes because we’re antisymme-
trizing two of the exact same vector fields, ξc and ξb.
What we’ve obtained in (8) is the Frobenius integra-
bility condition! Checking that this holds for a vector
field is fairly straight forward and implies that, at least
locally, it can be written as a hypersurface orthogonal
vector field - (5).

(Note - in the language of differential forms, (8) takes
the simple form:

ξ ∧ dξ = 0

as it is often written in the literature.)

D. Extrinsic geometry: the 1st and 2nd
fundamental forms & mean curvature

1. Projected tensors and the 1st fundamental form

Say we have a spacetime (N , g(4)
ab ) and a globally time-

like or spacelike hypersurface Σ with a normalized normal
vector field Na. The hypersurface Σ, with the induced
metric g = g(4) |Σ, is a spacetime in it’s own right and
it is completely valid to forget about the surrounding
higher-dimensional spacetime and calculate all the fami-
liar curvature properties of Σ (say the Riemann tensor)
using it’s induced metric, covariant derivative etc. The
”projected” or induced metric on Σ is given by:

gµν = g(4)
µν − εNµNν (9)

which turns out to be equivalent to the pulled back metric
(1). Some intuitive properties of this metric are that it
is orthogonal to Nµ:

gµνN
µ = g(4)

µνN
µ − ε(NµNµ)Nν

= Nν − ε2Nν = 0 (10)

and that, for a tangent vector V µ:

gµνV
µ = g(4)

µν V
µ − ε���

��:0
(NµV

µ) Nν = Vν (11)

from which we see that, for tangent vectors, the induced
metric g functions equivalently to the full spacetime me-
tric g(4). Overall, we see that g is degenerate for Nµ and
is therefore not a valid metric, unless we restrict oursel-
ves to the tangent vectors of the hypersurface Σ. g is
called the 1st fundamental form of the hypersurface
Σ. By construction, g has the form of a projector, in that
it takes a tensor and subtracts any components normal
to the hypersurface. This can be used to define projected

tensors, denoted T̄ a...b... , as:

T̄ a1...apb1...bq = ga1a′1 ...g
ap
a′p
gb

′
1
b1 ...g

b′q
bqT

a′1...a
′
p
b′1...b

′
q

One should note that the raising and lowering of indices
should generally always be done using the full metric g(4),
however on projected tensors T̄ this becomes equivalent
to using the projected metric g, because the normal vec-
tors appearing in definition (9) vanish when contracted
with g as can be seen from (10):

NµT̄
µ
ν = Nµg

µ
ρT

ρ
ν = 0

Say we want to covariantly differentiate something on
the surface Σ; there are two ways we could arrive at a
covariant derivative operator:

• Treating Σ as an independent manifold - calcula-
ting Christoffel symbols using the induced metric
g, denoted Γ(g), and writing:

∇(g)
α Vβ = ∂αVβ − Γ(g)ρ

αβVρ

• By projecting down the (p,q+1)-tensor ∇aT using
the induced induced metric g:

∇̄αT̄... = gα
′

αg
...′
...∇αT...′

The first approach gives a valid covariant derivative on
the hypersurface, as long as V is a tensor with only com-
ponents tangent to Σ, since no information about the
ambient manifold goes into the definition. It would be
nice if the second approach was equivalent, i.e. produced
a valid covariant derivative as well. This can be checked
by confirming the conditions that a given operator be a
covariant derivative: (1) linearity in both variables, (2)
the Leibniz rule, (3) commutation on scalars, (4) com-
mutation with contractions and (5) compatibility with
the induced metric g. Everything except (5) is trivial to
check and follows directly from the properties of the full
covariant derivative before projecting it down to Σ. To
check (5), we do:

∇̄αgβγ = gα
′

α g
β′

β g
γ′

γ ∇α′gβ′γ′

= gα
′

α g
β′

β g
γ′

γ ∇α′(g
(4)
β′γ′ − εNβ′Nγ′)

which using the compatibility of g(4) with the full cova-
riant derivative gives:

= −ε gα
′

α g
β′

β g
γ′

γ ∇α′(Nβ′Nγ′)

and now by Leibniz, for the full covariant derivative we
have:

= −ε gα
′

α g
β′

β g
γ′

γ [Nβ′∇α′(Nγ′) +Nγ′∇α′(Nβ′)] = 0

Contracting g with the normal vectors not in the cova-
riant derivative operator, we get 0 for both terms, thus
proving metric compatibility for g. This should be re-
assuring - projecting using g is a valid way of calculating
tensors on the hypersurface Σ.
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2. Extrinsic curvature and the 2nd fundamental form

The curvature information that we can get by only
using g and the vectors tangent to Σ is called the intrin-
sic curvature, since it makes no reference to the ambient
space and therefore doesn’t depend at all on how Σ sits
in it.

However, if we are told that Σ does in fact live in a
higher dimensional space, and that Nµ is it’s normal vec-
tor, which extends into this extra dimension, then there
is additional information one can extract about Σ. For
example, the Riemann tensor on Σ, denoted R̄ijkl, is valid
as a characterisation of it’s intrinsic curvature for compo-
nents tanget to Σ, denoted by Latin letters. It is, on the
other hand, also true that the ambient spacetime N has
it’s own Riemann tensor, Rµνρσ, and that there certa-
inly exist mixed components NµRµjkl, evaluated on the
surface Σ, that tell us ”how the hypersurface bends” in
the surrounding space. These additional curvature com-
ponents can be considered as extrinsic and are informa-
tion that doesn’t exist on the standalone manifolds with
metric - they certainly cannot be expressed purely using
the metric and tangent vectors.

This motivates us to try to define a quantity on Σ that
captures how Σ is embedded in the ambient space, using
the normal vector field Nµ. To this end, we define the
2nd fundamental form or extrinsic curvature:

Kαβ = gγαg
δ
β∇γNδ (12)

which is a projected tensor, with components tangent to
the hypersurface Σ. It contains information about how
the normal vector field changes as we move along Σ. In-
tuitively, it makes sense that if the normal stays exactly
the same, then our hypersurface is embedded in such a
way that it’s completely flat in the ambient space and do-
esn’t turn at all. If the normal changes a lot, then that
means that our hypersurface is also turning violently in
the ambient space. One might argue that this quantity
vanishes since we’re projecting the normal vector onto
the tangent plane, however ∇γNδ compares normal vec-
tors at two close points and as such very well might have
components tangent to the plane. We also can’t just con-
tract Nδ with gδβ since:

gγαg
δ
β∇γNδ 6= gγα∇γ(gδβNδ) = 0

because

∇γgαβ = ∇γ(g
(4)
αβ − εNαNβ) = −ε∇γ(NαNβ) 6= 0

It can be shown that the extrinsic curvatuer tensor is
symmetric. Since it is a projected tensor, we only need
consider it’s action on two arbitrary vectors tangent to
Σ; X, Y

KabX
aY b −KbaX

aY b =

XaY b∇aNb −XaY b∇bNa =

−Xa∇a(Y b)Nb + Y b∇b(Xa)Na =

−∇X(Y b)Nb +∇Y (Xa)Na = −[X,Y ]cNc

Now we just need to prove that for two tangent vectors

X,Y , their commutator is also tangent. For S(x) = 0
defining the hypersurface in question, it is by definition
of a tangent vector that

X(S(x)) = Xµ∂µS(x) = XµNµ = 0

Following from this, we have:

[X,Y ]S(x) = Xµ∂µ(Y ν∂νS(x))− Y µ∂µ(Xν∂νS(x))

= X(Y (S(x)))− Y (X(S(x)))

= X(0)− Y (0) = 0

which is exactly the condition that [X,Y ]a is tangent.
Returning back to the symmetrization of Kab, we have
[X,Y ]cNc which is the contraction of a tangent vector
with a normal vector, i.e. equal to 0:

K[ab]X
aY b = −[X,Y ]cNc = 0

from which it follows that:

KabX
aY b = KbaX

aY b

on arbitrary vectors X,Y and therefore in general.

An alternative and equivalent definition of extrinsic
curvature can be given in terms of a Lie derivative:

Kαβ
?
=

1

2
gα
γgβ

δ£Ng
(4)
γδ (13)

Writing this out and using metric compatibility, we get
1

2
gα
γgβ

δ£Ng
(4)
γδ =

1

2
gα
γgβ

δ(∇γNδ +∇δNγ)

=
1

2
(Kαβ +Kβα) = K(αβ) = Kαβ

where in the last line, we recognized the first definition
of the extrinsic curvature and the symmetrization of a
tensor with 2 indices.
This definition is useful because it manifestly shows that
if we have a surface whose only normal(s) is (are) Killing
vector fields, then it’s extrinsic curvature automatically

vanishes, since Killing vectors satisfy £Ng
(4)
γδ = 0.

3. Mean curvature

The mean curvature is defined as the trace of the ex-
trinsic curvature (up to a factor), given by:

K ≡ Kijg(4)ij = Ki
i (14)

E. Stationary metrics

A spacetime (N , g(4)
ab ) is said to be stationary if there

exists a timelike Killing vector field on N . This is
equivalent to the vanishing of the Lie derivative for a
metric-compatible connection:

0 = £Kg
(4)
ab = Kc

��
��*

0
∇cg(4)

ab + g(4)
ac ∇bKc + g

(4)
cb ∇aK

c

= g(4)
ac ∇bKc + g

(4)
cb ∇aK

c

= ∇bKa +∇aKb = 0

(15)

along with the timelike condition: KcK
c < 0.
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F. Adapted coordinates for stationary spacetimes

The plan is now to give an intuitive interpretation of
this somewhat formal Lie derivative vanishing condition
and, to this end, to construct a special coordinate system
that will be used throughout the proof.

To start, we should remember the property of the Lie
derivative - it can be written using partial derivatives ins-
tead of covariant derivatives, since the Christoffel sym-
bols exactly cancel. Using this, we could have equivalen-
tly written the first equation in (15) as:

£Kg
(4)
ab = Kc∂cg

(4)
ab + g(4)

ac ∂bK
c + g

(4)
cb ∂aK

c = 0 (16)

in which case the derivative of the metric doesn’t vanish
on it’s own as before.

Next we want to construct a special coordinate system
adapted to the Killing field K. This amounts to choosing
the time coordinate to point in the direction of the vector
field K so that the above equation (16) takes on a simpler
form.

We can start by considering a 4-dimensional Lorent-

zian manifold (N , g(4)
ab ). Let us now say that we want

to define some (smooth, etc.) 3-dimensional hypersur-
face Σ on N . We could, for example, perscribe such a
hypersurface by the condition t = 0, where t is the time
coordinate in some specific coordinate system given on
an open set equipped with a chart of N . The assumed
smoothness of the manifold N then guarantees that com-
paring the results of this procedure on overlapping charts
would produce a smooth surface Σ across the entire ma-
nifold N . More generally, the condition t = 0 could be
replaced by: S(xµ) = 0, where S is some scalar function
defined on N , as discussed in the hypersurface section,
earlier.

Either way, assume we have successfully specified a
hypersurface by setting S(xµ) = 0 and that the hyper-
surface is spacelike. This is easy to check as the vector
field normal to S(xµ) = 0 is given by:

Nµ = ∂µS(x) (17)

The spacelike condition then simply reads:
∂µS(x)∂µS(x) < 0 for every x on Σ.

Assume now, additionally, that a timelike vector field
Ka is given, nonvanishing on the entire manifold N . we
can then use this vector field as the definition of the time
coordinate through the following procedure - we consider
a family of curves u(s) : R→ N , obeying the equation:

d

ds
u(s) = K(u(s))

with the set of initial conditions (u(s = 0) = p0) for
all points p0 on the hypersurface Σ. This locally defines
a family of ODEs with unique solutions, which can in
principle be extended across the entire manifoldN due to
it being C∞. Taking now any old coordinates {xµ}, our
new coordinate system along a specific curve originating
from the point p0 ∈ Σ is then given by:

{x0 = s, x1(u(s)), x2(u(s)), x3(u(s))}.
In this way, we’ve constructed a good coordinate system

in which ”forward in time” points along the vector fieldK
and the spatial coordinates follow it around the manifold.
This is particularly useful as, in these coordinates, the
Killing vector field K takes the simple form: K = ∂

∂x0

since the time coordinate points exactly in it’s direction,
by construction.

Since K = ∂
∂x0 is now constant, the partial derivatives

of K in (16) vanish, and we’re left with:

£Kg
(4)
µν =

(
∂

∂x0

)ρ
∂ρg

(4)
µν = 0 (18)

= ∂0g
(4)
µν = 0 (19)

We now conclude that in adapted coordinates, the sta-
tionary spacetime condition (15) reduces to the simple
statement that none of the metric components depend
explicitly on time, as one would expect from the name
”stationary”. This might seem like it was a lot of work,
just to arrive at the standard interpretation of the Lie de-
rivative, but this adapted coordinate system construction
will appear in the theorem itself, twice, and was there-
fore instructive to go through properly. For reference,
this construction goes by the name ”Flow box theorem”.

G. Static metrics

Static metrics are a special subset of stationary me-
trics, as introduced in the previous section. To recapitu-
late, formally: a stationary spacetime is one that admits
a timelike Killing vector field.

The specialization to a static metric is then straig-
htforward - it is additionally required that the Killing
vector field be also hypersurface orthogonal, or in other
words that it satisfies the Frobenius integrability condi-
tion (8).

1. The block diagonal form

I will now show that stationarity together with hyper-
surface orthogonality together imply that the metric can
be written in block diagonal form, separating the time
block from the spatial block, or in other words, such that

g
(4)
0i = 0 for i = x, y, z.

Say we have a Killing vector field Ka = (∂t)
0 in adap-

ted coordinates, with components δα0 , that satisfies the
Killing equation: ∇aKb = ∇bKa. The components of
the corresponding covector field are then:

Kα = g
(4)
αβ δ

β
0 = g

(4)
α0 (20)

Referring to the hypersurface orthogonality condition
and the Killing equation for K, we have:

KγK[α∇βKγ] = K[α∇β]Kγ +
1

2
Kγ∇[αKβ] = 0

and now contracting with Kγ and rearraging we get:

K[α∇β](KγK
γ) +KγKγ∇[αKβ] = 0
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writing KγK
γ = K2 we can rewrite this as:

∇α(Kβ/K
2)−∇β(Kα/K

2) = 0

which is precisely equation (6). This implies that Kµ/K
2

can be written as ∂µS(x), or in other words - that Kµ =
K2∂µS(x). Comparing this with (20), we conclude:

g
(4)
µ0 = K2∂µS(x)

The stationary metric condition, in adapted coordaintes
then implies:

∂0(g
(4)
αβ ) = 0 −→ ∂0

(
g

(4)
i0

g
(4)
00

)
= ∂0

(
∂iS(x)

∂0S(x)

)
= 0 (21)

−→ ∂0(K2∂0S(x)) = 0 (22)

Using these, we can conclude two things:

• While S(x) has to depend on t so that ∂0S(x) 6= 0,
∂0S(x) as well as ∂iS(x) shouldn’t because of (21).
This implies that S is at most linear in time and a
general solution to this is then

S(x) = At+B + f(xi) ∼ t+ f̃(xi)

The A can be dropped since it is just a constant
and amouts to rescaling the time coordinate.

• Using (22) we can conclude that K2 shouldn’t de-
pend on time.

Writing out the one form of a scalar function:

dS = (∂µS(x))dxµ = K−2g
(4)
0µ dx

µ

= K−2g
(4)
00 (dt+ g

(4)
0i /g

(4)
00 dx

i)

The metric can then be rewritten as:

g
(4)
αβdx

αdxβ = g
(4)
00 dt

2 + 2g
(4)
0i dx

idt+ g
(4)
ij dx

idxj

completing the square

= g
(4)
00

(
dt2 + 2(g

(4)
0i /g

(4)
00 )dxidt+ (g

(4)
0i g

(4)
0j /(g

(4)
00 )2)dxidxj

)
− (g

(4)
0i g

(4)
0j /(g

(4)
00 )2)dxidxj + g

(4)
ij dx

idxj

and grouping some terms

=g
(4)
00

(
dt+ (g

(4)
0i /g

(4)
00 )dxi

)2
+
(
g

(4)
ij − (g

(4)
0i g

(4)
0j /(g

(4)
00 )2)

)
dxidxj

Now using g
(4)
µ0 = K2∂µS(x) and S(x) = t + f̃(xk), we

can recognize dS2 in the first bracket:

g
(4)
αβdx

αdxβ = K2(dS)2 +
(
g

(4)
ij − (g

(4)
0i g

(4)
0j /(g

(4)
00 )2)

)
dxidxj

Thus, using T = S(x) as a new time coordinate, we arrive
at a metric block diagonal in time and space! This choice
is equivalent to the old time coordinate - we’re still in the
Killing field adapted coordinate system (as we saw, T =
S(x) is linear in t so ∂t = ∂T are the same vector fields
and hence both Killing vector fields. In these coordinates,
a generic spatial hypersurface orthogonal to the Killing
field is given by the condition T = const.

2. Recap & Static vs Standard-Static

From what we’ve seen up until now, it is possible to
(locally) write any static space-time metric in the form:

g
(4)
αβdx

αdxβ = −(N(~x))2(dt)2 + gij(~x)dxidxj (23)

Due to clash of notation with the mean curvature, N2 will
from now on denote the norm of the Killing vector field,
sometimes referred to as the lapse function. It should be
noted that N does not depend on t, and as such only
varies across Σ. The time coordinate is here renamed
back to t, but is in fact the dS from the previous section.

gij := g
(4)
ij − g

(4)
0i g

(4)
0j /(g

(4)
00 )2 was appropriately redefined

in these new coordinates in the spacial block, which is
still completely time independent.

In the literature there is mention of a distinction
between a static space-time and a standard static space-
time. A static space-time is defined exactly as I had
written at the beginning of this section: stationarity +
hypersurface orthogonality of the Killing field. This is
however only true locally, as the Frobenius integrability
condition (8) is a local notion. It could happen that
different portions of the manifold admit different functi-
ons S(x) which do not patch together smoothly; we then
don’t have a global choice of time coordiante T = S(x)
that is hypersurface orthogonal to the Killing field and
(23) only holds locally as well.
A standard static space-time is then, as one could gu-
ess, defined such that there in fact does exist a glo-
bal choice of a smooth time coordinate T = S(x) that
is hypersurface orthogonal, or in other words that (23)
holds everywhere on the space-time. This is the defini-
tion that everyone usually works with, including Israel in
his theorem, and is the one we’ll be using from now on.

Standard static spacetimes can be denoted globally by
the set: (Σ, g,N). This contains all the same information
as (N , g(4)), where we used the standard static property
to write N as the direct product (R×Σ) and, correspon-
dingly the space-time metric g(4) as (N ⊗ g), where g is
a Riemannian 3-metric.

3. Curvature and the Einstein equations for a standard
static metric

Given a (standard) static metric:

g(4) = −N(xk)2dt2 + g(xk)

it amounts to a straightforward but time-consuming cal-
culation to check that the Riemann tensor, with latin
indices dxijk... the tangent, and dx0 = Ndt the orthogo-
nal coordinates to Σ, is given as:

R(4)i
jkl = Rijkl R(4)0

jk0 =
1

N
∇(g)
j ∇

(g)
k N R(4)0

jkl = 0
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and after contracting,

R
(4)
00 =

1

N
gjk(∇(g)

j ∇
(g)
k )N ≡ 1

N
∆(g)N

R
(4)
jk = − 1

N
∇(g)
j ∇

(g)
k N +Rjk R

(4)
i0 = 0

and once again, for the Ricci scalar:

R(4) = R− 2

N
∆(g)N

(Note that here, the dx0 = Ndt choice of coordinates
introduces extra factors of 1

N in some of the tensor com-

ponents, and also makes g
(4)
00 = −1)

The Einstein equations in vacuum R
(4)
µν − 1

2g
(4)
µνR(4) = 0

then simplify to:

G
(4)
00 = R

(4)
00 −

1

2
g

(4)
00 R

(4) =
1

2
R = 0 (24)

(00-component, the intrinsic curvature of Σ vanishes)

G
(4)
0i =�

��>
0

R
(4)
i0 −

1

2�
��

0

g
(4)
i0 R

(4) = 0 (25)

(0i-component)

G
(4)
jk = ∇(g)

j ∇
(g)
k N = NRjk (26)

(ij-component) which after tracing and using the R = 0
equation gives:

∆(g)N = 0 (27)

or in other words - the lapse function is harmonic on Σ.
These will be useful in the proof. A complete derivation
can be found in the literature6.

H. The Gauss-Codazzi equations

The Gauss-Codazzi equations express different compo-
nents of the Riemann curvature tensor on the hypersur-
face Σ entirely using Σ’s intrinsic curvature quantities
- the projected Riemann tensor R̄ijkl and the extrinsic
curvature Kαβ . Deriving them is fairly straightforward
and can be found in great detail in the literature4. The
form we’re going to be using in the proof are expressi-
ons for the Einstein tensor, where the index 0 represents
the normal component to the hypersurface while all the
other indices are exclusively tangent components.

G
(4)
00 = −1

2
R+

1

2
(K2 −KijK

ij) (28)

G
(4)
0i = ∇̄iK − ∇̄jKj

i (29)

∇̄ is the covariant derivative operator on the hypersurface
Σ. K = (Ki

i ) denotes the trace of the extrinsic curvature
tensor.

I. The Schwarzschild Metric

The static, spherically symmetric solution to the va-
cuum Einstein equations is the Schwarzschild metric, gi-

ven here:

ds2 = −(1− 2M

r
)dt2 + (1− 2M

r
)−1dr2 + r2dΩ2 (30)

where dΩ2 = dθ2 + sin2 θdφ2 is the standard angular me-
tric element in spherical coordinates. This solution has a
curvature singularity at r = 0 and a coordinate singula-
rity at r = 2M . We will concern ourselves with it’s vali-
dity on r > 2M , where we assume the energy momentum
tensor vanishes, as required for the Schwarzschild metric
to be a solution, and where the spacetime is standard
static.

J. The black hole horizon

1. Black hole horizons for static metrics

Let (Σ, g,N) be a (standard) static space-time. Our
manifold is the region N > 0, and has a boundary at
N = 0 where the norm of the timelike Killing field vani-
shes. The reasoning for this N > 0 restriction is that in
the regionN ≤ 0, ∂t is no longer a timelike Killing field,
and therefore doesn’t fit the description of a stationary
or static spacetime.
If the boundary surface (∂Σ), for a constant time slice
of the the space-time, is closed (i.e. compat and has no
boundary) as well as having N = 0 on it, we call this
surface a (spacelike slice of a) Killing horizon.
This implies that the timelike Killing vector field beco-
mes null on such a surface, which intuitively means that
the lightcone has tilted so much that it’s future oriented
half points entirely inward on the surface - no timelike or
lightlike particle can escape this region once inside.
An event horizon is usually defined somewhat differently,
as the ”boundary of the past of future null infinity” or
more loosely speaking: ”the boundary from inside which
a lightray following a geodesic would never manage to
arrive at spatial infinity in infinite time”. This seems
far removed from the idea of a timelike Killing field va-
nishing on a surface, which is a local geometric notion.
Nevertheless, thanks to certain rigidity theorems5, due
to Hawking and Ellis2, which relate the definition of a
Killing horizon to that of an event horizon for stationary
black holes, we can consider them equivalent and proceed
to use the more practical Killing horizon definition.

2. Static black hole horizons

If the null vector field on a Killing horizon ∂Σ×R with
N |∂Σ, as defined above, is also hypersurface orthogonal
on the horizon surface itself, we call it a static horizon.
This can be shown to be equivalent to a vanishing mean
curvature K = Ki

i = 0 on the horizon. The name ”sta-
tic” follows from the condition that N = 0 - the Killing
vector field is null on the horizon and this implies that it’s
also normal to the horizon. A normal vector field that is
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simultaniously Killing has vanishing extrinsic curvature,
following from the second definition (13).
The horizon in Israel’s proof is assumed to be a static ho-
rizon, and hence has mean curvature and lapse function
vanishing on it.

3. Boundary conditions on a static black hole horizon

On a single static black hole horizon ∂Σ, in a (stan-
dard) static space-time, combining the Gauss-Codazzi
equations (28) with the vacuum Einstein equations (24)
we get the results:

• The extrinsic curvature tensor Kαβ vanishes com-
pletely, which along with asssumed vanishing mean
curvature implies that the trace-free part of the ex-
trinsic curvature also vanishes:

K̊ij ≡ Kij −
1

2
g̃ijK = 0

To elaborate, the extrinsic curvature vanishing fol-
lows directly from (24) and Gauss-Codazzi which
give: KijK

ij = 0. This is quadratic in all compo-
nents of Kij and as the metric on ∂Σ is positive
definite this implies all the components vanish in-
dependantly.

• The normal derivative of the lapse function N on
the static black hole horizon is constant along the
black hole horizon:

∇ta(∇nbN(x)) = 0 (31)

where ta is a tangent vector and nb is a normal
vector on the black hole horizon.

• The scalar curvature R(g̃) vanishes on the horizon.

Some of these are necessary for Israel’s proof, and origi-
nally they were introduced as assumptions. Today, we
know that they follow independently.

(Note: In all of these considerations of the lapse fun-
ction N and the metric g on the boundary of Σ, it is
important that these quantities do indeed extend to the
boundary of the manifold, in a nice way, so that we can
actually calculate things on ∂Σ. For the Schwarzschild
metric for example, we obviously can’t use the metric in
the form (30) to calculate any quantities at r = 2M , as it
diverges there. This, however, doesn’t imply that any of
the intrinsic or extrinsic curvature qunatities truly blow
up, but in fact that we’ve only chosen a bad coordinate
system. A suitable change of coordinates of the spacelike
hypersurface metric g = g(4) |Σ (say to a conformally flat
coordinate r = (1 + m

2s )2 allows us do the calculations. A
discussion on this coordinate singularity business can be
found in most general relativity textbooks.)

K. Integration on Manifolds

1. Generally covariant Integration

Say we wanted to integrate a scalar function f defined
everywhere on the manifold Σ equipped with metric g.
This begs the question of how to extend the ”flat” inte-
gral to curved spaces with metric?
One problem we immediately notice is that the ”infinite-
simal volume element” d4x transforms as:

d4x −→ d4y =

∣∣∣∣det

(
∂y

∂x

)∣∣∣∣ d4x = J d4x (32)

so not as a scalar but as a tensor density of weight
-1. In general, tensor densities of weight w are defined
by their transformation property:

T ′a′b′... = J−w ×
(
∂xa

∂xa′
∂xb

∂xb′
...Tab...

)
so just as normal tensors, but with an extra Jacobian-to-
(−w)-power term.

Assuming we’re integrating a scalar function for which
it holds that f ′(y) = f(x), under a change of coordinates
y → x, we get:∫

f(x) d4x 6=
∫
f ′(y) d4y =

∫
f(x) J d4x (33)

for a general coordinate transformation with Jacobian

J =
∣∣∣det

(
∂y
∂x

)∣∣∣ 6= 1. It seems that the integral of a scalar

function doesn’t transform as a scalar when integrated
on a curved space, because the volume element doesn’t
transform as a scalar. This is to be intuitively expected
since our notion of distance differes as we move around
our space, in such a way that is encoded in the metric g,
which is a (0,2)-tensor and hence isn’t invariant to gene-
ral transformations either.
If we want to have a concept of an integral that is inva-
riant however, we’ll have to do something to d4x, such
that when we integrate and change coordinates, this ex-

tra part in the integral cancels the J =
∣∣∣det

(
∂y
∂x

)∣∣∣ that

the d4x introduces.

To this end we look at the determinant of the me-
tric |det(g)| written |g| for short, and it’s transformation
properties. We know the metric is a (0,2)-tensor, the
components of whcih transforms as:

g′µ′ν′ =
∂xµ

∂yµ′

∂xν

∂yν′ gµν

Taking the determinant of both sides then gives:

|g′| =
∣∣∣∣det

(
∂x

∂y

)∣∣∣∣ ∣∣∣∣det

(
∂x

∂y

) ∣∣∣∣× |g| = J−2|g|

and now taking the root:√
|g′| = J−1

√
|g|

or in other words,
√
|g| is a tensor density of weight 1.

Comparing this with (33), we see that if we instead
perscribe a new infinitesimal volume element

√
g d4x,
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this object is now truly scalar:√
|g′| d4y = J−1

√
|g| J d4x =

√
|g| d4x

With this notion of integration, the integral of a scalar is
coordinate (or ”observer”) independent:∫

f(y)
√
|g′| d4y =

∫
f(x)

√
|g| d4x

as it should be.

We’re now done - integrating functions on manifolds is
settled! To convert this into modern notation however,
we need to consider one more thing.

The Levi-Civita symbol ∈abcd is defined as either 0 or
1 by the standard rules for Levi-Civita symbols in every
coordinate system.
Let’s now, for the sake of argument, pretend ∈ are com-
ponents of a tensor and try to transform them as pers-
cribed by tensor transformation properties:

∂xµ

∂yµ′

∂xν

∂yν′

∂xρ

∂yρ′
∂xσ

∂yσ′ ∈µνρσ≡ det

(
∂x

∂y

)
∈′µ′ν′ρ′σ′

From this we see that it holds true that (∈′= J ∈) or
in other words, that it is a tensor density of weight +1.
This can again be remedied by multiplying with

√
|g|,

which gives us now a true tensor:

ε′abcd =
√
|g′| ∈′abcd= J−1

√
|g|J ∈abcd=

√
|g| ∈abcd= εabcd

The reason we did this is because such a tensor already
contains a

√
(|g|) term, which we need when integrating

on manifolds. Say we ”integrate” εabcd with respect to
the ”naive” measure d4x; we obtain:∫

εµνρσd
4x =

∫
∈µνρσ

√
|g|d4x

where now we recognize the coordinate-independent vo-
lume element

√
|g|d4x and the (by definition) coordinate

independent ∈µνρσ.

It is somewhat unclear what to do with the indices on
∈µνρσ, but the general idea of ”integrating” ε seems to
be on the right track.

This essentially motivates the modern notation for in-
tegrating functions using differential forms:∫

εabcd f =

∫
f(x)εµνρσdx

µ ⊗ dxν ⊗ dxρ ⊗ dxσ =

=

∫
f(x)

√
|g| dxµ ∧ dxν ∧ dxρ ∧ dxσ ≡

∫
f(x)

√
|g|d4x

This is now manifestly completely covariant and is the
notation used in most literature when cocerning integra-
tion.

(Note: The procedure given here - of multiplying with√
|g| - is in fact a general procedure for converting a

tensor density of weight w into a tensor; we just multiply
Tw by |g|−w/2.)

2. Green’s Theorem

Take Σ to be a compact oriented Riemannian manifold
of dimension n, with boundary ∂Σ. If f is a smooth scalar

function and Xa is a vector field, both on Σ, it then holds
that: ∫

Σ

∇a(f)Xa +

∫
Σ

f∇aXa =

∫
∂Σ

f naX
a (34)

with the appropriate volume forms on Σ and ∂Σ respec-
tively. na is the unit vector normal to the surface ∂Σ

If we take in particular f = 1 = const., it then imme-
daitely follows that:∫

Σ
���

�:0∇a(1)∇aN +

∫
Σ

1 · ∇a∇aN =

∫
∂Σ

1 · na∇aN

Finally, for ∇aN = Xa, where N is some sufficiently
smooth (lapse in this context) function on Σ; and for a
harmonic N → ∇a∇aN = 0, we get:∫

Σ
��

���:0
∇a∇aN =

∫
∂Σ

na∇aN

I will call upon some of these results later on in the proof.

3. Gauss-Bonet theorem

The Gauss-Bonnet theorem states that given a com-
pact two-dimensional Riemannian manifold Ξ without
boundary, and R is the Ricci scalar on Ξ, then:∫

Ξ

R = 4πχ(Ξ) (35)

with the appropriate volume form on Ξ. χ denotes the
Euler characteristic of Ξ, a definition of which can be
found in the literature8.

(There exists also a version with a boundary, but it
includes additional definitions we won’t ever use.)

4. The Komar mass integral

From the earlier mentioned harmonicity of N we can
conclude, using the Green’s theorem on Riemannian ma-
nifolds, that the integral over some subsection of Σ span-
ning from N1 to N2 be:

0 =

∫
Σ|N2
N1

∆N
√
g(dn ∧ dt1 ∧ dt2) =

=

∫
Ξ|N2

∂nN
√
g̃(dt1 ∧ dt2)−

∫
Ξ|N1

∂nN
√
g̃(dt1 ∧ dt2)

where n and t are some normal and tangent vectors with
respect to Ξ. In other words, the integral of the normal
derivative of the lapse function is the same on any two
N = const. surfaces.
In particular, if we choose N2 =∞ using the perscribed
asymptotics and Gauss-Bonnet we arrive at:∫

Ξ|N1

∂nN
√
g̃(dt1 ∧ dt2) = 4πM
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Choosing also N1 = 0, on the horizon, in conjuction with
(31) we get that: ∫

Ξ|N=0

∂nN
√
g̃(dt1 ∧ dt2) =

∂nN |N=0 ×
∫

Ξ|N=0

√
g̃(dt1 ∧ dt2) =

= ∂nN ×A = 4πM (36)

where A is the area of the surface N = 0, i.e. the black
hole horizon.

III. Israel’s Theorem

A. Israel’s Statement of the Theorem

Let (N , g(4)) be a static spacetime with some spatial
hypersurface Σ given by t =const. ξa = ∂t is a timelike
Killing vector field on Σ. We consider possible (standard-
)static metrics of the form

g(4) = −N(xi)2dt2 + g(xi)(dxi)2 (37)

where N2 = ξaξa is the norm of the timelike Killing field
such that:

• (A) Σ is regular, empty (of matter), noncompact
and asymptotically Euclidean. Asymptotically
Euclidean precisely means that the metric behaves
in the following way; when r ≡ (δαβx

αxβ)1/2 →∞,
the metric goes as:

gαβ = δαβ +O(r−1) (38)

gαβ ,γ = O(r−2) (39)

N = (−g(4)
00 )1/2 = 1−m/r +O(r−2) (40)

and analogously for higher derivatives. The con-
dition on N is more analogous to the metric be-
ing ”asymptotically Schwarzschildian”. Intuitively,
the metric (and it’s derivatives) have to go quickly
enough to a flat space; in particular as quickly as
Schwarzschild does.

• (B) The surfaces N = const. > 0, t = const. are
regular, simply connected and closed.

• (C) The invariant RabcdR
abcd is bounded on Σ

• (D) If N has a vanishing lower bound on Σ, the
intrinsic curvature, given by the Riemann scalar
on the lower-bound-surface, approaches a limit of
a closed regular 2-space of finite area.

The theorem then states that the only static space-
time satisfying all four of thes econditions is Sc-
hwarzschild’s spherically symmetric vacuum solu-
tion.

B. Alternative modern statement

The theorem, as stated above, is the way Israel stated
it in his original paper. The version I’m going to prove is
stated a little bit differently, with less technical assump-
tions which have been shown to be true independently.

Theorem, Israel 1967. Let (Σ, g,N) be a standard
static space-time, that is asymptotically Schwarzschild
in the same sense Israel defines it in (40), with only one
connected static black hole horizon ∂Σ. Assume that
dN 6= 0 everywhere on Σ. Then, the space-time g(4) =
−N2dt2 + g is (isometric to) Schwarzschild (30).

C. Proof of the Israel theorem

In the proof we will be considering a spacelike slice of
the space-time metric t =const., so we are working with
g as a metric on Σ.

The structure of the proof is to write out the Einstein
equations in special coordinates that foliate Σ in terms
of N = const., turn them into inequalities by neglecting
some terms. After some mathematical manipulations, we
get that N = const. are in fact spheres as embedded in Σ
- i.e. Σ is completely spherically symmetric for the radial
coordinate N
At this point, we will have an array of equations that hold
for various components of g(4) and by combining them all
and picking the right coordinate transformations we will
arrive at the Schwarzschild metric as given in (30).

Our first order of business is to introduce good coor-
dinates on Σ that will be useful for the calculations to
follow.

1. Foliating Σ by N

The non-vanishing condition dN 6= 0 is a technical
assumption that cannot be dropped from Israel’s proof,
and with good reason as it is the basis of the entire
coordinate-dependant construction that is to follow. It
is important because, as dN is a nowhere vanishing
vector field on Σ, it foliates the manifold with leaves
ΞN |N=const. and parameter N. Notice that N = 0 cor-
responds to the static black hole horizon as one of the
leaves in the foliation. It is also in this case true that all
the leaves have the same topology, as mentioned in the
earlier section on foliations.

Now, we can use the assumed asymptotic behaviour
(40) for N to state that as r → ∞, N = (1 − m/r +
O(r−2))→ 1− ε, this implies r ≈ m

ε =const., or in other
words, the Ξm/ε leaf has the topology approaching a 2-
sphere in a Riemannian 3-manifold as r →∞. This then
implies that all the leaves share this topology and are all
topological 2-spheres, including ΞN=0 which is the static
black hole horizon. Since spheres are connected, we auto-
matically get connectedness of the black hole horizon -
we didn’t have to assume we had only one horizon in the
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statement of the theorem.
As we know the scalar curvature of the static black hole
horizon is constant (and positive by Gauss-Bonnet the-
orem), we can conclude that our black hole horizon is
indeed not only a topological sphere but an actual round
sphere, as embedded in Σ.

2. The radial coordinate N

This foliation approach allows us to define now a ra-
dial coordinate N on Σ. As dN is nowhere vanishing on Σ
and trivially sastisfies the frobenius integrability condi-
tion (dN ∧d2N = 0), we can use it to introduce adapted,
surface (N = const) orthogonal coordinates on Σ so that
the metric now takes on the form:

g = ρ2dN2 + g̃(xA, xB)

where xA, xB are tangent to the surfaces N =const., and

ρ2 =
(
(dN)i(dN)i

)−1
. The entire spacetime metric is

now block diagonal in the time and 1st spatial coordinate,
and the only part with potentially off-diagonal terms is
AB, which is analogous to the angular part dΩ of a sp-
herically symmetric metric.

3. The Israel inequalities

This metric can be plugged into the Einstein vacuum
equations (25) - (26) and again split up into the normal
vector part x1 = ρdN and the tangent parts xA,B . Doing
this is a lot of work, but not particularly instructive, so
I’ll skip it here7, and claim that only the following three
equations are relevant to the rest of the proof:

0 = G00 +G11 = N−2Gtt + ρ−2GNN (41)

=
1

ρ
(
K

N
−K,N −

ρ

2
K2)

− 1

2

{
∇(g̃)
A ρ∇(g̃)Aρ

ρ2
+ 2K̊ABK̊

AB

}

0 = G00 + 3G11 = N−2Gtt + 3ρ−2GSS (42)

=
1

ρ
(
3K

N
−K,N )−R(g̃) −∆(g̃) ln ρ

−
{
∇(g̃)
A ρ∇(g̃)Aρ

ρ2
+ 2K̊ABK̊

AB

}

0 = ρ,N − ρ2K (43)

where objects with A,B indices are projected tensors
onto the 2-surfaces ΞN . Note that the curly brackets
in the above two equations are positive definite - they
entirely consist of squared quantities on a space with Ri-
emannian (positive-definite) metric. As such, they can
be dropped, writing the equations instead as inequalities
0 ≤ ... ((42) and (43) without the curly brackers).

Using this, the ”Einstein inequalities” and the Lie-
derivative definition of the extrinsic curvature:

KAB=
1

2
£N g̃AB

=
1

2
(∂1g̃AB + g̃A1���

�:0
∂B(∂1) + g̃1B���

�:0
∂A(∂1))

=
1

2
ρ−1(∂N g̃AB)

where ∂1 is the surface (N = const.) orthogonal vector
field dN in adapted coordinates, gives us two inequalities:

∂N

(
|g̃|K
√
ρN

)
≤ −2

√
|g̃|
N

∆(g̃)√ρ (44)

∂N

(
|g̃|
√
ρ

(
KN +

4

ρ

))
≤ −N

√
|g̃|
(

∆(g̃) ln ρ+R(g̃)
)
(45)

These two inequalities are crucial to the proof

4. Integrating the inequalities

Now we integrate both inequalities wrt. dxAdxBdN ,
over the entirety of Σ.
Note the right hand sides contain the determianant of
the metric on ΞN and as such give immediately the area
element: ∫

ΞN

dAN∆(g̃)√ρ = 0∫
ΞN

dAN∆(g̃) ln ρ = 0

which both vanish due to Green’s theorem. The only
surviving part on the right hand sides is the R(g̃), which
by Gauss-Bonnet gives:∫ 1

0

NdN

∫
ΞN

dAN

(
R(g̃)

)
=

1

2
8π

On the left hand signs, we use stokes theorem and eva-
luate the expressions on the horizon and at infinity. For
this, we use the derived boundary conditions on static
black hole horizons and asymptotics at infinity, as pers-
cribed by the proof. This leads us to:[ ∫

dAN
K
√
ρN

]1
0
≤ 0

[ ∫
dAN

KN + 4ρ−1

ρ

]1
0
≤ −4π

i.e. the angular integrals as evaluated on the horizon and
at spatial infinity. Using the asymptotics ρ−1 → M

r2 ,K →
2
r & N → 1 − M

r and the earlier derived boundary con-
ditions on the horizon, we arrive at:

M ≤ 1

4
ρΞ0

(46)

1

4
ρΞ0
≤ 1

4π
Aρ−1

Ξ0
(47)
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where A is the surface area of the static black hole ho-
rizon at N = 0 and ρΞ0

is ρ evaluated on the blackhole
horizon (we know this is a constant on the entire black
hole horizon from equation (31) as well as the fact that
the tangential derivatives vanish sinceN = 0 on Ξ0). The
mass term comes from the asymptotic condition that the
metric approach Schwarzschild with mass M.
The proof at this point calls upon the Komar mass inte-
gral (36), which relates the mass M and surface area of
a horizon in vacuum as:

M =
ρ−1

Ξ0

4π
A

which then implies

1

4
ρΞ0
≤
ρ−1

Ξ0

4π
A = M ≤ 1

4
ρΞ0

which implies that these inequalities are actually equali-
ties!

The great news here is that this also implies that the
inequalities (44) & (45), created by neglecting the big
curly brackets in equations (41) & (42), are also equali-
ties - the brackets are in fact 0:

{
∇(g̃)
A ρ∇(g̃)Aρ

ρ2
+ 2K̊ABK̊

AB

}
= 0 (48)

and as both parts of appearing inside the bracket are
positive definite on their own, they must both vanish on
their own.
That is:

K̊ABK̊
AB = 0 −→ K̊AB = 0 (49)

∇(g̃)
A ρ∇(g̃)Aρ

ρ2
= 0 −→ ∇(g̃)ρ = 0 −→ ρ = const. (50)

Since equations (41) & (42) hold for every N, everything
derived from them also holds for every N ; so this is true
on the entirety of Σ.

Using now equation (43), we can also conclude from

constancy of ρ (50) that K = 0 for all N, and from this
that every surface N = const. has constant mean curva-
ture. Additionally, from (42), we see that every quantitiy
except R(g̃) is now constant on the leaves N = const. and
therefore that R(g̃) is as well. We already know from the
theory of foliations that each N = const. are topological
2-spheres. Further, using these two facts, it follows that
they are all also embedded 2-sphere - i.e. the spacetime
is completely spherically symmetric.

5. Schwarzschild Obtained

We now have full 2-spherical symmetry for arbitrary
N which turns out to be enough to explicitly reconstruct
the Schwarzschild spacetime metric. Plugging (49) into
(41), (42) and (43), and solving we get:

ρ =
4c

(1−N2)2
K =

N

c
(1−N2) R(g̃) =

(1−N2)2

2c2

where c is an integration constant from integrating the
∇(g̃)ρ to get ρ.
All that’s left is to choose the correct coordinates for
the function N(r), where r is the radial coordinate in
Schwarzschild, to reproduce the exact form of (30).
Taking:

(1−N2)2

2c2
=

2

r2
c = M

we get:

N2 = 1− 2M

r
ρ2dN2 = (1− 2M

r
)−1dr2 g̃ = r2dΩ2

where the g̃ condition follows from the constant-N ≈
constant-r spherical symmetry condition described ear-
lier.

Writing the full spacetime metric in these new coordi-
antes then yields exactly Schwarzschild (30):

g(4) = −N2dt2 + ρ2dN2 + r2dΩ2
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P. Tondeur, Geometry of Foliations, Monographs in Mat-
hematics, 1997

4 Matthias Blau, Lecture Notes on General Relativity, Albert
Einstein Center for Fundamental Physics, CH-3012 Bern,

2018
5 R. Wald, The Thermodynamics of Black Holes, Living Rev.

Relativity 4, (2001)
6 Norbert Straumann, General Relativity with Applications

to Astrophysics, Springer, (2004)
7 Markus Heusler - Black hole uniqueneess theorems, Cam-

bridge University Press, (1996)
8 Loring W. Tu - An Introduction to Manifolds, Second edi-

tion, Springer


