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In their simplest form, geometrical phases are phases that accompany slow variation of external
parameters. Since their discovery, these phases have found applications that go significantly beyond
interference effects, influencing fields ranging from condensed matter physics and optics to high-
energy physics, and even pure mathematics. In this article we give a pedagogical introduction to
general geometric phases, with an accent on mathematical formalism.

I. INTRODUCTION

In his landmark article of 1984 Michael Berry stud-
ied the geometric phase that accompanied adiabatic evo-
lution of a quantum system – a non-trivial phase that
cannot be integrated out by a change of phase of the
underlying state-space and thus has direct physical con-
sequences on the things that we measure [1]. This
phase has since then been generalized, sheding light on
the geometrical mathematical structure of quantum me-
chanics, and found numerous applications in the Born-
Oppenheimer approximation and molecular dynamics,
Aharonov-Bohm effect, fluid dynamics, Modern Polariza-
tion Theory, semiclassical dynamics of electrons in metals
and semiconductors, fractional statistics, quantized Hall
effect, topological order, and many more.

Preceding Berry by three decades, Pancharatnam [2]
was the first to study a geometrical phase in the context
of optics; he studied the additional phase that polarized
light acquires after a cyclic series of polarization changes.
Aharonov and Bohm [3] in their famous article of 1959
discovered how in quantum mechanics even a vanishing
magnetic field can influence the phase of the wave func-
tion. This is, in fact, a special type of geometrical phase.
In molecular dynamics, Mead and Truhlar [4] five years
before Berry expanded the standard Born-Oppenheimer
treatment of molecules to include geometrical term that
helped explain certain unaccounted boundary conditions
and (geometrical) phases that appeared during previous
studies of molecules.

Right after the discovery of Berry’s phase, Simon [5]
found a way to interpret this phase as a mathematically
canonical connection on a principal U(1)-bundle over the
parameter space. Berry’s phase then becomes a holon-
omy of paths in parameter space. Wilczek and Zee [6]
generalized Berry’s phase to the case of a N -fold degen-
erate energy, in which the abelian U(1) phase become
a non-abelian U(N) phase. Aharonov and Anandan [7]
have studied geometrical phases on the projective Hilbert
space, thus lifting the limitation of adiabatic evolution.
Samuel and Bhandari [8] have found a canonical way of
comparing the relative phases of non-orthogonal states.

Beyond the foundational discoveries and generaliza-
tions of the adiabatic phase described in the last para-
graph, there has been a wealth of both practical appli-

cations in many fields and purely theoretical advances
in the foundations of quantum mechanics. The prac-
tical applications we shall not attempt to review, and
the interested reader we direct towards [16–21]. On the
purely theoretical side, we will note that Kibble [9, 10]
and Provost and Vallee [11] found a natural way to en-
dow the projective Hilbert space with the structure of a
Kähler manifold, i.e., with symplectic form, Riemannian
metric, and almost complex form. A quantum geomet-
ric tensor whose real part is the metric of the projec-
tive Hilbert space, and imaginary part is Berry’s curva-
ture, is then canonically defined. All of these discoveries
marked the beginning of Geometric Quantum Mechanics,
reviewed in [12, 13], that is closely related to geometrical
phases.

In this article we offer an introduction to the founda-
tional discoveries of geometrical phases. In the first part
of the paper, using only the most basic of knowledge
about quantum mechanics and differential forms, we de-
rive the central result of the theory. Some examples and
applications are discussed in detail. In the second part
of the paper, we introduce the more sophisticated math-
ematical formalism (almost) from scratch and apply it to
the previous result. Our review draws heavily from [19–
21], where the reader may find further topics of interest.

II. ADIABATIC EVOLUTION

The adiabatic theorem states that a physical system
that starts in an eigenstate of the Hamiltonian remains
in the corresponding eigenstate if we change the Hamil-
tonian slowly in time and if there is a gap between the
energy of this eigenstate and the rest of the Hamilto-
nian’s spectrum. During this adiabatic evolution of state
of the system acquires a dynamical phase and a geomet-
rical phase. In this section of the article, we shall study
the adiabatic evolution in the simplest case of a nonde-
generate eigenspace of the Hamiltonian. Along the way
we shall prove the adiabatic theorem and derive the geo-
metric phase that accompanies adiabatic evolution.

Let us imagine a physical system whose Hamiltonian
Ĥ is a smooth function of external real parameters Rµ =
(R1, R2, . . . , RN ). We shall use Einstein’s convention,
where µ, ν, . . . are to be summed over 1, 2, . . . , N . For



2

any value of the parameters Rµ we can diagonalize this
Hamiltonian:

Ĥ(Rµ) |k,Rµ〉 = Ek(Rµ) |k,Rµ〉 , (1)

thereby getting a complete orthonormal basis made of
stationary states {|k,Rµ〉}k∈N, that is here for the sake of
simplicity assumed to be discreet. Both the eigenvectors
and eigenvalues depend smoothly on Rµ.

Let us further suppose that the system is initially in a
nondegenerate stationary state |ψ(0)〉 = |n〉. If we now
imagine slowly varying the parameters Rµ = Rµ(t) in
time t ∈ [0, T ], the system will evolve according to the
Schrödinger equation:

i~
d

dt
|ψ(t)〉 = Ĥ(Rµ(t)) |ψ(t)〉 , (2)

and in general it will not stay in its initial stationary
state. If the variation of parameters is slow enough
(something that will be quantified later), then we still
expect the system to evolve approximately as if there is
no time dependence in the Hamiltonian. This motivates
the Ansatz:

|ψ(t)〉 =
∑
k

ck(t)eiϑk(t) |k,Rµ(t)〉 ,

with the dynamical phase factor defined as:

ϑk(t) = −1

~

∫ t

0

dt′Ek(Rµ(t′)) ,

and initial conditions ck(0) = δkn.
If we now plug this Ansatz in to the Schrödinger equa-

tion (2), act from the left with 〈n|, use the eigenvalue
equation (1), and rearrange, we find out that:

dcn
dt

= −cn 〈n|
d

dt
|n〉 −

∑
k 6=n

ck 〈n|
d

dt
|k〉 ei(ϑk−ϑn) ,

where the parameter and time dependencies have been
suppressed, and the sum goes over the whole spectrum.
We immediately see that the second term on the right-
hand side in this equation is oscillatory with frequencies
equal or larger than ωg = Eg/~, which is determined by
the energy gap Eg between the state |n〉 and the rest of
the Hamiltonian spectrum. To estimate the contribution
of this term, we differentiate the eigenvalue equation (1)
in time and act on it from the left with 〈n| for k 6= n,
thus getting:

〈n| d
dt
|k〉 =

1

Ek − En
〈n|dĤ

dt
|k〉 . (3)

Now we see that for the second oscillatory term to be
negligible the Hamiltonian has to change little compared
to the energy gap Eg during one period Tg = 2π/ωg in
order to average out to zero. In other words, we demand
that: ∣∣∣∣∣ 〈n|dĤdt |k〉

∣∣∣∣∣� ωgEg , for all k 6= n.

This is the precise statement of the adiabatic limit. In the
rest of the article, whenever we discuss adiabatic evolu-
tion of a physical system, we presume that this condition
is satisfied.

A. Berry’s phase

In this adiabatic limit the equation of motion for the
cn coefficient simplifies to:

ċn = −cn 〈n|∂µn〉 Ṙµ ,

which can easily be solved for cn. Here overset dots mark
time derivative, and ∂µ = ∂/∂Rµ . The normalization
〈ϕn|ϕn〉 = 1 implies that 〈ϕn|∂µϕn〉 is imaginary and
that cn(t) has the form of a phase exp(iγn(t)). This is the
adiabatic or Berry’s phase γn(t) – a non-dynamical phase
that accompanies adiabatic evolution of eigenstates. By
integrating the equations of motion, we can get an ex-
plicit expression for Berry’s phase:

γn(t) = i

∫ t

0

dt′
dRµ

dt′
〈n|∂µn〉 . (4)

Michael Berry was not the first to calculate this phase,
for M. Born and V. Fock [14] preceded him by 55 years!
But he was the first to note its physical significance. The
reason this phase was ignored for so long was that a sim-
ple redefinition of the eigenvector appeared to eliminate
it! In particular, there exists arbitrariness in choosing the
eigenvectors |n〉 of the Hamiltonian: their phase. More
formally, we can make an U(1) gauge transformation of
the eigenvectors:

|n,Rµ〉 −→ eiλn(Rµ) |n,Rµ〉 , (5)

which does not change anything physically. If using such
a gauge transformation we can eliminate some phase then
that phase cannot have any physical effect. As it turns
out, whenever the final Rµ(T ) = Rµf and initial Rµ(0) =

Rµi parameters of the system are different we can in fact
use the Born-Fock’s gauge:

|n,Rµ(t)〉 −→ eiγn(t) |n,Rµ(t)〉 ,

to eliminate the adiabatic phase. However, when Rµf =

Rµi then we cannot use Born-Fock’s (or any other) gauge
transformation to remove the adiabatic phase because
one isn’t allowed to gauge-transform the initial (= final)
point in parameter space in two different ways.

Let us see how this works in more detail. To make
progress we observe that in the explicit expression for
Berry’s phase (4) any reparameterization of the path
Rµ(t) in parameter space does not change the value of the
adiabatic phase. This allows us to reformulate Berry’s
phase as an integral of a 1-form over the path in param-
eter space. Let C be the oriented (future directed) path
Rµ : [0, T ] → RN in parameter space, a let us define the



3

Berry’s connection 1-form or vector potential of the n-th
eigenvector as:

An(Rµ) ··= i 〈n|dn〉 = i 〈n|∂µn〉dRµ . (6)

Now Berry’s phase can be elegantly expressed as:

γn(C) =

∫
C
An .

To study how γn changes when we make a gauge trans-
formation according to (5), we first determine how the
Berry’s 1-form changes. This can easily be determined
by simply substituting (5) in to (6):

An(Rµ) −→ An(Rµ)− dλn (Rµ) .

The second term is simply the gradient of the gauge phase
dλn = ∂νλn(Rµ) dRν , which can be integrated out thus
resulting in the following gauge transformation of the adi-
abatic phase:

γn(C) −→ γn(C) + λn(Rµi )− λn(Rµf ) .

Therefore, if the path in parameter space C is closed
(i.e., start and ends at the same place) then the adia-
batic phase is a physical gauge-invariant quantity.

We can rewrite Berry’s phase in a manifestly gauge-
invariant forms if we introduce Berry’s curvature 2-form
as:

Fn(Rµ) ··= dAn = i 〈∂µn|∂νn〉dRµ ∧ dRν , (7)

where the term with double derivative ∂µ∂νn has van-
ished because of the antisymmetry of the wedge prod-
uct. It is easy to see that the exterior derivative identity
d2 = 0 implies that Berry’s curvature is gauge-invariant.
If we can express the curve C as a boundary of a sur-
face Σ, something that can be done if the topology of
the parameter space is simple enough, then we can use
Stokes theorem to express the integral over the bound-
ary as an integral over the surface:

∫
∂Σ
An =

∫
Σ

dAn.
Consequently, we can express Berry’s phase as:

γn(C) ··=
∮
C
An =

∫
Σ

Fn . (8)

B. Mead-Truhlar’s curvature formula

We can find an alternative expression to (7) for Berry’s
curvature by utilizing the equation (3), with time deriva-
tives d/dt replaced by partial derivatives in parameter
space ∂µ = ∂/∂Rµ :

〈n|∂µk〉 =
〈n|∂µĤ|k〉
Ek − En

.

First we write (7) by tacking the imaginary part, secondly
we insert a resolution of the identity, thirdly we drop the

k = n term because it’s real:

Fn = − Im 〈∂µn|∂νn〉dRµ ∧ dRν

= − Im
∑
k

〈∂µn|k〉 〈k|∂νn〉dRµ ∧ dRν

= − Im
∑
k 6=n

〈∂µn|k〉 〈k|∂νn〉dRµ ∧ dRν ,

and lastly using the aforementioned relation for 〈n|∂µk〉
we get Mead-Truhlar’s curvature formula:

Fn = −
∑
k 6=n

Im
〈n|∂µĤ|k〉〈k|∂νĤ|n〉

(En − Ek)2
dRµ ∧ dRν . (9)

From this expression we see that Berry’s curvature
has singularities at points in parameter space where
the Hamiltonian’s spectrum has accidental degeneracies
Ek 6=n = En. These singularities can make the parame-
ter space topologically non-trivial and lead to interesting
effects. For an example, for a topologically non-trivial
parameter space, the adiabatic phase can be non-zero
even if Berry’s curvature is zero!

In the special case in which all energies of a given
Hamiltonian are nondegenerate, we can prove that the
following relation holds:∑

n

Fn = 0 , (10)

where the sum n goes over the entire Hamiltonian spec-
trum. This equation follows from the differentiated
orthonormalization conditions ∂µ 〈n|m〉 = 〈n|∂µm〉 +
〈∂µn|m〉 = 0 that allow us to write Fn as:

Fn = Im
∑
k 6=n

〈n|∂µk〉 〈k|∂νn〉dRµ ∧ dRν ,

from which we see that the k-th term in the sum for Fn
and the n-th term in the sum for Fk cancel each other
out. This proves the relation.

Finally, we note that these two expressions that relate
Berry’s curvature to the rest of the Hamiltonian’s spec-
trum somewhat obscure the origin of the adiabatic phase
that according to equations (6) and (7) depends only on
the respective eigenspace of the Hamiltonian. This will
be important to keep in mind when we try to mathemat-
ically formalize and generalize Berry’s phase.

Going forward, we would like to clarify a bit the termi-
nology that we will use in the rest of the paper. A phase
will loosely mean either a complex number of the form
eix ∈ U(1) or a unitary matrix U ∈ U(N). The term adi-
abatic phase will refer to all non-dynamical phases that
occur during adiabatic variation of the external param-
eters. In case the relevant eigenspace is nondegenerate,
we shall also call this adiabatic phase Berry’s phase, in
case it’s degenerate we shall call it Wilczek-Zee’s phase
(or unitary matrix). Other more general phases that are
non-dynamical in nature we shall call geometrical phases,
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an example being the Aharonov-Anandan phase. If the
phase turns out to be insensitive to continuous variations
of the path we shall call it a topological phase, an example
of which will be given in the next section.

III. EXAMPLES

It is illustrative to study some simple examples of the
Berry’s phase in action. In this section we shall shortly
analyse a spin 1

2 and a spin s particle in a magnetic field,
whose variation will lead to an adiabatic phase. We end
this section by an application of the adiabatic phase to
the Aharonov-Bohm effect.

A. Spin 1
2
particle

The dynamics of a spin 1
2 particle that is positioned in

a magnetic field of strength B is governed by the Hamil-
tonian:

Ĥ(B) = −µ̂ ·B = −γŜ ·B , (11)

where µ̂ is the magnetic moment of the particle, γ the
gyromagnetic ratio of the particle, and Ŝ = ~

2σ the spin
operator. If we use spherical coordinates ϑ and ϕ to
describe the direction of the magnetic field, then we can
express the eigenvector of the Hamiltonian as:

|+;ϑ, ϕ〉 =

(
cos ϑ2

sin ϑ
2 eiϕ

)
,

|−;ϑ, ϕ〉 =

(
− sin ϑ

2

cos ϑ2 eiϕ

)
.

The corresponding energies are of course:

E± = ∓ 1
2γ~B .

Let us imagine a system that was initially in the |+〉
state, i.e., its spin was directed along the initial magnetic
field. Moreover, let us imagine varying this magnetic field
adiabatically afterwards. Then the state will acquire an
adiabatic phase that is determine by Berry’s connection
1-form and curvature 2-form. A little algebra using (6)
and (7) shows that:

A+(ϑ, ϕ) = − sin2 ϑ
2 dϕ ,

F+(ϑ, ϕ) = − 1
2 sinϑ dϑ ∧ dϕ .

The expression for Berry’s vector potential A+ is not
defined at the ϑ = π pole, reflecting the fact that our
expression for |+;ϑ, ϕ〉 is ill-defined at ϑ = π. In partic-
ular, |+;π, ϕ〉 depends on ϕ, despite the fact that for all
ϕ the coordinates (ϑ = π, ϕ) represent the same point
on the 2-sphere. Furthermore, such a point where A+ is
undefined cannot be removed by a gauge transformation
A+ → A+ +dλ, but only moved around the sphere. This

reflects the non-triviality of this particular configuration
of Berry’s connection 1-form on the 2-sphere, something
that we’ll come back to later.

The fact that A+ is undefined at the pole means that
the calculated F+ formally also isn’t defined at the pole.
Therefore, to calculate the value of F+ for ϑ = π we
should change to a different gauge where A+ is de-
fined at the pole, and then calculate F+. Fortunately
enough, in Berry’s curvature we recognize the area 2-
form dΩ = sinϑ dϑ ∧ dϕ of the 2-sphere that we can
safely analytically continue in to the formally undefined
region. Hence, if the magnetic field direction unit vector
traverses a certain closed path C on the unit 2-sphere,
then the corresponding adiabatic phase given by (8) can
be expressed using the solid angle Ω(C) that this path
outlines:

exp{iγ+(C)} = exp{− 1
2 i Ω(C)} .

For the case of an initial |−〉 state, we use equation (10)
do determine F− = −F+. Therefore, we have:

exp{iγ−(C)} = exp{+ 1
2 i Ω(C)} .

A remarkable consequence of these two formulas is that
slowly rotating a spin 1

2 particle around the equator
ϑ = π/2 results in the wave function changing sign.
This reflects the fact that the SU(2) group of rotation
of spinors is a double cover of the SO(3) group of rota-
tion of 3-vectors that we are accustomed to.

As it can be seen from the previous expressions, as we
come closer and closer to the degeneracy point B = 0,
smaller and smaller variations of the magnetic field can
achieve the same adiabatic phase as long as the sub-
tended solid angles are the same. This is a consequence
of the singularity of F± at the degeneracy point that
can most easily be seen by switching from the spherical
(B, ϑ, ϕ) to the Cartesian (B1, B2, B3) coordinates:

F± = ∓ εijk
4B3

Bi dBj ∧Bk ,

where εijk is the Levi-Civita symbol, and the indices
i, j, k are to be summed over the range 1, 2, 3. From
the Mead-Truhlar formula (9) we expected this, and the
1/B2 character of the singularity can be traced down to
the denominator (E+ − E−)2 ∝ B2 of (9).

Using the Mead-Truhlar formula, we can show that
such 1/r2 singularities near degeneracies are in fact
generic. Let a general system described by Ĥ(Rµ) have
a two-fold degeneracy at Rµ = 0 with the degenerate
energies there being zero, E±(0) = 0. Then according
to the Mead-Truhlar formula (9) for small Rµ the con-
tributions of the two near-degenerate states |±〉 dom-
inate the sum, and thus the effective Hamiltonian re-
duces to a 2 × 2 Hermitian matrix that may be written
as Ĥ(Rµ) ' C(Rµ) · σ. Since this Hamiltonian differs
from the spin 1

2 Hamiltonian (11) by a constant, we con-
clude that Berry’s curvature 2-form has the same form
just with the replacement B → ±C(Rµ). Consequently,
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Berry’s phase is determined by the solid angle that the
vector C outlines. To come back to the original parame-
ter space, we use dCi = ∂µCi dRµ.

B. Spin s particle

A little more complicated example is that of a gen-
eral spin s (integer or half-integer) particle. Let the
magnetic field’s direction again be specified by spheri-
cal coordinates ϑ and ϕ, a let the initial state be that
of spin component along the magnetic field m where
m ∈ {−s,−s + 1, . . . , s − 1, s}. If we again vary the
magnetic field adiabatically, the system stays in the cor-
responding state up to a phase. The Hamiltonian is the
same as in the spin 1

2 case, just with the spin 1
2 operator

exchanged by the general spin s operator Ŝ.
The energy of the m-th eigenstate is of course:

Em = −mγ~B .

To express the m-th eigenstate we need to rotate it away
from the z-axis using Wigner’s D-function:

|m;ϑ, ϕ〉 = D̂(ϕ, ϑ,−ϕ) |m〉ẑ ,

that is defined using the three dimensionless spin opera-
tors (ŝx, ŝy, ŝz) and three Euler angles (α, β, γ) as:

D̂(α, β, γ) ··= e−iαŝze−iβŝye−iγŝz .

The angle γ = −ϕ in the definition of |m;ϑ, ϕ〉 has been
chosen so that for ϑ = 0 we have |m; 0, ϕ〉 = |m〉ẑ. The
influence of this angle γ can be factored out, yielding:

|m;ϑ, ϕ〉 = eimϕD̂(ϕ, ϑ, 0) |m〉ẑ .

To evaluate Berry’s connection 1-form, we’ll need to
prove these two identities:

D̂†(ϕ, ϑ, 0)∂ϑD̂(ϕ, ϑ, 0) = −iŝy , and

D̂†(ϕ, ϑ, 0)∂ϕD̂(ϕ, ϑ, 0) = −i cosϑ ŝz + i sinϑ ŝx .

The proof of the first ∂ϑ identity is simply a straight-
forward differentiation of an exponential. To prove the
second ∂ϕ identity we first note that because of the com-
mutation of operators Â with their exponentials exp(Â)
we have:

D̂†(ϕ, ϑ, 0)∂ϕD̂(ϕ, ϑ, 0) = D̂†(0, ϑ, 0)(−iŝz)D̂(0, ϑ, 0) ,

which we can easily express using the fact that ŝ is a
vector operator which satisfies:

D̂†(α, β, γ)ŝkD̂(α, β, γ) = Rk`(α, β, γ)ŝ` ,

where Rk` is the active 3-vector rotation matrix. In our
particular case, the rotation of ŝz by an angle ϑ around
the y axis results in:

D̂†(0, ϑ, 0)ŝzD̂(0, ϑ, 0) = cosϑ ŝz − sinϑ ŝx ,

from which the ∂ϕ identity follows.
The Berry’s connection 1-form and curvature 2-form

can be calculated using equations (6) and (7), the previ-
ously proved ∂ϑ and ∂ϕ identities, and the fact that the
spin operators ŝx and ŝy have vanishing diagonal matrix
elements in the |m〉ẑ basis:

Am(ϑ, ϕ) = m(cosϑ− 1) dϕ ,

Fm(ϑ, ϕ) = −m sinϑdϑ ∧ dϕ .

The eigenvectors |m;ϑ, ϕ〉 that we’re using are again ill-
define at the pole ϑ = π, leading to the same problems
as in the previous section. This time around, we’ll be
pedantic and use a gauge transformation |m;ϑ, ϕ〉 →
e−i2mϕ |m;ϑ, ϕ〉 to find the vector potential A′m(ϑ, ϕ) =
m(cosϑ+ 1) dϕ that is ill-defined only at the ϑ = 0 pole.
Both connection 1-forms result in the same curvature 2-
form expression, for which we have now proved that it
is valid across the entire 2-sphere. In this expression we
again recognize the are area 2-form of the 2-sphere, thus
implying:

exp{iγm(C)} = exp{−imΩ(C)} .

These results match with the results of the previous sub-
section. The relation (10) is also satisfied, as it should
be.

C. Aharonov-Bohm effect

In their 1959 article Y. Aharonov and D. Bohm [3]
studied how the existence of a non-zero magnetic vector
potential can effect quantum particles even if the mag-
netic field is zero! This same effect we shall rederive here
using Berry’s phase.

Following Berry’s original 1984 article [1], we consider
a particle of charge q that is trapped in a box in which
there is no magnetic vector potential, A = 0. The box’s
position we shall describe with a 3-vector R ∈ R3. Then
the Hamiltonian of the system can be written as: Ĥ =
H(p̂, r̂ − R), and the wave functions of energy En are
independent of R and have the form ψn(r − R). The
wave function vanishes outside of the box.

If we now introduce a magnetic vector potential A,
but still presume the magnetic field to be zero, i.e., B =
∇×A = 0 inside the box, then Hamiltonian minimally
couples to it by way of:

H(p̂− qA(r̂), r̂−R) |n,R〉 = En |n,R〉 ,

and this allows us to write down the corresponding wave
function as:

〈r|n,R〉 = exp

{
iq

~

∫ r

R

dr′ ·A(r′)

}
ψn(r−R) .

This solution as defined above is well-define since it is
single-valued inside the box, and it is single-valued be-
cause the box is simply connected and the curl of A van-
ishes making the integral in the exponential depend only
upon the endpoints.
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Now, if we imagine having an ideal solenoid positioned
along the z-axis and adiabatically transporting this box
around a closed path C outside of the solenoid, we shall
get an adiabatic phase that after a little algebra using
equations (6) and (8) turns out to be:

γn(C) =
q

~

∮
C

dR ·A(R) =
qΦB
~
· w(C) ,

where ΦB is the magnetic flux of the solenoid and w(C)
the winding number of the path around the solenoid.
Thus, we see that the Berry’s connection 1-form, that we
suggestively called Berry’s vector potential, now becomes
directly proportional to the magnetic vector potential of
electrodynamics. This expression for Berry’s phase is
equal to the phase that Aharonov and Bohm originally
derived. Another special feature of this phase is that
it depends only on the topology of the path, which in
this case means the winding number. Such phases, when
they occur, we shall call topological phases, and the main
thing that distinguishes them from more general geomet-
ric phases is that they are insensitive to the details of the
shape of the path.

IV. WILCZEK-ZEE’S PHASE

Up until now we have limited ourselves to studying
the geometric phase that accompanies the adiabatic evo-
lution of nondegenerate eigenstate. In this section we re-
move this assumption and study the adiabatic evolution
of a system that was initially an element of a degener-
ate eigenspace. As we shall see, the Berry’s phase of the
nondegenerate case will generalize to the Wilczek-Zee’s
unitary matrix of the degenerate case.

Suppose that the n-th eigenvalues of the Hamiltonian
isM -times degenerate across the entire parameter space,
as in:

Ĥ(Rµ) |n, a,Rµ〉 = En(Rµ) |n, a,Rµ〉 , (12)

with a = 1, 2, . . . ,M . Going forward, indices a, b, c, . . .
will be summed over 1, 2, . . . ,M by the Einstein’s sum-
mation convention, and the index n will be dropped from
all the kets. Then we may choose the eigenstates to be
an orthonormal basis of the underlying eigenspace, i.e.,
〈a|b〉 = δab. Clearly, there is a U(M) gauge freedom in
doing so, for we can always redefine the basis vector ac-
cording to:

|a,Rµ〉 −→ Ωab(R
µ) |b, Rµ〉 , (13)

where Ωab(R
µ) ∈ U(M) is a smooth unitary matrix-

valued function of the external parameters.
Let us consider a system whose state |ψ(t)〉 was ini-

tially in the n-th degenerate subspace. In the adiabatic
limit, as we vary the external parameters, the state will
stay in the degenerate subspace, and we may write it as:

|ψ(t)〉 = eiϑn(t)ψaU
(n)
ab (t) |b, Rµ(t)〉 ,

where ϑn is the dynamical phase, ψa = 〈a|ψ(0)〉 the ini-
tial state coefficients, and U (n)

ab the Wilczek-Zee’s unitary
matrix. By substituting this Ansatz in to the Schrödinger
equation (2), acting from the left by 〈c|, and rearrang-
ing, we get the equations of motion for the Wilczek-Zee’s
phase:

U̇ (n)
ac (t) = −〈c| d

dt
|b〉U (n)

ab (t) , or(
U†U̇

)(n)

ab
= −〈b| d

dt
|a〉 .

The initial conditions are U̇ (n)
ab (0) = δab.

The equations of motion naturally lead us towards
defining the Wilczek-Zee’s curvature 1-form:

A
(n)
ab
··= i 〈b|da〉 = i 〈b|∂µa〉dRµ , (14)

that we interpret as a Hermitian matrix-valued 1-form
in parameter space. (The hermicity follows from the or-
thonormalization condition 〈a|b〉 = δab.) Using the equa-
tions of motion, we can explicitly express the Wilczek-
Zee’s unitary matrix as a Dyson series, i.e., a path-
ordered exponential integral:

U (n)(C) ··= P exp

(
i

∫
C
A(n)

)
, (15)

Here, P is the path-ordering operator, and the integral
is over the oriented path C in parameter space, formerly
described by Rµ(t). Clearly, this expression reduces to
the familiar Berry’s phase in the nondegenerate M = 1
case. Finally, we can also define a generalization of the
Berry’s curvature 2-form, the Wilczek-Zee’s curvature 2-
form, as:

F (n) ··= dA(n) + iA(n) ∧A(n) , or

F (n)
µν = ∂µA

(n)
ν − ∂νA(n)

µ + i
[
A(n)
µ , A(n)

ν

]
.

(16)

This Wilczek-Zee’s curvature is a Hermitian matrix-
valued 2-form in parameter space. If we furthermore
want to express the Wilczek-Zee’s phase as an area in-
tegral using this curvature 2-form, we would have to use
the non-abelian Stokes theorem. Although we shall not
pursue this matter here, we will note that Wilczek-Zee’s
phase cannot be expressed solely in terms of F (n).

Lastly, we study how all of these introduced object
change after a U(M) gauge transformation described by
(13). We start with the connection 1-form A(n). After
substituting equation (13) in to the definition (14), and
rearranging we obtain:

A(n) −→ ΩA(n)Ω† + i dΩ Ω† ,

where dΩ = ∂µΩ dRµ. For the curvature 2-form a similar
calculation leads us towards the following gauge covariant
transformation:

F (n) −→ ΩF (n)Ω† .
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For the Wilczek-Zee’s unitary matrix we use the fact that
the physical state |ψ(t)〉 is independent of the eigenspace
basis that we use to express it, i.e.,

e−iϑn(t) |ψ(t)〉 = ψ′aU
(n)′
ab (t) |b′〉 = ψaU

(n)
ab (t) |b〉 .

After some algebraic manipulations we derive the follow-
ing transformation law for Wilczek-Zee’s phase:

U (n) −→ Ω(Rµi )U (n)(C)Ω†(Rµf ) .

In the case of a nondegenerate M = 1 eigenspace, all
these transformation laws reduce to the ones we derived
earlier for Berry’s connection, curvature and phase.

In the case that the path C is closed, Wilczek-Zee’s
phase transforms as a matrix under a change of ba-
sis. Thus, although Wilczek-Zee’s phase is not a gauge-
invariant quantity, its coefficients of the characteristic
polynomial and eigenvalues are. One matrix-invariant
that is often used in this context is the Wilson loop that
is defined as:

W (n)(C) ··= trU (n)(C) = tr

{
P exp

(
i

∮
C
A(n)

)}
.

And with that we have finished the formalism of non-
degenerate adiabatic evolution. As one can see, it is
significantly more complicated owning to the fact that
the gauge group U(M) is non-abelian. Fortuitously, all
of this formalism occurs in other branches of physics –
most notably in Yang-Mills gauge theory, and as such
it’s probably familiar to a big portion of the readership.

After this we could cook up some simple examples just
to see this formalism in action, but we shall rather fa-
vor discussing a more interesting real-world example that
shares the same mathematical structure – that of molec-
ular dynamics. For the readers that would like to see
some simple examples analysed, we direct them towards
chapter 2, section 3 of [21].

V. THE GAUGE THEORY OF MOLECULAR
PHYSICS

In the analysis of complicated physical systems made
of many particles that we want to fully treat quantum
mechanically (so we can’t just average out a part, treat
it classically, or consider it imposed externally by the en-
vironment), our most reliable method is to separate the
system in to simpler subsystems and analyse them sep-
arately. Afterwards, we combine the analyses to get a
complete picture. A natural separation of that sort is
the separation of the system in to fast and slow moving
degrees of freedom (DOF), the paradigmatic example be-
ing the Born-Oppenheimer method of molecular physics.

In the conventional Born-Oppenheimer approximation,
the molecule is separated in to the fast electronic and slow
nuclear DOFs. First, the electronic energies and wave
functions are calculated whilst keeping the positions of

the ions fixed. Then some approximations are used to
get the effective Hamiltonian of the ions, given an elec-
tronic configuration. Using this Hamiltonian, the wave
functions of the ions are calculated. Finally, the results
are combined to give the total wave function.

It turns out that the original approximations that were
used for getting the effective ionic Hamiltonian are too
crude to capture important effects that owe their origin to
the geometrical potential and phase. A more complete
adiabatic approximation naturally leads to a molecular
gauge theory that incorporates these geometric effects.
Historically, the importance of these geometric effects
was first recognized in vibronic (vibrational and elec-
tronic) problems in Jahn-Teller systems where certain
sign-changes could not be accounted for.

The starting point of analysing molecules is the Hamil-
tonian, that for our purposes is made of the non-
relativistic kinetic energies of the electrons and nuclei,
and the instantaneous Coulomb potential of electrons and
nuclei among themselves and between each other. The
number of electrons is Ne, and the number of nuclei is
Nn. There are in total 3Ne + 3Nn space DOFs – three
of which are centre of mass (CM) translation and three
orientation (rotation) of the molecule. Spin degrees of
freedom will not be important in our analysis, except for
the quantum statistics that they entail.

In the usual analysis of molecules both translational
and rotational DOFs of the molecule as a whole are iso-
lated by a change of coordinates, but such procedures
lead to very complicated kinetic terms and as such aren’t
convenient for our analysis. To simplify the kinetic en-
ergy operator of the nuclei (that generally have different
masses) and remove the center of mass contribution to
the kinetic energy, Jacobi’s coordinates are used to de-
scribe the positions of nuclei. Jaobi’s coordinates are
shortly described in the appendix A. The final result of
this change of coordinates is that the total internal (as
in no CM terms) Hamiltonian of the systems becomes:

Ĥ =
P̂2

2µ
+ h(p̂, R̂, r̂) , (17)

where h is the electronic part of the Hamiltonian:

h(p̂, R̂, r̂) =
p̂2

2me
+ V (R̂, r̂) . (18)

The operators R̂ and P̂ are (3Nn − 3) dimensional nu-
clear position and momentum operators in Jacobi’s co-
ordinates, while the operators r̂ = (r̂1, · · · , r̂Ne) and
p̂ = (p̂1, · · · , p̂Ne) are the 3Ne dimensional electronic po-
sition and momentum operators in their usual Cartesian
coordinates, with the individual electrons coordinates
concatenated for convenience. The potential V (R̂, r̂) in-
cludes all other terms that depend only on R̂ and r̂,
in this case the electron, nuclear and electron-nuclear
Coulomb potential.

Now we split the system in to two parts, the fast or
electronic part described by r̂ and p̂, and slow or nuclear
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part described by R̂ and P̂. The total state space we
may write as a direct product H = Hslow⊗Hfast, and for
a basis of the total state space it is convenient to use the
kets |R, n〉 that are defined by:

R̂ |R, n〉 .= R |R, n〉 ,
h(p̂, R̂, r̂) |R, n〉 .= εn(R) |R, n〉 .

This can be done since [R̂, ĥ] = 0. We may also
write these kets as a pseudo-direct product |R〉 ⊗̃ |n(R)〉,
pseudo because the quantum numbers R and n are not
independent and as such do not define vector subspaces.
If we want to go back to the |R, r〉 basis, we use:

〈R′, r′|R, n〉 = δ3Nn−3(R′ −R) 〈r′|n(R)〉 .

Here comes the most important part of the analysis.
Because of the interdependence of eigenstates |n(R)〉 on
R, when we expand the action of the momentum operator
P̂ in the |R, n〉 basis we get an additional term (beside the
usual −i~∇) – the Mead gauge potential. In particular,
we may write:

〈R, n|P̂|ψ〉 =
∑
m

−i~Dnm 〈R,m|ψ〉 ,

where Dnm is the covariant derivative:

Dnm ··=∇Rδ
nm − iAnm(R) , (19)

and Anm is the Mead gauge potential:

Anm(R) ··= i 〈n(R)|∇R|m(R)〉 . (20)

The derivation of this result is straightforward but
lengthy, so we refer the readers towards chapter 8, sec-
tion 3 of [20]. With this exact result we can reformulate
the problem of diagonalizing the Hamiltonian (17).

Let
∣∣ψE〉 be the total state of the system with total

energy E:

Ĥ
∣∣ψE〉 = E

∣∣ψE〉 ,
and ψE(R, r) =

〈
R, r

∣∣ψE〉 its wave function. Then,
conventionally, we find the energy E and wave function
ψE(R, r) by solving the stationary Schrödinger equation
– a partial differential equation in the variables R and
r. Instead of this, what we’ll do here is decompose this
problem in to two parts. For that, we first introduce two
auxiliary wave functions:

ψEn (R, r) ··=
〈
R, n

∣∣ψE〉 ,
ϕn(R, r) ··= 〈r|n(R)〉 ,

using which we can express the total wave function as:

ψEn (R, r) =
∑
n

ϕn(R, r)ψEn (R) .

Now we reformulate the problem. The first task is
to solve the differential equation for the electronic wave
functions keeping the positions of the ions fixed:[
−~2

2me
∇2

r + V (R, r)

]
ϕn(R, r) = εn(R)ϕn(R, r) . (21)

The second task is to solve the infinite number of cou-
pled differential equations that determine the total wave
function:∑
m

[
−~2

2µ

∑
`

Dn`D`m + εn(R)δnm

]
ψEm(R) = EψEn (R) .

(22)
This procedure of diagonalizing the total Hamiltonian Ĥ
is exact, if we have solved equation (21) exactly for all
possible R and n. In practice, however, it is typically
sufficient to consider only the lowest few n = 1, 2, . . . ,N
electronic configurations and solve equation (21) only
close to the equilibrium positions of R. By restricting
the indices n, m and ` of equation (22) to the range
1, . . . ,N we get the Born-Huang approximation [22]. In
contrast, in the Born-Oppenheimer approximation the
equation (22) is taken to be:[

−~2

2µ
∇2

R + εn(R)

]
ψEn (R) = EψEn (R) ,

and such disregards all geometric effect that owe their
origin to the geometric Mead gauge potential defined in
(20). In the Born-Huang approximation we have a natu-
ral gauge transformation that is determined by the degen-
eracies in the electronic spectrum of the N -dimensional
subspace that we limited ourselves to. In the case of no
degeneracies, the gauge group is U(1)N , in the case of
an N -fold degeneracy the gauge group is U(N ), and in
general it’s something in between.

Up until now we have shown how an exact treatment of
molecular dynamics leads us naturally towards introduc-
ing a gauge potential, covariant derivative, and other el-
ements of a gauge theory. We shall finish this section not
by introducing the whole formalism of molecular gauge
theory, but rather by discussing some interesting phys-
ical implications of these geometric terms that we have
found.

One interesting implication of molecular gauge theory
is the generic appearance of effective magnetic monopole
fields. In particular, whenever you have rapid rotation
of the fast subsystem around the axis connecting two
pieces of the slow subsystem, a monopole vector potential
appears in the dynamics of the slow system.

Another interesting implication is how the existence of
conical intersections (points in R-space where the deriva-
tives of |n(R)〉 are not well defined) causes the electronic
wave functions ϕ(R, r) to change sign when they are
transported around the conical intersection, thus making
the electronic wave functions multi-valued in R-space.
This sign-changing behavior modifies the boundary con-
ditions of the nuclear wave functions ψEn (R). Moreover,
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the amplitude of the nuclear wave functions at the conical
intersections vanishes because of the vibronic centrifugal
(or Born-Huang) term. There is also a trade-off between
choosing the electronic eigenvectors to be single-valued
and making the Mead gauge potential vanish. In case we
chose to make the electronic eigenvectors single-valued,
these conical intersection points behave like magnetic flux
sources. It’s also interesting to note that even when the
geometric curvature F = i[D,D] derived from the covari-
ant derivative (19) vanishes, there may still appear non-
trivial geometric and topological effects analogous to the
Aharonov-Bohm effect with conical intersections playing
the role of the solenoid.

VI. AHARONOV-ANANDAN’S PHASE

In this section we generalize the notion of geometric
phases from systems that evolve adiabatically to gen-
eral systems that evolve cyclically. Berry’s phase then
arises as the adiabatic limit of this more general geomet-
ric phase.

Since the phase of a state vector in isolation is non-
physical, we introduce the quantum phase space or pro-
jective Hilbert space as the quotient space:

P(H) ··= S(H)/ ∼ ,

whereH is the Hilbert space of states, S(H) the sphere of
all normalized vectors in H, and the equivalence relation
between vectors is defined as |φ〉 ∼ |ψ〉 iff there exists
a eiϕ ∈ U(1) such that |φ〉 = eiϕ |ψ〉. A ray [|ψ〉] is
by definition an element of the projective Hilbert space
P(H), i.e., an equivalence class of vectors differing from
the normalized state vector |ψ〉 by a phase. The ray of
a normalized state of the system |ψ〉 can be conveniently
represented by the unique projector P̂ψ = |ψ〉〈ψ|.

For a system we say that it evolves cyclically when the
rays corresponding to the initial and final state coincide.
Thus, an evolution of the system |ψ(t)〉 during the time
interval t ∈ [0, T ] is cyclic iff P̂ψ(0) = P̂ψ(T ), which is
equivalent to the condition that |ψ(T )〉 = eiϕ |ψ(0)〉 for
some phase ϕ ∈ R. Alternatively, an evolution of the
state vector of the system becomes a curve in the projec-
tive Hilbert space, and we say that the evolution is cyclic
iff the corresponding curve in P(H) is closed.

Consider a system described by the state vector |ψ(t)〉
that during the time interval t ∈ [0, T ] evolves cyclically
with a total phase ϕ ∈ R, i.e.,

|ψ(T )〉 = eiϕ |ψ(0)〉 .

The oriented path that the ray Pψ(t) traces in the quan-
tum phase space P(H) during the time [0, T ] we shall
denote as C. Let the evolution of the system be describe
by the Hamiltonian Ĥ(t), that in general has some time
dependence. Then the evolution of the system is given
either by the Schrödinger equation:

i~
d

dt
|ψ(t)〉 = Ĥ(t) |ψ(t)〉 , (23)

or by the von Neumann equation:

i~
d

dt
P̂ψ(t) =

[
Ĥ(t), P̂ψ(t)

]
. (24)

What we shall prove is that the phase ϕ can naturally be
divided in to two parts: the dynamical phase ϕdyn that
depends on the Hamiltonian and the geometrical phase
ϕAA that depends only on the curve C in P(H).

To prove this, we note that the transformation of the
Hamiltonian Ĥ(t)→ Ĥ(t) +1a(t) does not influence the
path C in the quantum phase space P(H), since the von
Neumann equation (24) is left unaffected. The solution
to the Schrödinger equation, however, is effected:

|ψ(t)〉 −→ |ψ′(t)〉 = exp

{
− i

~

∫ t

0

dt′ a(t′)

}
|ψ(t)〉 ,

and the total phase as well:

ϕ −→ ϕ′ = ϕ− i

~

∫ T

0

dt a(t) .

To find the geometric part of the phase, we choose the
ã(t) in such a way that the ϕ̃ = 0, so that the transformed
state vector is periodic: |ψ̃(T )〉 = |ψ̃(0)〉. This means
that the path in S(H) traced by |ψ̃(t)〉 is closed. (We’ll
use tildes to mark quantities that are related to periodic
state vectors.) Hence:

ϕ =
i

~

∫ T

0

dt ã(t) .

By acting from the left by 〈ψ̃(t)| on the new Schrödinger
equation:

i~
d

dt
|ψ̃(t)〉 =

(
Ĥ(t) + 1ã(t)

)
|ψ̃(t)〉 ,

and integrating from t = 0 to T , we get the desired equa-
tion for the total phase:

ϕ = ϕdyn + ϕAA , where

ϕdyn ··= −
1

~

∫ T

0

dt 〈ψ(t)|Ĥ(t)|ψ(t)〉 ,

ϕAA ··=
∫ T

0

dt i 〈ψ̃(t)| d
dt
|ψ̃(t)〉 . (25)

The phase ϕAA is the Aharonov-Anandan’s phase.
We see from the expression for ϕdyn that the dynami-

cal phase manifestly depends on the Hamiltonian of the
system. On the other hand, if we are given a closed curve
C in P(H) and take any state vector |ψ̃(t)〉 that is peri-
odic and projects to the curve C, we get the same value
for ϕAA. To prove this, let us take another state vector
|ψ̃′(t)〉 = eiλ(t) |ψ̃(t)〉 with λ(T ) = λ(0). Then a simple
calculation using (25) shows that:

ϕ′AA = ϕAA + λ(0)− λ(T ) = ϕAA .
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Not only is the expression for Aharonov-Anandan’s phase
independent of the choice of |ψ̃(t)〉, but it’s also inde-
pendent of the parameterization of |ψ̃(t)〉. This will lead
us towards defining a connection 1-form on the quan-
tum phase space P(H), much in the same way we intro-
duce Berry’s connection 1-form for adiabatic evolution.
Since the quantum phase space is, in general, an infinite-
dimensional manifold, this will be mathematically more
demanding, and we defer the discussion of this to after
we introduce the proper mathematical formalism. Here
we just note that formally we can write the Aharonov-
Anandan’s phase as:

ϕAA =

∮
C

i 〈ψ̃|dψ̃〉 .

Aharonov-Anandan’s phase includes Berry’s phase as
a special case. To see how, we note that the adiabatic
theorem implies that in the adiabatic limit the state vec-
tor will stay in the corresponding eigenspace |n,Rµ〉 up
to a phase. Therefore, to connect the results of this sec-
tion with the result of our discussion of Berry’s phase,
we can simply substitute |ψ̃(t)〉 = |n,Rµ(t)〉.

VII. MATHEMATICAL FORMALISM

The mathematically inclined read may have noticed
that the previous discussion of Berry’s and Wilczek-Zee’s
phase implicitly uses many concepts from differential ge-
ometry: that of a vector bundle, principal U(N)-bundle,
connection, horizontal lift, parallel transport, curvature
2-form and holonomy. In this section we shall incorpo-
rate these mathematical concepts in to a mathematical
formalism of geometric phases. From the reader we ex-
pect familiarity with the basics of differential geometry:
manifolds, tangent bundles, tensors, differential forms.
Familiarity with vector bundles and connections on vec-
tor bundles (expressed using covariant derivatives) is use-
ful bun not necessary. Other less-common knowledge we
shall introduce here [23]. In the appendix we give a short
review of Lie groups, Lie group actions and fibre bundles.
Here, we introduce the two most important concepts –
the principal bundle and Ehresmann connection.

A. Fibre G-bundles and principal G-bundles

All the manifolds and bundles of this section will be
smooth, unless stated otherwise. A fibre bundle made of
a total space E, base space B, projection π and fibre F
we shall demarcate as E(π,B, F ), and the fibre over a
point x ∈ B we shall mark as Ex = π−1(x). Given two
local trivialization (Uα ⊆ B,ϕα : π−1(Uα)→ Uα×F ) and
(Uβ , ϕβ) the transition function we define as χαβ(x) ··=
ϕα ◦ ϕ−1

β |x. For a point x ∈ Uα ∩ Uβ the transition
function χαβ(x) is a diffeomorphism of {x}×F ∼= F , i.e.,
χαβ(x) ∈ Diff(F ).

If the fibre F has some additional structure that we
want to be preserved as we transition from one local triv-
ialization to another, then we need to restrict the transi-
tion function to be elements of only a subset of Diff(F ).
We accomplish this by introducing a structure Lie group
G together with a left group action Φ: G× F → F , and
then demanding that every transition function can be
written as χαβ(x) = Φg for some g ∈ G. This naturally
leads us towards the definition of a fibre G-bundle.

A fibre G-bundle E(π,B, F,G,Φ) is a fibre bundle
E(π,B, F ) together with a structure Lie group G which
acts faithfully on F through a smooth left action Φ: G×
F → F . Furthermore, we demand that for every tran-
sition functions χαβ between two local trivializations
(Uα, ϕα) and (Uβ , ϕβ) there exists a smooth function
gαβ : Uα ∩ Uβ → G that allows us to write χαβ(x) =
Φgαβ(x). Among the various fibreG-bundles that one may
define given a fixed base space B and structure group G,
one of them stands out – the principal G-bundle.

A principal G-bundle P (π,B,G) is a fibre G-bundle
P (π,B, F = G,G,Φ = L) whose fibre coincides with the
structure group G and whose left group action is simply
the left translation Φ(g, h) = L(g, h) = Lg(h) = g ·h. For
convenience we may define the multiplication of g ∈ G
with an order pair (x, h) ∈ B × G as g · (x, h) = (x, g ·
h) or (x, h) · g = (x, h · g). Thus, if we have two local
trivializations (Uα, ϕα) and (Uβ , ϕβ), for a point p ∈ Px
placed above x = π(p) ∈ Uα ∩ Uβ , we may write:

ϕα(p) = gαβ(x) · ϕβ(p) .

Furthermore, we can naturally define a right group action
on the total space R̃ : G× P → P by:

R̃(g, p) = R̃g(p) = p · g ··= ϕ−1
α (ϕα(p) · g) . (26)

A simple calculation shows that this right action, as de-
fined above, does not depend on the trivialization used to
define it. This canonical right action is smooth, free and
leaves the individual fibres invariant, i.e., π(p) = π(p · g)
for all g ∈ G and p ∈ P . Additionally, this right ac-
tion restricted to one fibre acts transitively and freely
upon it. Consequently, the orbit of a point p ∈ E above
x = π(p) is equal to the fibre that it’s an element of,
i.e., Orb(p) = Px. (A short review of Lie group actions
is given in appendix C.) The structure group G of the
principal fibre bundle in the context of gauge theories is
called the gauge or symmetry group.

To every fibre G-bundle E(π,B, F,G,Φ) we can asso-
ciate a unique principal G-bundle P̂ (π̂, B,G). We do this
by replacing the fibres Ex of E with copies of G and then
gluing them together using the same transition function
as in E. Explicitly, let {(Uα, ϕα)} be a complete set of
local trivializations of E, {χαβ} the transition functions
among these local trivializations, and {gαβ} their match-
ing group elements. Then we can construct the total
space of the principal bundle as the quotient space:

P̂ =
⊔
α

Uα ×G/ ∼ ,
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where the equivalence relation ∼ is defined by (x, g)α ∼
(y, h)β iff x = y and g = gαβ(x) · h. The projection we
define in the obvious way as π̂((x, g)α) = x; it is easy
to see that the projection does not depend on the choice
of the representative from the equivalence class [(x, g)α].
The principal G-bundle constructed in this way we call
the associated principal bundle to the fibre G-bundle.

In the specific case in which the fibre G-bundle is a
vector bundle (i.e., F = kN with k = R or C is a vector
space and the structure group G is a subgroup of the
general linear group GL(N, k)) our previous construction
gets an intuitive interpretation. The choice of a local
trivialization (Uα, ϕα) on this vector bundle amounts to
choosing which local basis to use for expressing vectors
of Ex, where x ∈ Uα. An element p ∈ P̂ with x =
π̂(p) can be interpreted as a particular choice of a frame
or ordered basis of the fiber Ex, where the vectors of
the frame are the columns of the corresponding GL(N, k)
matrix. In particular, when we express the vectors of the
frame in a particular local basis (= local trivialization)
α we get an element g ∈ G such that p = [(x, g)α]. The
columns of gα are the frame vectors expressed in this
local basis α, and when we change to a new local basis β
these frame vector components transform appropriately.
The associated principal fibre bundle of a vector bundle
is also called the frame bundle.

If we have a principal G-bundle P (π,B,G) we can as-
sociate to it a fibre G-bundle Ê(π̂, B, F,G,Φ), but not
in a unique way – we have to choose a fibre F and a left
group action Φ on it. To construct this associated fibre
G-bundle, we take the total space to be:

Ê = P × F/ ∼ ,

where (p1, f1) ∼ (p2, f2) iff there exists a g ∈ G such that
p2 = p1 · g and f2 = Φ(g−1, f1). The projection is simply
π̂((p, f)) = π(p). Alternatively, we could have define Ê
analogously to the previous construction of a principal
G-bundle from a fibre G-bundle using its local trivial-
izations. The transition functions would have stayed the
same, as in gαβ → Φgαβ . One noteworthy thing about
this construction is that in the process we lost the no-
tion of a canonical right translation R̃ that would act
on the total space Ê. In the case of an associated vec-
tor bundle, for the construction we need a representation
ρ : G→ GL(V ) over some vector space V .

Finally, we would just like to note that an important
result from the theory of bundle reduction of vector bun-
dles. According to this theory, we can without any loss of
generality restrict our structure group to be the unitary
group U(N) for complex vector bundles of rank N or the
orthogonal group O(N) for real vector bundles of rank
N . In other words, we can always choose a complete set
of local trivializations of a complex (real) vector bundle
for which all the transition functions act like elements of
U(N) (O(N)).

B. Ehresmann connection

A connection is a systematic way of connecting fibres
belonging to different points of the base space. In general,
the way we connect two fibres will depend on the path in
base space that we use to connect the two corresponding
base points. The most common way of defining a connec-
tion is by introducing a covariant derivative. However,
to define a covariant derivative the fibre bundle has to
have a linear structure, that is, be a vector bundle. In
this section we shall generalize the notion of a connection
to general fibre bundles.

Let E(π,B, F ) be a fibre bundle. Consider a piecewise
smooth curve γ : [0, 1] → B in the base space. Then a
connection, in its most general form, is a rule for trans-
porting elements of the initial fibre Eγ(0) along the path
to the fibre Eγ(1) at the other end. Formally, it defines a
parallel transport map:

Tγ : Eγ(0) → Eγ(1) , (27)

that is a fibre diffeomorphism, that continuously depends
on γ, and that for piecewise smooth paths satisfies:

Tγ2∗γ1 = Tγ2 ◦Tγ1 ,

Tγ−1 = T−1
γ ,

wher ∗ deontes the concatenation of two paths and −1 the
inversion of paths [24]. Additionally, the parallel trans-
port map does not depend on the parameterization of γ,
i.e., if λ : [0, 1]→ [0, 1] is a smooth monotonously increas-
ing function then Tγ = Tγ◦λ.

If we choose a particular initial p ∈ Eγ(0) then our
parallel transport operator allows us to define a unique
γ̃ : [0, 1] → E that starts at γ̃(0) = p, for every t ∈ [0, 1]
satisfies π(γ̃(t)) = γ(t) and finishes at γ̃(1) = Tγ(x).
Explicitly, we have γ̃(s) = Tγs(p), where we have used
the partial paths of the base space γs : [0, 1]→ B defined
as γs(t) = γ(st). Thus, a connection gives us a rule for
lifting curves in the base space B to curves in the total
space E. The next natural question is what structure do
we need to give the fibre bundle if we want to construct a
connection on it? Or, in other words, how do we uniquely
determine how to lift curves? To answer this we will
need two more concepts: that of a vertical and horizontal
subspace.

The projection π : E → B allows us to define a push-
forward π∗ = dπ : TE → TB of vectors tangent to the
total space to vectors tangent to the base space. Let
p ∈ E be a point in the total space, and TpE the vector
space tangent to p. Then the vertical subspace VpE of
TpE is by definition the kernel of the pushforward dπ at
p:

VpE ··= ker dπ |p .

The horizontal subspace HpE of TpE that is comple-
mentary to the verticle subspace VpE in the sense that
TpE = VpE ⊕p HpE, on the other hand, is not uniquely
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defined [25]. As it turns out, this choice of horizontal
subspace is sufficient for defining how to lift curves from
the base to the total space!

An Ehresmann connection is a smooth assignment of
horizontal subspaces HpE ≤ TpE to every point p ∈
E. They are traverse to the verticles subspaces VpE and
complementary in the sense that TpE = VpE ⊕p HpE.
This geometric structure allows us to uniquely decompose
every vector v ∈ TpE as:

v = hor v + ver v ,

where hor v ∈ HpE and ver v ∈ VpE are the horizontal
and vertical parts, respectively. Smoothness of assign-
ing horizontal subspaces means that if we have a smooth
vector field X ∈ X(E) then the vector field horX is also
smooth. Furthermore, we can also restrict the pushfor-
ward of the projection to the horizontal subspace, making
it a vector space isomorphism:

dπH : TH → TB ,

HpE 3 v 7→ dπ(v) ∈ TpB .

To see how this geometric structure allows us to define
lifting of curves, let γ : [0, 1] → B be a smooth curve in
the base space. Then by demanding that the lifted curve
γ̃ : [0, 1] → E starts at γ̃(0) = p ∈ Eγ(0), and at every
point of its trajectory it satisfies:

ver
dγ̃

dt
= 0 ,

hor
dγ̃

dt
= dπ−1

H

(
dγ

dt

)
.

we have specified an initial value problem that by the Pi-
card–Lindelöf theorem has a unique solution. The lifted
γ̃ of γ we shall call the horizontal lift of γ. The previ-
ous construction can easily be generalized to piecewise
smooth paths γ. It is easy to see that the parallel trans-
port map T induced by this procedure satisfies all the
needed requirements mentioned after (27).

An alternative way of specifying an Ehresmann con-
nection is via a 1-form on the tangent bundle of the
total space TE with values in the verticle subbundle
V E, or, alternatively, by specifying a global section of
the endomorphism bundle End(TE), since T ∗E ⊗ V E ∼=
End(TE). We define the connection 1-form A as a
smooth linear map:

A : TE → V E ,

TpE 3 v 7→ ver v ∈ VpE .
(28)

The horizontal subspace we may write as HpE = kerA|p.
The horizontal lift γ̃ of γ is determined by the equation:

A
(

˙̃γ(t)
)

= 0 ,

since the condition π(γ̃(t)) = γ(t) implies π( ˙̃γ(t)) = γ̇(t),
so we do not need to specify the horizontal part of ˙̃γ(t)
explicitly.

C. Principal Ehresmann connection

For the case of a principal G-bundle P (π,B,G) we put
further restriction on the Ehresmann connection. In par-
ticular, it has to be compatible with the group structure.
For the parallel transport map T this means that for ev-
ery path γ in the base space and g ∈ G we demand that:

Tγ ◦ R̃g = R̃g ◦Tγ . (29)

With γ(0) = p, γ(1) = q, and Pp·g = Pp, we can express
this condition as a commutative diagram:

Pp Pq

Pp·g Pp·q

Tγ

R̃g R̃g

Tγ

In words, if we right translate a point in the initial fibre
by g and parallel transport it along a curve in base space
γ we get the same result as when we first parallel trans-
port and then right translating by g in the final fibre.
This is equivalent to demanding that the assignment of
horizontal subspaces for all p ∈ P and g ∈ G satisfy:

Hp·gP = R̃g∗(HpP ) . (30)

The connection 1-form we reformulate as a Lie algebra-
valued 1-form on the tangent space of the total space.
To see how, we remind the reader that the vertical sub-
space VpP can be canonically associated with the tangent
space TpPx of the corresponding fibre, where x = π(p).
Since the fibre is diffeomorphic to the structure group
G, we can pullback using left translation the elements of
TpPx ∼= TpG to the identity TeG ∼= g, i.e., the Lie alge-
bra. Spelling this out explicitly let (Uα, ϕα) be a local
trivialization and p ∈ P a point with ϕα(p) = (x, g).
Then the pushforward:

ϕα∗ : TP |π−1(Uα) → TB|Uα × TG ,

when restricted to a point defines a vector space isomor-
phism:

ϕα∗|p : TpP → TxB ⊕ TgG .

When we further restrict the domain to only the vertical
subspace we get an isomorphism ϕα∗|Vp : VpP → TgG.
Left translation at the point g allows us to pullback to
the Lie algebra, L∗g = Lg−1∗ : TgG → TeG. Thus using
the old connection 1-form A′ we define a new one as:

A : TP → g ,

TpP 3 v 7→ L∗g ◦ ϕα∗|Vp ◦ A′p(v) ,
(31)

where ϕα(p) = (π(p), g), and π(p) ∈ Uα.
We can also use a manifestly local trivalization-

invariant definition for A. Let ξ ∈ g be a Lie algebra vec-
tor. Then to ξ we can attribute the unique infinitesimal
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generator of the right translation R̃ along ξ Xξ ∈ X(P )
that is defined as:

Xξ(p) ··=
d

dt
R̃(etξ, p)

∣∣∣
t=0

.

Since the canonical right action R̃ acts along the fibres
we have Xξ(p) ∈ VpP . In fact, for every p ∈ P the map:

Zp : g→ VpP ,

g 3 ξ 7→ Xξ(p) ∈ VpP ,

is a vector space isomorphism that we can use to define
the connection 1-forms as:

A : TP → g ,

TpP 3 v 7→ Z−1
p A′p(v) .

(32)

The proof of the equivalence of definitions (31) and (32)
is given in the appendix E.

How does this connection 1-form transform when we
pull it back using the right action R̃? The answer can be
expressed using the adjoint representation as:

R̃∗gA = Adg−1 A , or with v ∈ TpP
Ap·g(R̃g∗v) = Adg−1

(
A(v)

)
.

(33)

The proof of this is given in the appendix E.
The curvature 2-form measures how much the parallel

transport along an infinitesimal square spanned by two
vectors deviates from the identity. The curvature 2-form
is defined as:

F : TP × TP → g ,

F ··= dA+
1

2
[A,A] ,

(34)

where [ , ] is the Lie bracket of g. In case the structure
group is a matrix group, we can also write A as:

F = dA+A ∧A .

When the curve in base space γ begins and ends at the
same point, i.e., γ(0) = γ(1) = x0, the resulting parallel
transport operator Tγ is a transformation of the initial
(= final) fibre Px0 in to itself. Thus, if we are given a
point p0 ∈ Px0 , and the horizontal lift γ̃ of γ that starts
at γ̃(0) = p0, the final point of γ̃ can be expressed as:

γ̃(1) = Tγ(p0) = p0 · Φ(γ̃) .

This structure group element Φ(γ̃) ∈ G is the holonomy
of the curve γ̃ with respect to A. From equation (29) it
follows that for a horizontal lift γ̃′ that starts at γ̃′(0) =
p0 · g, the corresponding holonomy is:

Φ(γ̃′) = g−1 · Φ(γ̃) · g .

Local connection 1-forms

Coming down from these abstract definitions, we would
like to make practical calculations using the connection
1-form A. This is done by introducing a local section
s : U → P , using which we define the local connection
1-form As as:

As : TB|U → g ,

As ··= s∗(A) .
(35)

This connection As is a g-valued 1-form on TB. Simi-
larly, we define the local curvature 2-form Fs as:

Fs : TB|U × TB|U → g ,

Fs ··= s∗(F) ,
(36)

that is a g-valued 2-form on TB. Hence, we have moved
from 1-forms and 2-forms on the total space to 1-forms
and 2-forms on the base space. The sacrifice we made
during this transition is that the connections As and cur-
vatures Fs are now defined only locally, and in general
cannot be extended to the whole base space unless the
bundle is trivial.

To see how the various local connection 1-forms are re-
lated, consider two local sections s : U → P and z : O →
P that are on the intersection U ∩O related by:

z(x) = s(x) · gsz(x) ,

where gsz : U ∩O → G. In the appendix E we show that
the pushforwards of these sections are related as:

z∗(v) = R̃gsz(x)∗s∗(v) + Zz(x)g
−1
sz (x) dgsz (v) , (37)

for every x ∈ U ∩O and v ∈ TxB. If we act on this iden-
tity from the left with A and use equation (33), we get
the desired transformation law for the local connection
1-forms:

Az(v) = Adg−1
sz (x)As(v) + g−1

sz dgsz (v) . (38)

The second term of this transformation law is to be in-
terpreted as meaning:

g−1
sz dgsz (v) ··=

d

dt

[
g−1
sz (x)gsz

(
γv(t)

)]∣∣∣
t=0

,

where x ∈ B, v ∈ TxB, and γv(t) : 〈−1, 1〉 → B is a curve
that is tangential to v at time zero, i.e., γv(0) = x and
γ̇v(0) = v. Clearly, for t = 0 the quantity in the square
brackets is equal to e, thus by taking the differential of
this map at t = 0 we arrive at an element of the tangent
space at e, i.e., an element of the Lie algebra g ∼= TeG.
A more lengthy calculation (that in the case of a matrix
group is straightforward) shows that the local curvature
2-forms are related according to:

Fz(v) = Adg−1
sz (x) Fs(v) . (39)
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For principal G-bundles, from local section one can
construct local trivializations in the following way. Let
s : Us → P be a local section. Then the associated lo-
cal trivialization (Us, ϕs) is defined as covering the same
subset of the base space, while ϕs : π−1(Us) → Us × G
acts like ϕs(p) = (x, g), where x = π(p) and g ∈ G is the
unique element for which s(x) ·g = p. Conversely, for ev-
ery local trivialization (Uα, ϕα) we can define the canon-
ical local section ϕα : Uα → P as sα(x) ··= ϕ−1

α ((x, e)).
From these definitions two transition relations follow:

ϕα(p) = gαβ(x) · ϕβ(p) ,

sβ(x) = sα(x) · gαβ(x) ,

that are true for all x ∈ Uα∩Uβ with x = π(p). The local
connection 1-form and curvature 2-form of a local triv-
ialization (Uα, ϕα, sα) we shall designate A(α) and F(α),
where the bracket around α reminds us that they are not
a components.

Using these local connection 1-forms on the base space
we can define a horizontal lift. Let γ : [0, 1] → B be a
smooth path, and {(Uα, ϕα, sα)} a complete set of local
trivialization. We first divide the path γ in to segments
γα completely contained in one local trivialization. For
each segment we define the horizontal lift γ̃α : [0, 1]→ P
as:

γ̃α(t) = sα(γα(t)) · gα(t) ,

where gα : [0, 1] → G is determined by the initial condi-
tion that γ̃α(0) = γ̃β(1) (where β is the previous local
trivialization) and the differential equation:

dgα
dt

= −A(α)

(
γ̇α(t)

)
· gα(t) .

The explicit solution can formally be written as a path-
ordered exponential:

gα(t) = P exp

(
−
∫
γα

A(α)

)
· gα(0) .

To get the final horizontal lift we simply concatenate the
individual segments.

Relation to the linear connection

We end our discussion of Ehresmann connections by
relating them to the familiar connections on vector bun-
dles, also called linear connections.

Let Ê(π̂, B, kN , G) be an associated vector bundle of
the principal bundle P (π,B,G) induce by the represen-
tation ρ : G → GL(N, k), where k = R or C. Hats will
be used to designate quantities related to the associated
vector bundles. A complete set of local trivializations of
the principal bundle {(Uα, ϕα, sα)} is then associated to
a complete set of local trivializations of the vector bundle
{(Uα, ϕ̂α)}, with the transition functions related accord-
ing to ϕ̂α ◦ ϕ̂−1

β |x = ρ(gαβ(x)) ≡ ĝαβ(x).

Furthermore, in the associated vector bundle to ev-
ery local trivialization we can associate a canonical basis
of the corresponding fibres by choosing N local section
ŝα,i(x) = ϕ̂−1

α ((x, ei)), where ei ∈ kN is simply the vec-
tor with the i-th component equal to one and all others
zero. This is analogous to the canonical local section sα
that we defined for the principal fibre bundle. A change
of trivialization lead to a change of basis:

ϕα(sβ,i(x)) = ĝαβ(x) · ϕβ(sβ,i(x)) .

Since the associated vector bundle doesn’t have a local
trivialization-independent way of multiplying sections by
structure group elements (i.e., their representing matri-
ces), the best we can do is write:

sβ,i(x) = sα,j(x)ĝαβ,ji(x) ,

where ĝαβ,ji are the matrix elements of ĝαβ , and the sum
of the index j is implied.

To a representation (ρ, V ) there is also associated a
pushforward (differential) ρ∗ = dρ : g → gl(V, k). Using
this representation of the Lie algebra g, the local con-
nection 1-form A(α) of some local trivialization α on the
principal bundle can be pushed forward to a local connec-
tion 1-form Â(α) = ρ∗

(
A(α)

)
on the vector bundle, and

analogously for the curvature 2-forms F̂(α) = ρ∗
(
F(α)

)
.

This allows us to define a covariant derivative. A covari-
ant derivative is by definition a map:

D : X(B)× Γ(E)→ Γ(E) ,

X(B)× Γ(E) 3 (v, s) 7→ D(v, s) = Dv(s) ,

that is C∞(B)-linear in the vector field v, R-linear in the
section s, and satisfies the Leibniz rule:

Dv(fs) = v(f)s+ fDv(s) ,

for all v ∈ X(B), s ∈ Γ(E), and smooth functions
f ∈ C∞(B). The covariant derivative associated to the
local connection 1-form Âα we define as acting on a local
section ψ = ψiŝα,i ∈ Γ(Uα, E) as:

Dvψ = v(ψi)ŝα,i + ψiϕ−1
α

(
Â(α)(v) · ei

)
,

where the summation of the index i over 1, 2, . . . , N is
implied.

To simplify the previous expressions, we drop the α
label for the particular local trivialization, and presume
that the choice of the local section si = sα,i is known.
The dual section we shall denote si∗(sj) = δij . We also
presume that some coordinates xµ of the base space B are
given, using which we can express vector fields as v(x) =
vµ(x)∂µ with ∂µ = ∂/∂xµ . The summation of the indices
µ, ν = 1, 2, . . . ,dimB and i, j, k = 1, 2, . . . , N will follow
Einstein’s convection. For the matrix elements of A(v) =
vµAµ = A(α)(v) we write Aij(v) = vµAiµj . If we just
write A, then that matrix is suppose to be understood as
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acting on column-vectors ~ψ with components ψi of some
local section ψ = ψisi. With all of this in place, we have:

Dvψ = (Dvψ)
i
si = vµ (Dµψ)

i
si ,

(Dvψ)
i

= Dvψ
i = v(ψi) +Aij(v)ψj ,

(Dµψ)
i

= Dµψ
i = ∂µ(ψi) +Aiµjψ

j .

(40)

Moreover, we can write:

D = Dµ dxµ , with

Dµ = ∂µ +Aµ , Aµ = Aiµjsi ⊗ sj∗ .

Upon a change of local sections si → si′ :

si′ = sjgji′ , ψi
′

= g−1
i′j ψ

j ,

a straightforward calculation shows that the transforma-
tion for the covariant derivative, connection 1-form, and
curvature 2-form are:

D′µ = ∂µ +A′µ = g−1Dµg ,

A′µ = g−1Aµg + g−1∂µ(g) ,

F ′µν = [D′µ, D
′
ν ] = g−1Fµνg .

(41)

Primes mark the quantities of this new basis, and all of
the above expression are to be interpreted as acting on
column-vectors ~ψ′ made of the components ψi

′
in this

new basis.
The equation that determines the horizontal lift

ψ : [0, 1] → Ê of some curve γ(t) = π̂(ψ(t)) in the base
space is:

Dγ̇(t)ψ
i =

dψi

dt
+Aij(γ̇(t))ψj = 0 .

As long as we stay within one local trivialization (i.e.,
within the domain of the local sections si), we can write
the formal solution for the parallel transport equation as:

~ψ(t) = P exp

(
−
∫ t

0

dt′A(γ̇(t′))

)
~ψ(0) .

VIII. APPLICATION OF THE
MATHEMATICAL FORMALISM

We have seen geometrical phases appearing in physics
in two ways. In the first case, we had a physical sys-
tem whose parameters we varied adiabatically, and as
we varied them the system stayed in the corresponding
eigenspace of the Hamiltonian. This naturally lends itself
to be interpreted as having a vector bundle over the pa-
rameter space. The fibres are the respective eigenspaces,
adiabatic evolution becomes parallel transport, and the
adiabatic phase is a holonomy. This interpretation we
shall call Berry-Simon’s interpretation.

In the second case, we had an arbitrary system that
evolved cyclically, and to the closed path in the projec-
tive Hilbert space we attributed a geometric phase. The

adiabatic phase turned out to be a special case of this
geometric phase. According to the Aharonov-Anandan’s
interpretation, we introduce a vector bundle over the pro-
jective Hilbert space. The fibres are normalized states
that share the same projector, a natural connection is
introduced, and the Aharonov-Anandan’s phase becomes
a holonomy of this connection.

A. Berry-Simon’s approach

As one can see from our derivation of Berry’s phase, the
only limitation on the parameter space that we needed
was that it locally resembles RN . Naturally, we generalize
our previous discussion of Berry’s phase by taking the
parameter space to be a connected smooth N -manifold
B. The parameters Rµ are now to be interpreted as local
coordinates on this manifold.

The space of physical states is of course a separable
complex Hilbert space H, and the Hamiltonian is an es-
sentially self-adjoint operator Ĥ whose domain is a dense
linear subspace of H. In our case we shall be interested
in a Hamiltonian that is a smooth operator-valued func-
tion on the parameter space B. The Hamiltonian will in
general have a discreet spectrum whose eigenvectors live
in H and a continuous spectrum whose eigenvectors live
in the dual H∗. (For those unfamiliar with this mathe-
matically rigorous expression of quantum mechanics, we
recommend [15] for an accessible introduction.) We limit
ourselves to one specific eigenspace of the Hamiltonian
Hn ≤ H that is an element of the discreet spectrum and
whose energy En is a finite distance away from the rest
of the spectrum (i.e., there’s a gap) throughout the pa-
rameter space. This implies that the dimension of the
eigenspace N = dimHn is constant throughout the pa-
rameter space. For convenience we shall redefine the
Hamiltonian Ĥ(Rµ)→ Ĥ(Rµ)−En(Rµ) so that the n-th
energy is now zero, and the eigenspace Hn is equal to the
kernel ker Ĥ.

Now we are in a position to define the vector bundle
of eigenspaces over the parameter space with a struc-
ture group U(N). As the base manifold we take param-
eter space B. The fibre over each point p ∈ B is the
eigenspace Hn(p). The total space E we define as:

E ··=
⊔
p∈B
{p} ×Hn(p) ,

and the projection π : E → B by π(p, |ψ〉) = p. The fibres
over a point p ∈ B we shall abbreviate as Ep = π−1(p).
To define a local trivialization around some arbitrary p ∈
B, we choose an open neighborhood Up of that point and
a orthonormalized basis {|ϕi〉 : Up → H} that smoothly
attributes to every q ∈ Up normalized vectors |ϕi(q)〉 ∈
Hn(q), i = 1, 2, . . . , N , in the corresponding eignespace.
Using this basis, we can locally express every vector in
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Hn as a complex vector CN , allowing us to define:

fp : π−1(Up)→ Up × CN ,
(q, |ψ〉) 7→ (q, v(q)) ,

where the components of the vector v(q) are vi(q) =
〈ϕi(q)|ψ〉.

On the intersection U∩U ′ between two local trivializa-
tions (f, U) and (f ′, U ′) we can ask ourselves how does
the function f ′◦f−1 act? We see that for every p ∈ U∩U ′
and |ψ〉 ∈ Hn(p) it acts as:

〈ϕi(p)|ψ〉 7→ 〈ϕ′i(p)|ψ〉 =

N∑
j=1

〈ϕ′i(p)|ϕj(p)〉 〈ϕj(p)|ψ〉 .

Since the local bases were demanded to be orthonor-
malized, if follows that the matrix with components
〈ϕ′i(r)|ϕj(p)〉 is in U(N), i.e., the transition functions act
like elements of the structure group U(N) in the canoni-
cal representation. It is easily seen that these transition
functions satisfy the identity, inverse and cocycle con-
ditions. Thus, we have defined a vector U(N)-bundle
E(π,B,CN ,U(N)), to which we attribute an associated
principal U(N)-bundle P (π,B,U(N)). Alternatively, we
could have defined this vector bundle as a subbundle of
the trivial bundle B ×H.

The fact that the state space H has a scalar product
defined on it allows us to define a canonical or natural
connection on the vector bundle E → B or, equivalently,
on the principal bundle P → B.

To see how we can do this, let us start with the simplest
case of N = 1, in which case the eigenspaces Hn are
non-degenerate. Recall that the principal bundle can be
interpreted as a frame bundle of the vector space. In our
case this means that every point p ∈ P above x = π(p)
we can interpret as a normalized vector in Hn(x). To
define an Ehresmann connection of the principal bundle,
we have to attribute to every vector vp ∈ TpP an element
of the Lie algebra u(1) ∼= iR. Since the scalar product
〈 | 〉 : H × H → C allows us to attribute to two vectors
that live in different fibres a scalar, we simply define the
connection 1-form A : TP → u(1) as:

A(vp) ··=
d

dt
〈p|γv(t)〉

∣∣∣
t=0

,

where γv is a path in P tangential to vp ∈ TpP at t = 0.
Since both p and γv(t) are normalized vectors, their scalar
product is an element of U(1), and the derivative of the
scalar product is in u(1).

The generalization of the previous construction to N >
1 is straightforward. Every point p ∈ P above x = π(p)
is now an orthonormal N -tuple of vectors (ordered basis)
in Hn(x) that we shall denote pi, with i = 1, 2, . . . , N .
The u(N)-valued connection 1-form we define as having
components:

Aij(v) ··=
d

dt
〈pi|γv,j(t)〉

∣∣∣
t=0

,

where γv is a path in P tangential to v ∈ TpP at t = 0.
With connection 1-forms in place, we can define local

connection 1-forms. Let s : U → P be a local section
of the principal bundle, i.e., an orthonormalized basis of
Hn. The individual vectors we’ll designate si. Then the
local connection 1-form A : TB|U → u(N) is defined as
having components:

Aij(vx) ··=
d

dt
〈si(x)|sj(γv(t))〉

∣∣∣
t=0

,

where x ∈ U and γv is a path in B tangential to vx ∈ TxB
at t = 0. We can also define it in some coordinates xµ of
B as:

Aiµj(vx) = 〈si|∂µsj〉 .

Coming back to the initial vector bundle, the local con-
nection 1-form is defined in the same way as for the asso-
ciated principal bundle, since the representation of group
element is trivial. The covariant derivative of a local sec-
tion of the vector bundles ψ = ψisi : U → E is:

(Dµψ)
i

= ∂µ(ψi) +Aiµjψ
j .

Using the fact that ψi = 〈si|ψ〉, we can rewrite the co-
variant derivative as:

(Dµψ)
i

= 〈si|∂µψ〉 ,

which means that D = P̂nd, with P̂n =
∑
i |si〉〈si| being

the projector to the eigenspace Hn. Explicitly, we have:

Dvψ = P̂n dψ (v) =

N∑
i=1

|si〉 〈si|v(ψ)〉 .

It is easy to see that the local connection 1-form A de-
fined here is the same as Berry’s (6) and Wilczek-Zee’s
(14), up to a conventional imaginary constant and trans-
position. The parallel transport defined by the covariant
derivative D coincides with adiabatic evolution up to a
dynamical phase that we removed with a redefinition of
the Hamiltonian. The holonomies of closed curves in the
base space are equal to Berry’s (8) and Wilczek-Zee’s
(15) phase.

B. Aharonov-Anandan’s approach

In the Aharonov-Anandan’s approach, as the base
space we take the space of physical state, i.e., the quan-
tum phase space that has the mathematical structure of
a projective Hilbert space. We previously noted that,
in general, this space is infinite-dimensional, and, as
such, mathematically more demanding. In the section on
Aharonov-Anandan’s phase we introduce it as the quo-
tient space:

P(H) = S(H)/ ∼ ,
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where two vectors are equivalent if they differ by a phase.
Since the original sphere S(H) has a well-defined topol-
ogy, this quotient space inherits a topology as well. More-
over, one can also give P(H) the structure of an infinite-
dimensional manifold.

There is also an alternative way of introducing the
quantum phase space that rests on first taking the case of
a finit number of possible states whose superposition we
take, and then taking the limit to infinity. In particular,
if we have H = CN+1 then the projective Hilbert space
is equal to the complex projective space P(H) ∼= CPN .
For projective complex spaces the following inclusion is
true:

CP 1 ⊂ CP 2 ⊂ · · · ⊂ CPN−1 ⊂ CPN ⊂ · · · ,

that allows us to write:

CPN =

N⋃
n=1

CPn .

By taking the inductive or direct limit, we may generalize
and define:

CP∞ ··=
∞⋃
n=1

CPn .

This only defines CP∞ as a set of points, without any
topology or manifold structure. We furthermore give
CP∞ a topology by defining the open subsets to be
the unions of open subsets of CPn ⊂ CP∞, for all
n = 1, 2, . . ..

These two ways of defining the quantum phase space
are inequivalent. Fortunately, in the next step when we
define a principal U(1)-bundle over these two variant,
they will be in a one-to-one correspondence.

Skimming over the mathematical details, we define the
Aharonov-Anandan’s principal U(1)-bundle as having a
base space P(H) and total space S(H). Points in P(H)
we shall describe with projectors, while points in S(H)
we shall describe with normalized state vectors. The pro-
jection π we define as π(|ψ〉) = P̂ψ = |ψ〉〈ψ|. Local trivi-
alizations amount to choosing a local section. The scalar
product allows us to define a natural connection 1-form

A : TS(H)→ u(1) as:

A(vϕ) ··=
d

dt
〈ϕ|ψ(t)〉

∣∣∣
t=0

,

where ψ is a path in S(H) tangential to vϕ ∈ TϕS(H)

at t = 0. The covariant derivative is D = P̂ψd. The
holonomy of a closed curve C in P(H) is:

Φ(C) = exp

(
−
∮
C
〈ψ|dψ〉

)
,

where |ψ〉 si a local section P̂ψ → |ψ〉. This mathemati-
cally natural connection 1-form and holonomy coincides
with Aharonov-Anandan’s. We also see how the condi-
tion that the function over which we integrate |ψ̃〉 be
periodic naturally arises from the fact that local sections
have to be one-valued on P(H).

This finishes the exposition of the mathematical for-
malism of geometric phases. Holonomies are the desired
geometrical phases, and the mathematically natural con-
nections that we define using the scalar product equals
the physical connection of interest.

IX. CONCLUSION

Having introduced the foundational physical results re-
garding geometrical phases, and the mathematical for-
malism used to describe it more abstractly, we remark
that many fascinating topics have not been discussed or
covered in this article, but with this background should
be accessible to the readers.

Beyond the short introduction to the gauge theory of
molecular physics that we gave, in [20] the reader may
find a more detailed exposition of this topic, together
with a fascinating discussion that relates Aharonov-
Anandan’s U(1)-bundle to the categorization of all prin-
cipal U(1)-bundles, as well as a thorough discussion of
geometric phases as they appear in condensed matter
physics, the quantum Hall effect, and many-body sys-
tems. In the review article [17] a pedagogical introduc-
tion to Berry’s phase as it appears in solid-state physics is
given. Closer to pure theory, in [21] geometrical phases
in both quantum and classical mechanics are discussed
from a unified, geometric point of view at a mathemat-
ically sophisticated level. Together with review articles
[12, 13], this covers the geometric formulation of quantum
mechanics.
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Appendix A: Jacobi’s coordinates

The main idea of Jacobi’s coordinates is to recursively
combine kinetic energy terms until all the terms have
been combined into relative ones and a centre of mass
(CM) term that we can subsequently remove. For exam-
ple, to combine kinetic term a and b we simply substitute:

p2
a

2ma
+

p2
b

2mb
−→ p2

ab

2µab
+

P 2
ab

2Mab
,

where pab = −i~ ∂/∂xab , Pab = −i~ ∂/∂Xab and:

xab = xb − xa , µ−1
ab = m−1

a +m−1
b ,

Xab = xa + xb , Mab = ma +mb .

Next we combine the Pab term with some other, e.g., Pcd
term while retaining the relative motion terms pab and
pcd. We continue to do this until only relative motion
terms and one centre of mass term are left. After this
the individual coordinates are rescaled so that all the
non-CM kinetic terms all share the same denominator µ.

There is arbitrariness in the way you can group to-
gether the various kinetic terms. In the case of three
terms (a, b, c), one could first group a−b and then ab−c,
or first group a − c and then ac − b, etc. Regardless of
the order, in the end a CM term always appears. For our
theoretical analysis the grouping of the terms is immate-
rial.

Appendix B: Lie groups and algebras

A Lie group G is a group that is also a differentiable
manifold, and the group operations of multiplication and
inversion are compatible with this differentiable struc-
ture. In other words, the set of group elements G is a real
smooth manifold, and both multiplication ∗ : G×G→ G,
(g, h) 7→ g ∗ h and inversion −1 : G → G, g 7→ g−1 are
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smooth maps. Further on, multiplication will be desig-
nate by juxtaposition.

Every element g ∈ G give rise to two diffeomorphisms,
left translation by g that is defined as Lg : G → G,
Lg(h) ··= gh and right translation by g defined as
Rg : G→ G, Rg(h) ··= hg.

A smooth vector field X ∈ X(G) is called left-invariant
if it is invariant under the pushforward of all left trans-
lations, i.e., Lg∗X = X for all g ∈ G. The set of left-
invariant vector fields we shall denote XL(G). Right-
invariant vector fields XR(G) are analogously defined.

Let e ∈ G be the identity. Then every smooth left-
invariant vector field is uniquely determined by its value
at the identity, i.e., the map XL(G) 3 X 7→ X(e) ∈ TeG
is a vector space isomorphism. This is so because we
can left translate the value at the identity to any point
on G. Furthermore, left-invariant vector fields are closed
under the commutator, therefore giving XL(G) a Lie al-
gebra structure. This structure when pushed froward to
TeG by the aforementioned isomorphism gives TeG a Lie
bracket and makes TeG a Lie algebra as well. Explicitly,
if X(e) = ξ and Y (e) = η then [ξ, η] ··= [X,Y ](e). The
Lie algebra of TeG we shall mark as g.

To each ξ ∈ g we can associate a one-parameter sub-
group of G by the following procedure. Let Xξ ∈ XL(G)
be the unique left-invariant vector field that satisfies
Xξ(e) = ξ. Then there is a unique integral curve
gξ : R→ G of X for which:

d

dt
gξ(t) = Xξ(gξ(t)) ,

with the initial conditions gξ(0) = e and ġξ(0) = ξ.
Using this construction, we define the exponential map
exp: g → G by exp(ξ) = gξ(1). Conversly, we can
write the one-parameter subgroup of G associated to ξ as
gξ(t) = exp(tξ). The previous construction of exp does
not depend on whether a left- or right-invariant vector
field associated to ξ was used.

To every g ∈ G we can defined the conjugation by g
function, defined as Ig : G → G, h 7→ ghg−1. By taking
the differential (or pushforward) of Ig at the identity we
get the adjoint representation of g, Adg = (dIg)e : g→ g.
Since Adg is a pushforward, it is a linear operator on g.
Hence, the map Ad: G → GL(g,R), g 7→ Adg defines
a representation of the group G over the vector space
g. In the case of a matrix group, AdA(B) = ABA−1

where A ∈ GL(N,R) and B ∈ gl(N,R). By taking the
the differential of the adjoint representation map Ad at
the identity, we arrive at a representation of the Lie al-
gebra: ad = (d Ad)e : g → gl(g,R). One can show that
adξ(η) = [ξ, η]. Two important identities relating the
adjoint representations to the exponential map are:

Ig(exp(ξ)) = exp(Adg(ξ)) ,

Adexp(ξ) = exp(adξ) .

Appendix C: Lie group action

LetM be a real manifold with points x, y, . . . ∈M and
G a real Lie group with identity e and elements g, h, . . . ∈
G. A left action of G onM is a smooth map Φ: G×M →
M that satisfies Φe(x) = x for all x, and Φg ◦ Φh = Φgh
for all g and h. Here we used the abbreviation Φg(x) =
Φ(g, x). A right action is defined in the same with the
second condition replaced by Φg ◦ Φh = Φhg.

The most general group G that we can take is the
group of diffeomorphism of M Diff(M). This infinite
dimensional Lie group defines a left group action in the
obvious way, Φ(ϕ, x) = ϕ(x) where ϕ ∈ Diff(M). The
left (right) group action we can understood as a (anti-
)homomorphism from G to Diff(G) by way of G 3 g 7→
Φg ∈ Diff(M).

The orbit Orb(x) of x we define as the set:

Orb(x) ··= {Φg(x) | g ∈ G } ⊆M .

From the definition of a group, if follows that “being in
the same orbit” defines an equivalence relation of points
in M , alternatively expressed as x ∼ y iff there exists a g
such that y = Φg(x). Thus orbits partition M . The set
of all orbits is written as M/G and called the quotient of
the action.

A point x is a fixed point of g iff Φg(x) = x, and a
subspace A ⊆ M is a fixed subspace of g iff Φg(x) = x
for all x ∈ A. A subspace A ⊆ M is called invariant iff
x ∈ A =⇒ Φg(x) ∈ A for all g.

The stabilizer or isotropy subgroup of Φ at x is the set:

St(x) ··= { g ∈ G | Φg(x) = x } ⊆ G .

In words, it is the set of all group elements for which x
is a fixed point. A little reflection shows that Orb(x) ∼=
G/St(x).

A group action Φ is said to be:

• transitive if there is only one orbit, i.e., for all x
and y there is a g that connects them y = Φg(x).

• faithful (or effective) if the homomorphism G →
Diff(M) is injective, i.e., g 6= h implies Φg 6= Φh.
Equivalently, Φ is faithful iff Φg = idM implies g =
e.

• free if it has no fixed points, i.e., if there exists a x
such that Φg(x) = x, then g = e. Equivalently, Φ
is free iff St(x) = {e} for all x.

Every free action is faithful. An example of a transi-
tive and free group action are translations over Euclidian
space. An example of an transitive and faithful group
action are rotations over the 2-sphere.

Using a group action Φ we can attribute to every ξ ∈ g
a vector field Xξ ∈ X(M) called the infinitesimal gener-
ator of the action Φ along ξ. We define it as:

Xξ(x) ··=
d

dt
Φ(exp(tξ), x)

∣∣∣
t=0

.
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This map ξ 7→ Xξ defined for a right (left) group action
Φ is a Lie algebra (anti-)homomorphism, i.e., [Xξ,Xη] =
±RLX[ξ,η].

Appendix D: Fibre bundles

Fibre bundles formalize the notion of having over each
point in the base space a fibre space, and generalizes the
idea of a product space to space that only locally looks
like a product. Every smooth fiber bundle is made of:

• three smooth manifolds: the total space E, the base
space B and the standard or typical fiber F , and

• a smooth surjection (called the projection) π : E →
B such that the fiber Ex = π−1(x) of every x ∈ B
is diffeomorphic to F .

The fibers Ex we typically imagine as being situated
“above” the point x in the base space. The rank of the
fiber bundle is defined as the dimension of the fiber as a
manifold. We further demand that:

• the fiber bundle is locally trivial, i.e., locally dif-
feomorphic to a Cartesian product of an open sub-
set of the base manifold with the standard fiber.
In particular, there exists an open cover {Uα} of
B together with diffeomorphisms (called local triv-
ializations) ϕα : π−1(Uα) → Uα × F of the form
ϕα(p) = (π(p), φα(p)), where φα : π−1(Uα) → F is
smooth. Thus, π−1(Uα) ∼= Uα × F . The following
diagram is commutative:

π−1(Uα) Uα × F

Uα

π

ϕα

π1

• on the intersection of the local trivializations
(Uα, ϕα) and (Uβ , ϕβ) the induced transition func-
tions χαβ(x) ··= φα ◦ φ−1

β |x : F → F are diffeomor-
phisms.

Clearly, the transition functions satisfy:

• the identity condition χαα(x) = idF for all x ∈ Uα,

• the inversion condition χ−1
αβ(x) = χβα(x) for all x ∈

Uα ∩ Uβ , and

• the cocycle condition χαβ(x)◦χβγ(x)◦χγα(x) = idF
for all x ∈ Uα ∩ Uβ ∩ Uγ .

It is these transition functions that specify the global
topology of the fiber bundle, and allows us to sew
together the local trivializations in a consistent way.
Fiber bundles, as defined above, we shall demarcate as
E(B, π, F ), F ↪→ E

π→ B or simply E → B.

A bundle morphism among two fiber bundles
E(B, π, F ) and E′(B′, π′, F ′) is a pair of smooth func-
tions (Ψ: E → E′, ψ : B → B′) that satisfies Ψ ◦ π′ =
π ◦ ψ. This means that Ψ maps fibres Ex to fibres E′ψ(x)

for all x ∈ B. A morphism is an isomorphism if the
smooth functions (Ψ, ψ) are also diffeomorphisms. Iso-
morphic bundles we shall call equivalent; this defines an
equivalence relation in the category of all fibre bundles.
If a property is shared among equivalent bundles, then we
say that it is a topological property. An important class
of isomorphisms is that of automorphisms (isomorphisms
from the bundle to iteslf) that leave the base space fixed;
they form a group under composition called the gauge
group.

If we are given a smooth map f : M → B, where M
is a smooth manifold and B the base space of the fibre
bundle E(B, π, F ), we can construct a pullbacked fibre
bundle (f∗E,M, π1, F ). The pullbacked total space f∗E
is defined as:

f∗E ··= { (x, u) ∈M × E | f(x) = π(u) } ,

while the projection π1 : f∗E → M is defined by
π1((x, p)) = x. As one can easily see, the fibres f∗Ex =
π−1

1 (x) are just copies of the fibres Ef(x) = π−1(f(x)).
We may also introduce the projection π2 : f∗E → E de-
fined by π2((x, p)) = p that satisfies π2 ◦ π = π1 ◦ f , i.e.,
the following diagram commutes:

f∗E E

M B

π1

π2

π

f

Finally, let {(Uα, ϕα)} be a complete set of local trivial-
izations of E → B. Then the set {Oα = f−1(Uα)} defines
an open cover ofM , and we may define the corresponding
local trivialization of f∗E → M to be ϕ∗α : π−1

1 (Oα) →
Oα × F that act as ϕ∗α((x, u)) = (x, φα(u)). It fol-
lows that the transition function are related according
to χ∗αβ(x) = χαβ(f(x)).

An important theorem about pullbacked fibre bundles
is the following: Let E(B, π, F ) be a fibre bundle, and
f and g homotopic smooth maps from the smooth man-
ifold M to the base space B. Then the pullbacked fibre
bundles f∗E and g∗E are equivalent. For two smooth
maps f, g : M → B we say that they are homotopic iff
there exists a smooth map F : [0, 1]×M → B such that
F (0, x) = f(x) and F (1, x) = g(x) for every x ∈M .

A local section of the fibre bundle E(B, π, F ) on the
open subset U ⊆ B is a smooth function s : U → E
for which U 3 x 7→ s(x) ∈ Ex. In words, to points in
the base space it assigns points in the fibre above that
point. Equivalently, we demand that the section satisfy
π ◦ s = idU . A global section is simply a local section
defined over the whole base space, i.e., U = B. The set
of local sections of E → B on U ⊆ B we denote Γ(U,E),
and the set of global sections we denote Γ(E).
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Appendix E: Proofs of some identites

To prove the equivalence of definitions (31) and (32)
of the connection 1-form A : TE → g, consider a local
trivialization (Uα, ϕα), a point p with ϕα(p) = (x, g),
and a tangent vector v ∈ TpE. To find the expression for
A(v) = Z−1

p A′(v) = ξ in the local trivialization, we use
their definitions:

A′p(v) = Zp(ξ) = Xξ(p) =
d

dt
R̃(etξ, p)

∣∣∣
t=0

=
d

dt
ϕ−1
α

(
ϕα(p) · etξ

)∣∣∣
t=0

= ϕ−1
α∗ |p

d

dt

(
ϕα(p) · etξ

)∣∣∣
t=0

= ϕ−1
α∗ |p

d

dt

(
x, g · etξ

)∣∣∣
t=0

= ϕ−1
α∗ |p

(
x,

d

dt
Lge

tξ
∣∣
t=0

)
= ϕ−1

α∗ |p (x, Lg∗ξ) .

Inverting the last expression yields the desired result.
To prove equation (33), let us start from the right-hand

side. Consider a point p ∈ P , a vector v ∈ TpP and a
group element g ∈ G. Let us define ξ ··= Adg−1

(
Ap(v)

)
.

Then we have:

Adg(ξ) = Ap(v) = Z−1
p A′p(v) ,

which we can invert to get:

A′p(v) = Zp
(

Adg(ξ)
)

= XAdg(ξ)(p)

=
d

dt
R̃(etAdg(ξ), p)

∣∣∣
t=0

=
d

dt
R̃
(
Ig(e

tξ), p
)∣∣∣
t=0

=
d

dt

(
p · g · etξ · g−1

)∣∣∣
t=0

=
d

dt
R̃g−1

(
R̃(etξ, p · g)

)∣∣∣
t=0

= R̃g−1∗
d

dt

(
R̃(etξ, p · g)

)∣∣∣
t=0

= R̃g−1∗Xξ(p · g) = R̃g−1∗Zp·g(ξ) .

Moreover, since right translation acts along the fibres,
the following is true:

R̃g∗A′p(v) = A′p·g(R̃g∗v) .

Combining these two, we have Zp·g(ξ) = A′p·g(R̃g∗v),
from which the equation follows.

To prove the relation (37) between two pushforwards of
local sections s : U → P and z : O → P , consider a curve
γ : 〈−1, 1〉 → B such that γ(0) = x and γ̇(0) = v ∈ TxB.
Using the definitions, we obtain:

z∗(v) =
d

dt
z(γt)

∣∣∣
t=0

=
d

dt

[
s(γt) · gsz(γt)

]∣∣∣
t=0

=
d

dt
s(γt)

∣∣∣
t=0
· gsz(x) + s(x) · d

dt
gsz(γt)

∣∣∣
t=0

= R̃gsz(x)∗s∗(v) + z(x) · g−1
sz (x)

d

dt
gsz(γt)

∣∣∣
t=0

.

In the second term we recognize:

g−1
sz (x)

d

dt
gsz(γt)

∣∣∣
t=0

=
d

dt

[
g−1
sz (x)

d

dt
gsz(γt)

]∣∣∣
t=0

= g−1
sz (x) dgsz (v) = ξ ∈ g ,

which allows us to express the second term as:

z(x) · ξ =
d

dt
R̃
(
etξ, z(x)

)∣∣∣
t=0

= Xξ(z(x))

= Zz(x)(ξ) = Zz(x)g
−1
sz (x) dgsz (v) .

This proves the relation.


	An introduction to geometrical phases
	Abstract
	Introduction
	Adiabatic evolution
	Berry's phase
	Mead-Truhlar's curvature formula

	Examples
	Spin 12 particle
	Spin s particle
	Aharonov-Bohm effect

	Wilczek-Zee's phase
	The Gauge Theory of Molecular Physics
	Aharonov-Anandan's phase
	Mathematical formalism
	Fibre G-bundles and principal G-bundles
	Ehresmann connection
	Principal Ehresmann connection
	Local connection 1-forms
	Relation to the linear connection


	Application of the mathematical formalism
	Berry-Simon's approach
	Aharonov-Anandan's approach

	Conclusion
	References
	Jacobi's coordinates
	Lie groups and algebras
	Lie group action
	Fibre bundles
	Proofs of some identites


