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Abstract: We introduce and attempt to justify the local gauge invariance principle.
We state its goal and with the main example being the electromagnetism, we give a
short description of it. We then state the main geometrical aspects of the newly
constructed theory which brings us to the formalism of principal fiber bundles,
connections and curvature. We present the suitable mathematical language and give
geometrical interpretations to physical quantities along the way.

1. Introduction

When trying to construct the relativistic quantum theory of electromagnetism, one usually builds a classical
field theory of electromagnetism and then employs one of the quantization procedures. When approaching the
former, there is a certain foundational freedom that is of no practical importance. We can start from Maxwell’s
equations and construct a Lagrangian whose Euler-Lagrange equations yield Maxwell’s equations or derive the
Lagrangian from some general principles.
Only when we try to describe the particles experiencing the strong and weak forces do we have a problem,
since unlike in the electromagnetic case, we have no classical description of the forces. Because of this, it is of
considerable interest to find a principle from which one builds a theory. Since the forces share many similarities,
it is hoped that a general principle can be applied that constructs the theory of each force (or a unified one).
It cannot be known, from a purely logical-philosophical point of view, whether the local gauge invariance is the
only principle of such kind, but it is a very successful one.

To illustrate the principle, we will start with an elementary treatment of electromagnetism. Let M = R4

be the Minkowski spacetime with standard coordinates xµ = (t, x, y, z) = (x0, x1, x2, x3). The smooth function
ψ : M → C4 describing the fermions is called the Dirac field. The free Dirac field satisfies the Dirac equation
iγµ∂µψ −mψ = 0 and the free Lagrangian density (shortly, Lagrangian) is

Lfree = ψ̄(iγµ∂µ −m)ψ . (1)

But a free theory cannot describe nature, since it does not describe interactions. We therefore impose the local
gauge invariance principle on our theory: it should be invariant under the transformation

ψ(x) −→ eiα(x)ψ(x) , (2)

where α : M → R is a smooth function. Before we proceed, let us make the discussion more general so that
the principle becomes suitable for geometric interpretation and applications. It is our hope that with certain
changes we can obtain a theory for other fundamental forces.

Instead of C4 we will write V for a general vector space. Furthermore, the elements of the form eiφ, φ ∈ R
constitute a group U(1). Instead, let G be a general Lie group and g its Lie algebra (see Appendix for basic
definitions). We therefore have the action of G on V . When G is compact and connected, a property enjoyed
by U(1) and other groups in particle physics, the exponential map exp : g→ G is surjective and every element
g ∈ G can be written as g = exp(A) = eA, A ∈ g. We will not use this, and write g(x) instead of eiα(x).

A quick look at the Lagrangian (1) tells us that in this form it cannot be invariant under gauge transformation.



The standard procedure here is to introduce the covariant derivative

∂µ −→ Dµ = ∂µ −Aµ (3)

Lfree −→ L = ψ̄(iγµDµ −m)ψ (4)

In electromagnetism, where G = U(1), Aµ is an imaginary valued function. In general, we don’t know yet the
character of these objects. From (4) we see that if ψ′(x) = g(x)ψ(x) is the transformed field, then ψ̄′ = ψ̄g−1

and the appropriate transformation of the potential

A′µ = g−1∂µg + g−1Aµg (5)

leaves the Lagrangian invariant.

As it stands, the Lagrangian (4) is still not yet complete. The reason is that it does not include a term
that incorporates a change in the potential Aµ. Laws of nature are expressed in terms of differential equations.
When adding such a term, we have to keep in mind that it must be invariant under gauge transformations (we
say that it has to be gauge invariant). A way to achieve this is by introducing the commutator

[Dµ, Dν ] = −(∂µAν − ∂νAµ + [Aµ, Aν ]) . (6)

In electromagnetism, [Dµ, Dν ] = Fµν = ∂µAν − ∂νAµ is the celebrated electromagnetic field tensor. The full
QED Lagrangian is then LQED = ψ̄(iγµDµ −m)ψ − 1

4FµνF
µν . We will try to make sense of all of this.

In what follows we will work in a semiclassical approximation and speak of ψ as a particle field. When
we introduced the transformation (2) we implicitly imposed additional structure on V . For every x ∈ M , in
defining ψ(x) along comes the determination of a ”reference frame” at x. By this we mean, for example the
zero phase angle, as in electromagnetism, where G = U(1), or a basis in the isospin space, as in the Yang-Mills
theory, where G = SU(2). Let Px denote the set of all such ”reference frames” above x. A group transformation
p 7→ pg, for p ∈ Px and g ∈ G maps one reference frame to another. The dependence of ψ on x can be ”lifted”
to dependence on p. Of course, ψ(pg) = g−1ψ(x), because when the axes are rotated in one direction, the vector
is rotated in the other direction.

Denote by P the union of all Px, x ∈ M . Our wish is to ”glue” the Px in a ”smooth” way. What we
are speaking of is a principle fiber bundle. It is a special kind of fiber bundle and can be visualised as a
collection of ”fibers” Px tied up in a bundle, where tying up depends on M . M need not be R4; it can be
a region determined by our laboratory. Also, P need not be equal to M × G; it may be twisted. (Recall
the difference between a cylinder and a Moebius strip. Some interesting physical results can be obtained when
the topology of M or P isn’t trivial, for example the Aharonov-Bohm effect. We will not go into it in this paper.)

When observing a sufficiently small region of space U ⊂ M , the bundle P looks ”trivial”, in the sense that
it has the structure of U × G. On U there is a function sU : U → P , such that sU (x) ∈ Px, called a section
over U . Since it is also a smooth choice of reference frames, in physics jargon it is a choice of gauge. Once the
gauge is chosen, we can pull down our field ψ to U : ψU (x) = ψ ◦ sU (x). Let V be another region and sV the
corresponding section. Let gUV : U ∩ V → G be such that sV (x) = sU (x)gUV (x). We then have

ψV (x) = ψ(sU (x)gUV (x)) = gUV (x)−1ψU (x) , (7)

which is exactly the transformation (2).

Now that we have motivated the geometrical structure of gauge theories, we will present the mathematical
theory of principal fiber bundles, connections and curvature. Along the way we will give definitions of quanti-
ties presented in the introduction, and also some new ones.
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2. Principal fiber bundles

Definition 1. Let P ,M and F be smooth manifolds and π : P →M a smooth surjection. A local trivialization
with fiber F for π is an open cover U = {Uα | α ∈ A} together with a family {φα : π−1(Uα) → Uα × F} of
diffeomorfisms such that the diagrams

π−1(Uα) Uα × F

Uα

π

φα

η

commute. Here η is a projection to the first factor. We say that φα are fiber-preserving. A fiber bundle with
fiber F is a smooth surjection π : P → M having a local trivialization with fiber F . Manifold P is called the
total space and M is called the base space. A fiber of a fiber bundle π : P →M is the set Px := π−1(x).

Because π is a submersion, by the regular level set theorem, the each fiber Px is a regular submanifold of P
diffeomorfic to {x} × F via φα.
We have seen in the introduction that for our purposes the fiber must be a Lie group G. Moreover, there is map
called a smooth right action of a Lie group G on a manifold P , µ : P ×G → P denoted by p · g := µ(p, g),
such that

• p · e = p, where e is the identity element of G,

• (p · g) · h = p · (gh), for all g, h ∈ G.

The action of G is free if the only element g ∈ G such that p · g = p, for all p ∈ P , is the identity element e. A
manifold equipped with the right action of a Lie group G is called a G-manifold. Let f : N → M be a map
between two G-manifolds. We say that f is G-equivariant if f(p · g) = f(p) · g. Now we are ready to give a
definition of a principle fiber bundle.

Definition 2. A smooth fiber bundle π : P → M with fiber G is a smooth principal G-bundle if G acts
smoothly and freely on P on the right and the fiber-preserving local trivializations φα : π−1(Uα)→ Uα ×G are
G-equivariant, where G acts on Uα ×G on the right by (x, h) · g = (x, hg).

G-equivariance of the local trivializations in the previous definition is important: it preserves the structure.
U × G are ”local coordinates” of P , in a sense, and if there is a change in the ”reference frame” p 7→ pg, we
want it to be visible in the coordinates.
A section of P over U is a function s : U → P such that π ◦ s = idU . Consider now a right G-equivariant map
f : G→ G. Then f(g) = f(eg) = f(e)g = lf(e)(g), where lh : G→ G is a left translation by h. This shows that
f is necessarily a left translation. We conclude this section with a notion of transition functions.
Let {φα : π−1(Uα) → Uα × G | α ∈ A} be a local trivialization for a principle G-bundle π : P → M and
α, β ∈ A. Denote Uαβ = Uα ∩Uβ . Then φα ◦φ−1β : Uαβ ×G→ Uαβ ×G is a fiber preserving right G-equivariant
diffeomorfism, and so by the preceding discussion it is a left translation on each fiber. It is therefore of the form
(x, h) 7→ (x, gαβ(x)h). Smooth functions gαβ : Uαβ → G are called transition functions.

3. Connections

Throughout this section, G is a Lie group with Lie algebra g and π : P →M is a principal G-bundle.

3.1. Vertical and Horizontal Distributions of the Tangent Bundle TP

On the total space P there is a natural notion of vertical tangent vectors. By the local triviality condition,
since the trivializations are diffeomorphisms, the differential π∗,p : TpP :→ Tπ(p)M is surjective. We define the
vertical subspace Vp to be kerπ∗,p. To shed some light on this concept it is useful to define the fundamental
vector field.
Let A ∈ g. Then the function t 7→ etA, t ∈ R is an integral curve of a left invariant vector field generated by A
starting at e. We define the fundamental vector field A associated to A by

Ap =
d

dt

∣∣∣∣
t=0

p · etA ∈ TpP .
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There is an alternative description of a fundamental vector field. For p ∈ P , define jp : G→ P by jp(g) = p · g.
Using the curve c(t) = etA we can calculate the action of a differential jp∗,e on A:

jp∗(A) = jp∗(c
′(0)) =

d

dt

∣∣∣∣
t=0

jp(e
tA) = Ap .

The following proposition gives us a useful characterisation of vertical vectors.

Proposition 1. For any A ∈ g, the fundamental field A is vertical at every point p ∈ P . For every p ∈ P , the
map jp∗,e : g

∼−→ Vp is an isomorphism of vector spaces.

Therefore, the vertical tangent vectors at a point are precisely the fundamental vectors. We can visualize
this as follows: Let M be a plane. To each x ∈M we want to associate a group fiber. For example, if G = U(1),
which is diffeomorphic to the line segment with end points identified, we can stack the line segments (keeping
in mind that the end points are identified) in such a way that the identity elements of all fibers coincide with
the point in the plane. The fibers now look like straws stacked in a jar. For any p in the resulting bundle P ,
p · etA always stays in the same fiber, i.e., moves in the ”up-down” direction. And so the vertical tangent vector
at p will indeed be ”vertical”.

Now let B1, ..., Bl be a basis for a Lie algebra g. By the preceding proposition, the fundamental vector
fields B1, ..., Bl form a basis of Vp for every p ∈ P . Therefore, by theorem 9 from the Appendix, the family
V =

∐
p∈P Vp is a subbundle of a vector bundle TP . The subbundle of a tangent bundle of a manifold is also

called a distribution on a manifold.

Now, for each p ∈ P we can choose a subspace Hp of TpP such that TpP = Vp ⊕ Hp,i.e.TpP = Vp ∪ Hp
and Vp ∩ Hp = {0}. There is no canonical way to do this, unlike the vertical subspaces, which are always well
defined on a principle bundle. If H =

∐
p∈P Hp forms a vector subbundle of the tangent bundle, it is called a

horizontal distribution.

3.2. Ehresmann connection

When the horizontal distribution of a principle bundle π : P → M is chosen, there is a well defined notion
of a vertical and horizontal component of a tangent vector. For each p ∈ P let v : TpP → Vp and h : TpP → Hp
be the natural projections. Every vector Yp ∈ TpP can be written as a unique sum of a vertical and a horizontal
vector. It can be shown that if Y is a smooth vector field on P , then v(Y ) and h(Y ) are also smooth. In this
section we show (but do not prove) how the family of horizontal distributions is in a one to one correspondence
with a family of g-valued 1-forms satisfying certain conditions.

Let g ∈ G and rg : P → P be the right action rg(p) = pg. Since the action og G is free and transitive on each
fiber, rg is a diffeomorphism. We say that a distribution is right-invariant is rg∗(Hp) = Hpg. Proposition 1
allows the following theorem:

Theorem 1. Let H be a smooth right-invariant horizontal distribution of a principal G.bundle π : P → M .
Define the g-valued 1-form ω by ωp = j−1p∗ ◦ v : TpP → Vp → g, for each p ∈ P . Then ω satisfies the following
properties:

• For any A ∈ g, we have ω(A) = A;

• (G-equivariance) For any g ∈ G, r∗gω = (Adg−1)ω

• ω is C∞

Definition 3. An Ehresmann connection or simply a connection on a principal G-bundle P → M is a
g-valued 1-form on P satisfying the three properties of the preceding theorem.

Theorem 2. If ω is a connection on a principal G-bundle P → M , then Hp = kerωp, p ∈ P is a smooth
right-invariant horizontal distribution.
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Lets fix a horizontal distribution H on π : P → M and let X be a vector field on M . For every p ∈ P , the
differential π∗,p : TpP → Tπ(p)M induces an isomorphism between Tπ(p)M and Hp:

TpP = Vp ⊕Hp =⇒
TpP

Vp
∼−→ Hp

TpP

Vp
=

TpP

kerπ∗,p

∼−→ imπ∗,p = Tπ(p)M

Consequently, for each p ∈ P there is a unique horizontal vector X̃p ∈ Hp such that π∗(X̃p) = Xπ(p). The

vector field X̃ is called the horizontal lift of X from M to P . The next proposition will be proven to illustrate
the methods and concepts we have introduced thus far.

Proposition 2. If H is a smooth right-invariant horizontal distribution on the total space P of a principal
G-bundle π : P → M , then the horizontal lift X̃ of a smooth vector field X on M is a smooth right-invariant
vector field on P .

Proof. Let x ∈ M and p ∈ π−1(x) = Px. Let us first prove the right-invariance. From local triviality and
G-equivariance of local trivializations, it follows that π(pg) = π(p), i.e. πg = π. Therefore, if q ∈ Px is another
point in the fiber, by the transitivity of the action, q = pg, for some g ∈ G and so we have

π∗,pg(rg∗X̃p) = π∗,p(X̃p) = Xx .

By the uniqueness of the horizontal lift, rg∗X̃p = X̃pg.

To prove the smoothnes of X̃, we prove it locally, over a trivializing open set U ⊂ M with a trivialization
φ : π−1(U) → U ×G. Define Z(x,g) = (Xx, 0) ∈ T(x,g)(U ×G) and let η : U ×G → U be the projection to the
first factor. Then obviously Z is a smooth vector field on U ×G such that η∗Z(x,g) = Xx. Hence Y := φ−1∗ (Z)
is a smooth vector field on π−1(U). By the triviality property, π∗(Yp) = (η ◦ φ)∗(φ

−1
∗ Zφ(p)) = Xπ(p). We have

mentioned that if Y is smooth on P , then its horizontal component hY is smooth also. Since the vertical vectors
are in the kernel of π∗, we have π∗(Yp) = π∗(h(Yp) + v(Yp)) = π∗(h(Yp)) = Xπ(p). Therefore, hY lifts X over U

and by the uniqueness of the horizontal lift, X̃ = hY over U . This proves that X̃ is a smooth vector field.

3.3. Gauge potentials

In the introduction we have seen how an introduction of a local gauge invariance principle implicitly intro-
duces new ”reference frames” resulting from the action of a group G. We can therefore ”lift” our particle field
from some region of space-time to the newly constructed principal bundle. Upon descending the field locally to
some open set, via a choice of gauge, we get the desired properties of our particle fields. In this subsection we
will try to make sense of Aµ from the introduction, know to us from electromagnetism as an electromagnetic
field and show how it can be explained by descending a global object, a connection form, to an open set of a
space-time.

Recall that a section over a fiber bundle π : P → M is a function s : U → P such that π ◦ s = idU . Such
section is also called a local section, as opposed to a global section whose domain is the entire base space M .
It turns out that when the fiber bundle is a principal G-bundle, if there is a local section over U , then U is a
trivializing open set. Conversely, on every trivializing open set there is a natural local section over it.

Proposition 3. There is a natural correspondence between local trivializations φU : π−1(U)→ U ×G and local
sections on P .

Proof. Let sU : U → P be a local section and x ∈ U . s sends x to the fiber Px over it. Since G acts
transitively on each fiber, every element q ∈ Px can be written as q = sU (x)g, for some g ∈ G. There-
fore, the map φU : π−1(U) → U × G ,φU (sU (x)g) = (x, g) is well defined. Its inverse φ−1U is given by
φ−1U (x, g) = sU (x)g = µ ◦ (sU × idG)(x, g). ψU := φ−1U is obviously a smooth map, and both are G-equivariant.
To show that φU is a local trivialization, it remains to show that it is smooth, i.e. a diffeomorphism.

Let (x, g) ∈ U × G be arbitrary. If we show that the differential of ψU is an isomorphism at (x, g), by the
inverse function theorem it will follow that ψU has a smooth local inverse. Since the inverse is unique, this will
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show that φU is smooth in a neighbourhood of ψU (x, g), i.e. that it is smooth.

We therefore need to calculate the differential of the action µ∗,(x,g) : TpP × TgG → TpgP . Let lg : G → G
be the left translation on a Lie group G by g. It is a diffeomorphism, so the tangent space of G at g can be
identified with lg∗g, where g is a Lie algebra of G. Since µ∗(Xp, lg∗A) = µ∗(Xp, 0) + µ∗(0, lg∗A), it suffices to
calculate the each term separately.

Let c(t) be a curve through p in P with initial vector Xp. Then (c(t), g) is a curve through (p, g) with initial
vector (Xp, 0). So,

µ∗,(p,g) =
d

dt

∣∣∣∣
t=0

µ(c(t), g)

=
d

dt

∣∣∣∣
t=0

rg(c(t))

= rg∗c
′(0) = rg∗Xp .

Since a curve through (p, g) with initial vector (0, lg∗A) is (p, getA), so

µ∗,(p,g)(0, lg∗A) =
d

dt

∣∣∣∣
t=0

µ(p, getA)

=
d

dt

∣∣∣∣
t=0

pgetA

= Apg .

We have thus found that µ∗,(p,g)(Xp, lg∗A) = rg∗Xp + Apg. Let (x, g) be a point in U × G, and let Yx ∈ TxM
and lg∗A ∈ TgG. We thus have

ψU∗,(x,g)(Yx, lg∗A) = rg∗(sU∗Yx)) +Apg.

Now, since π◦rg◦sU = π◦sU = idU , so the first term is never vertical, unless Yx = 0. If ψU∗,(x,g)(Yx, lg∗A) = 0 it
follows that Yx = A = 0, so the differential is injective. Surjectivity is obvious, and so φU is a local trivialization
associated to the local section sU .

Conversely, if we are given a local trivialization φU : π−1(U) → U × G, then sU (x) = φ−1U (x, e) defines a
smooth local section over U .

From hence forth, we will always work with the preferred local sections associated to local trivializations as
above. The preceding proof also gave us a useful lemma.

Lemma 1. Let µ : P ×G→ P be the action of a Lie group G on the principal bundle P →M . The differential
µ∗,(p,g) : TpP × TgG→ TpgP is given by

µ∗,(p,g)(Xp, lg∗A) = rg∗Xp +Apg .

Theorem 3. Let {φα : π−1(Uα)→ Uα×G | α ∈ A} be a local trivialization of a principal G-bundle π : P →M
and ω a connection on P . Let sα be the induced local sections and ωα = s∗αω. If Uαβ := Uα ∩ Uβ 6= ∅, then on
Uαβ we have

ωβ(Yx) = lgαβ(x)−1∗(gαβ∗(Yx)) + Adgαβ(x)−1(ωα(Yx)) , (8)

for every x ∈ Uαβ and Yx ∈ TxM

Proof. Let us write φα(p) = (π(p), aα(p)) and φβ(p) = (π(p), aβ(p)). Then, by the G-equivariance property,
φα = φβ · (aαa−1β ) and therefore, if x = π(p), the transition function is given by gαβ(x) = aα(p)a−1β (p). If q is

another point in the fiber Px, then q = pg, for some g ∈ G, and therefore, aα(q)a−1β (q) = aα(p)g(aβ(p)g)−1 =

aα(p)a−1β (p), so gαβ(x) is well defined.
Let us now find the relation between the induced local sections. By definition φα(sα(x)aα(p)) = (x, aα(p)) =
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φα(p) =⇒ sα(x)aα(p) = p and similarly sβ(x)aβ(p) = p. Hence, sβ(x) = sα(x)gαβ(x) = µ ◦ (sα× gαβ)(x). Put
p := sα(x) and g := gαβ(x). The previous lemma now gives us

sβ∗(Yx) = µ∗,(p,g)(sα∗(Yx), gαβ∗(Yx))

= µ∗,(p,g)(sα∗(Yx), lg∗(lg−1∗gαβ∗(Yx)))

= rg∗(sα∗(Yx)) + lg−1∗gαβ∗(Yx))
pg

=⇒

ωβ(Yx) = (s∗βω)x(Yx)

= ωpg(sβ∗(Yx))

= ωpg(rg∗(sα∗(Yx))) + ωpg(lg−1∗gαβ∗(Yx))
pg

)

= (Adg−1)ωp(sα∗(Yx)) + lg−1∗gαβ∗(Yx))

= lg−1∗gαβ∗(Yx)) + (Adg−1)ωα(Yx)

When G is a matrix group, this formula can be put in a more simple form. Let c(t) be a path through x
with c′(0) = Yx. Then

lg−1∗(gαβ∗(Yx)) = (lg−1 ◦ gαβ ◦ c)′(0)

=
d

dt

∣∣∣∣
t=0

(g−1 · gαβ(c(t)))

= gαβ(x)−1dgαβ(Yx) .

See the Appendix for the definition of the exterior derivative of a vector(matrix) valued form. Furthermore,
since Adg = cg∗,e, where cg : G→ G is a conjugation by g, h 7→ ghg−1, for a matrix group we have

AdA(B) = cA∗,I(B) =
d

dt

∣∣∣∣
t=0

cA(etB) =
d

dt

∣∣∣∣
t=0

AetBA−1 = ABA−1 .

Therefore, equation (7) becomes
ωβ = g−1αβdgαβ + g−1αβωαgαβ

Now, let us view this in terms of coordinate forms. We can shrink the domain, if necessary, so that Uαβ becomes
a coordinate open set, with coordinates xµ. Set ωβ = A′µdx

µ and ωα = Aµdx
µ. When both ωα and ωβ act on

the coordinate vector field ∂µ, we obtain (with a shortcut notation gαβ(x) = g(x))

A′µ = g−1∂µg + g−1Aµg ,

which is exactly the equation (5). Thus, we have learned about the character of a gauge potential:

Definition 4. Let π : P → M be a principal G-bundle over an open set of space-time, ω an Ehresmann
connection and s : U → P . The gauge potential Aµ on U is a coordinate component of a pullback of a
connection s∗ω, a Lie algebra-valued 1-form. Aµ is thus a Lie algebra-valued function. We sometimes refer to
1-forms s∗ω as gauge potentials.

As we have announced in the introduction, a gauge transformation amounts to a change in a local section,
s(x) 7→ s(x) · g(x). We will give a formal definition of a gauge transformation in the last section.

A natural question arises here. Given a concrete physical system, how do we construct a connection and is
it even possible? Many times it will occur that the global gauge potential is not available, i.e. the G-bundle is
not trivial (magnetic monopole being a common example). This is answered by the following theorem.

Theorem 4. Let G be a Lie group with Lie algebra g. Let π : P → M be a principal G-bundle, {φα(Uα) :
π−1(Uα) | α ∈ A → Uα × G} its local trivialization and sα : Uα → P the induced local sections. If {ωα ∈
Ω1(Uα, g) | α ∈ A} is a collections of g-valued 1-forms such that for x ∈ Uα∩β 6= ∅ we have

ωβ(Yx) = lgαβ(x)−1∗(gαβ∗(Yx)) + Adgαβ(x)−1(ωα(Yx)) , (9)

then there is a unique connection ω on P →M such that s∗αω = ωα, for every α ∈ A.
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To end this section, we will give meaning to the previously mentioned covariant derivative.

As we have seen, general philosophy has been either ”lifting” to the total space P or ”pulling down” to the
base space M . In the introduction we have seen that the concept of a gauge potential and covariant derivative
appear simultaneously in an attempt to replace the usual derivative ∂µ, alongside with gauge invariance, which
gave rise to the principal bundle formalism. We will therefore, try to lift the coordinate vector field to the total
space.

We already have a notion of a horizontal distribution on P and a horizontal lift X̃ of a vector field X on M .
Theorems 1 and 2 tell us that a horizontal distributions and connections are in a one-to-one correspondence.
Therefore, let (U, xµ) be a coordinate trivializing open set on a principal G-bundle π : P →M with connection
ω, sU the induced local section and ωU = s∗Uω = Aµdx

µ. Let ∂̃µ be a horizontal lift of a coordinate vector field
∂µ. Let x be a point in U and p = sU (x). We have

ωUx(∂µ|x) = ωp(sU∗(∂µ|x)) = Aµ(x) = ωp(Aµ(x)
p
) =⇒

ωp(sU∗(∂µ|x)−Aµ(x)
p
) = 0 .

Hence, sU∗(∂µ|x) − Aµ(x)
p

is horizontal and π∗,p(sU∗(∂µ|x) − Aµ(x)
p
) = ∂µ|π(p). By the uniquiness of the

horizontal lift, it follows that ∂̃µ ◦ sU = sU∗(∂µ) − Aµ ◦ sU . Since sU is a diffeomorphism into its own image,

tangent vector Yx at TxM can be identified with sU∗(Yx) at TpP , and the fundamental vector fields can be
identified with its Lie algebra generators. Thus, we have found the interpretation of a covariant derivative
Dµ = ∂µ −Aµ as a horizontal lift of a coordinate vector field ∂µ.

4. Curvature

In Appendix you can find a short discussion of a connection and curvature on a vector bundle and their con-
nection and curvature matrix forms. There is also a short treatment of vector valued forms and their products.
This will help to motivate the definition of a curvature of a connection on a principal bundle.

If ∇ is a connection on a vector bundle π : E → M , then its connection and curvature matrices ωe and Ωe
on a framed open set (U, e) are related by the equation Ωe = dωe +ωe ∧ωe = dωe + 1

2 [ωe, ωe]. On a general Lie
group, wedge product is not defined, but the Lie bracket is always defined. This brings us at the definition of
curvature.

Definition 5. Let G be a Lie group with Lie algebra g and ω an Ehresmann connection on a principal G-bundle
π : P →M . Then the curvature of the connection ω is a g-valued 2-form

Ω = dω +
1

2
[ω, ω]

The next theorem gives us some essential properties of a curvature

Theorem 5. Let G be a Lie group with Lie algebra g. Suppose π : P →M is a principal G-bundle, ω connection
on P , and Ω curvature form of ω. Then

• (Horizontality) For every p ∈ P and Xp, Yp ∈ TpP ,

Ωp(Xp, Yp) = (dω)p(hXp, hYp) .

• (G-equivariance) For every g ∈ G, we have r∗gΩ = (Adg−1)Ω.

• (Second Bianchi identity) dΩ = [Ω, ω].

The first property also states that Ω is horizontal. A differential form on P is said to be horizontal if it
vanishes on vertical vectors.

Of course, just as a connection pulls back by local sections to gauge potentials, the curvature form can also
be pulled back to something identified with field strength. Let {φα : π−1(Uα) → Uα × G | α ∈ A} be a local
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trivialization for a principal G-bundle π : P → M and sα : Uα → P the induced local sections. Let Ωα be the
pullback s∗αΩ. Since the pullback commutes with the exterior derivative and with Lie bracket, we have from
definition 5

Ωα = dωα +
1

2
[ωα, ωα] .

Let Uα be a coordinate open set and write ωα = Aµdx
µ. If B1, ..., Bl is a basis for g, we can write Aµ = AiµBi

and ωα = (Aiµdx
µ)Bi, for some real valued functions Aiµ , i = 1, ..., l. Then, by proposition 5 from the Appendix,

we have

[ωα, ωα] = (Aiµdx
µ) ∧ (Ajνdx

ν)[Bi, Bj ]

= [AiµBi, A
j
νBj ]dx

µ ∧ dxν

= [Aµ, Aν ]dxµ ∧ dxν ;

dωα = (dAiν ∧ dxν)Bi

= (∂µA
i
ν)dxµ ∧ dxνBi

= (∂µAν)dxµ ∧ dxν

=
1

2
(∂µAν)(dxµ ∧ dxν − dxν ∧ dxµ)

=
1

2
(∂µAν − ∂νAµ)dxµ ∧ dxν =⇒

Ωα : =
1

2
Fµνdx

µ ∧ dxν

=
1

2
(∂µAν − ∂νAµ + [Aµ, Aν ])dxµ ∧ dxν .

This has exactly the same form as a commutator (6) introduced in the first section. Thus we see that the
curvature is responsible for the dynamics of the gauge field.

It is very useful to know how the curvature responds to a change of gauge. This is answered by the following
theorem.

Theorem 6. Let {φα : π−1(Uα)→ Uα×G | α ∈ A} be a local trivialization of a principal G-bundle π : P →M
and Ω the curvature form of a connection ω on P . Let sα be the induced local sections and Ωα = s∗αΩ. If
Uαβ := Uα ∩ Uβ 6= ∅, then on Uαβ we have

Ωβ = Adg−1αβΩα

Proof. Let x be a point in Uαβ , Xx, Yx ∈ TxM and put p = sα(x). In the proof of theorem 3 we have learned
that sβ(x) = sα(x)gαβ(x) := pg and sβ∗(Yx) = rg∗(sα∗(Yx)) + lg−1∗gαβ∗(Yx))

pg
. Because fundamental vectors

are vertical, we have

Ωβx(Xy, Yx) = Ωpg(sβ∗(Xx), sβ∗(Yx))

= Ωpg(rg∗(sα∗(Xx)), rg∗(sα∗(Yx))) Horizontality

= (r∗gΩ)p(sα∗(Xx), sα∗(Yx))

= (Adg−1)Ωp(sα∗(Xx), sα∗(Yx)) G-equivariance

= (Adg−1)Ωαx(Xy, Yx) .

When G is a matrix group, then Ωβ = g−1αβΩαgαβ .
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5. Particle fields and gauge transformations

In this section we will formalize the discussion of a particle field and gauge transformation from the end of
Introduction.

Definition 6. Let π : P → M be a principal G bundle and ρ : G → GL(V ) a representation of G on a finite
dimensional vector space V . The notation will be ρ(g)v = g · v = gv. The associated bundle E := P ×ρ V is
the quotient of P × V by the equivalence relation

(p, v) ∼ (pg, g−1 · v) ,

for g ∈ G and (p, v) ∈ P × V . The equivalence class of (p, v) is denoted by [p, v]. Since π(pg) = π(p), the
natural projection β : E →M given by β([p, v]) = π(p) is well defined.

Proposition 4. If ρ : G→ GL(V ) is a finite dimensional representation of a Lie group G and U is a manifold,
then there is a fiber preserving diffeomorphism

φ : (U ×G)×ρ V
∼−→ U × V ,

[(x, g), v] 7→ (x, g · v) .

Since the principal bundle P → M is locally U × G, this proposition shows that the associated bundle
P ×ρ V → M is locally trivial with fiber V . This makes the associated bundle into a vector bundle, with the
well defined operations on fibers given by

[p, v1] + [p, v2] = [p, v1 + v2]

λ[p, v] = [p, λv] .

Definition 7. A V -valued k-form φ on P is said to be right-equivariant of type ρ if for every g ∈ G we have
r∗gφ = ρ(g)−1 · φ. A form that is both horizontal and right-equivariant of type ρ is called tensorial of type ρ.

The set of all tensorial V -valued k-forms on P are denoted by Ωkρ(P, V ).

Theorem 7. Ωk(M,E) and Ωkρ(P, V ) are isomorphic vector spaces.

When k = 0 in the above theorem, Ω0(M,E) consists of maps from M to the associated bundle E, i.e. of
sections of E. Ω0

ρ(P, V ) on the other hand consists of maps f : P → V that are right-equivariant with respect
to ρ, i.e. f(pg) = g−1 · f(p), for all p ∈ P and g ∈ G. The previous theorem for the special case is stated in the
following corollary.

Corollary 1. Let G be a Lie group, P → M a principal G-bundle and ρ : G→ GL(V ) a representation of G.
Then there is a ono-to-one correspondence

{right-equivariant maps of type ρ , f : P → V } ←→ Γ(P ×ρ V,M) .

Definition 8. Let G be a Lie group, ρ : G → GL(V ) its finite dimensional representation and π : P → M a
principal G-bundle, where M is a region of space-time. A particle field is a section of the associated vector
bundle P ×ρ V →M .

Lifting the dependence from M to P allows us to make the discussion global and to observe the geometric
properties. We know that there are passive transformations (i.e. a change of reference frame or, equivalently,
action of g(x) to the right) and active transformations (i.e. action on the field in the opposite direction). In
principle, these are indistinguishable and hence the associated bundle formalism. That’s why we are identifying
the points (p, v) and (pg, g−1v). All such descriptions are equivalent, and therefore to each x ∈ M we are
associating an equivalence class.

By corollary 1, a particle field ψ can also be viewed as a right-equivariant map ψ : P → V . Descending on
a trivializing open set Uα, i.e. working in a particular gauge, means pulling the field back by a local section s

α

associated to the given trivialization, ψα = s∗αψ. When a gauge is changed, sβ = sαgαβ , the field is changed
according to

ψβ(x) = ψ(sα(x)gαβ(x)) = gαβ(x)−1 · ψα(x) ,

which we have seen before. We conclude with the following definition.
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Definition 9. An automorphism of a principal G-bundle π : P → M is a G-equivariant diffeomorphism
f : P → P . This means that for all p ∈ P and g ∈ G , π(f(pg)) = π(f(p)g) = π(f(p)), which means that each
fiber is diffeomorphically transformed to another. A gauge transformation of P → M is a fiber preserving
automorphism, i.e. a G-equivariant diffeomorphism f : P → P such that the diagram

P P

M M

f

π π

idM

commutes.

6. Concluding remarks

In this paper, our philosophy was not to present theorems, but to motive definitions. We tried to describe
a natural mathematical language appropriate for discussion of gauge theories and the local gauge invariance
principle. The word local is somewhat misterious. A global transformation is of the kind p 7→ pg. A local
transformation, in the physicists sense, is a transformation of the kind p 7→ ph(x), where the group elements
are dependent on the base space points. These transformations exist only on product bundles, i.e. locally, in
a mathematicians sense (on an open neighbourhood). This is one of the many places where mathematics and
physics struggle to communicate. Our intention was to try to make this communication easier.

We have only attempted to lay the foundations of the formalism. We have not discussed the vast applica-
tions it provides. We haven’t discussed the dynamical aspects of gauge theory, the Yang-Mills theory, the
Standard Model or the inclusion of gravity.
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Appendix A. Lie groups and Lie algebras

Let G be a smooth manifold that is also a group. If the group operations µ : G × G → G and i : G → G,
(g, h) 7→ gh and g 7→ g−1 are smooth, then G is called a Lie group. A Lie algebra V is a vector space together
with the alternating bilinear map called the Lie bracket, (x, y) 7→ [x, y], such that it satisfies the Jacobi identity :
For every x, y, z ∈ V , we have [[x, y], z] + [[z, x], y] + [[y, z], x] = 0.

The tangent space of a Lie group G at the identity can be given a Lie algebra structure in the following
way: Let lg : G → G be the left translation by an element g ∈ G. A vector field X ∈ X (G) is said to be left
invariant if lg∗X = X. It can be shown that the left translation commutes with the Lie bracket of vector fields,
so L(G), a space of all left invariant vector fields is a Lie subalgebra of the Lie algebra of smooth vector fields
on G, with the Lie bracket being the usual bracket of vector fields.

If A ∈ TeG then Ãg = lg∗A is a smooth left invariant vector field. Hence there is a one-to-one correspondence

A 7→ Ã and X 7→ Xe between TeG and L(G). With the Lie bracket [A,B] := [Ã, B̃]e, the tangent space at the
identity g := TeG becomes a Lie algebra.

Now, let cX(t) be an integral curve of a left invariant vector field X on G passing through e. It can be
shown that it is define for all t ∈ R.

Definition 10. The exponential map for a Lie group G with Lie algebra g is the map exp : g → G defined
by exp(A) := eA = cÃ(1).

Theorem 8. Let G be a Lie group with Lie algebra g.

• For A ∈ g, the integral curve starting at e of a left invariant vector field Ã is exp(tA).

• For A ∈ g and g ∈ G, the integral curve starting at g of a left invariant vector field Ã is gexp(tA).

• The exponential map is smooth.

For g ∈ G, define cg : G → G, the conjugation by g: cg(h) = ghg−1. The differential at the identity is
denoted by Ad(g) := Adg = cg∗,e : g → g. Then the map Ad : G → GL(g) is easily seen to be a group
homomorphism and is called the adjoint representation of a Lie group G.

Appendix B. Vector bundles and connections

Let π : E →M be a fiber bundle whose fiber is a vector space V of dimension r. If the local trivializations
restrict to a linear isomorphism on each fiber, then π : E →M is a C∞ vector bundle of rank r.

Definition 11. A C∞ subbundle of a C∞ vector bundle π : E → M is a C∞ vector bundle ρ : F → M such
that

• F is a regular submanifold of E,

• the inclusion i : F → E is a bundle homomorphism, i.e. is fiber preserving.

Definition 12. A k-frame of a C∞ vector bundle π : E → M over an open set U ⊂ M is a collection of k
sections s1, ...sk of E over U such that at every p ∈ U , the vectors s1(p), ..., sk(p) are linearly independent. An
r-frame for a bundle of rank r is simply called a frame.

Theorem 9. Let π : E → M be a smooth vector bundle of rank r and F :=
∐
p∈M Fp a subset of E such

that for every p ∈ M , Fp is a k-dimensional vector subspace of Ep. If for every p ∈ M there exists an open
neighbourhood U of p and m ≥ k smooth sections s1, ..., sm of E over U that span Fq at every point q ∈ U , then
F is a smooth subbundle of E.

Denote the vector space of smooth sections of E over U with Γ(E,U). When U = M , we write Γ(E). A
connection on a vector bundle π : E →M is an R-bilinear map ∇ : X (M)×Γ(E)→ Γ(E), (X, s) 7→ ∇Xs, that
is C∞(M)-linear in X and satisfies the Leibniz rule: if f ∈ C∞(M), then ∇X(fs) = (Xf)s+ f∇Xs.
This can be restricted on an open set. Let (U, e) be a framed open set, i.e. on open set together with a frame
e = (e1, ..., er) for E over U . Then there is a collection of 1-forms ωij on U called connection forms such that
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∇Xej = ωij(X)ei.

The curvature of a connection is a map R : X (M)×X (M)×Γ(E)→ Γ(E) given by R(X,Y )s = ∇X∇Y s−
∇Y∇Xs−∇[X,Y ]s. On a framed open set it can be represented by a collection of 2-forms called curvature forms
Ωij given by R(X,Y )ej = Ωij(X,Y )ei.

Appendix C. Vector valued forms and their products

Let V be a vector space and M a smooth manifold. A V -valued k-form on M is defined to be Ωk(M,V ) :=

Γ
((∧k

T ∗M
)
⊗ V

)
. This definition is very convenient because it can easily generalize to a k-forms with values

in a vector bundle E →M as a section of a vector bundle
(∧k

T ∗M
)
⊗E. This is not needed for our purposes

and so if v1, ...vn is a basis for V , we define a V -valued form α to be α = αjvj , for some real valued k-forms αj .
The exterior derivative dα is defined simply to be dαjvj .

If V is a vector space of matrices, then ωij and Ωij from the previous section form a matrix valued 1-form ωe
and 2-form Ωe called a connection and curvature matrix with respect to the frame e. A wedge product of two
matrix valued forms A and B is a matrix valued form C = A ∧B with entries Cij = Aik ∧Bkj .

Given a vector bundle E → M , one can form a special kind of a principal GL(n,R)-bundle called a frame
bundle of E, whose local sections are frames for E. There is a preferred horizontal distribution on a frame
bundle. When one forms an Ehresmann connection ω out of that distribution and pulls it back by e, one gets
precisely a connection form ωe. The curvature Ω of ω then pulls back under e to Ωe. So, connection and
curvature forms are a local manifestation of a singe global object.

Now, if V,W,Z are finite dimensional vector spaces and µ : V ×W → Z is a bilinear map, a product of a
V -valued and W -valued form α and β is defined by

α · β(X1, ...Xk+l) =
1

k!l!

∑
σ∈Sk+l

(sgnσ)µ(α(Xσ(1), ..., Xσ(k)), β(Xσ(k+1), ..., Xσ(k+l))) .

When V = W = Z = g is a Lie algebra, we will always take µ to be the Lie bracket. We have the following
important result:

Proposition 5. Let {A1, ...An} be a set of vectors in a Lie algebra g and let α ∈ Ωk(M, g) and β ∈ Ωl(M, g)
be written as α = αiAi and β = βjAj. Then

[α, β] = (αi ∧ βj)[Ai, Aj ] . (C.1)
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