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Abstract

In 1931, while studying topological properties of spheres and maps between them, Heinz Hopf
discovered a peculiar mapping between S3 and S2 which turned out to provide S3 with a structure of a
fibre bundle over S2. While this seemed far removed from physics at the time, little by little physicists kept
stumbling upon this structure lurking behind a wide array of distinct physical phenomena. In this seminar,
we will first give a brief exposition of fibre bundles in general and then Hopf fibration in particular. We
give its definition, explain how to visualize its fibres using stereographic projection and briefly mention
some generalizations. In the second part, we turn to physics. First we summarize how Hopf’s ideas
about mappings between spheres sparked some ideas about the possible underlying structure of classical
electrodynamics and then, using this, we obtain a topologically non-trivial solution of Maxwell’s equations
based on the Hopf fibration.

I. Introduction

It might seem surprising that such a seem-
ingly extravagant mathematical structure as
the Hopf fibration appears in physical context
at all, but as is documented in [1] it appears
in at least seven different contexts in physics.
What is perhaps even stranger, most of these
contexts are not related to gauge theory, where
most physicists are accustomed at using fibre
bundles. It appears, among others, in areas
as diverse as general relativity, twistor theory,
rigid body dynamics, 3-dimensional harmonic
oscillator and even the Dirac monopole etc.
But, among those, there is a system - a quan-
tum 2-state system or the qubit - which, by its
very simplicity, will serve us well in motivating
the usefulness of the Hopf fibration in physics.
It is well known that physical states of the
quantum systems correspond to equivalence
classes of Hilbert space vectors. For a qubit
any state vector can be written in the following
form:

|ψ〉 = α |0〉+ β |1〉 (1)

where α and β are complex numbers. There-
fore, the Hilbert space of a qubit is isomor-

phic to C2. But, any state of the form λ |ψ〉
where λ ∈ C also represents the same state.
If we use this equivalence relation to form a
quotient space we see that the space of states
corresponds to CP1, which we know is home-
omorphic to S2. So, how is all this related to
Hopf fibration?
Let us attack the problem of constructing a
state space for a qubit from a slightly different
angle by first imposing normalization on our
state vector:

〈ψ|ψ〉 = 1⇒ |α|2 + |β|2 = 1 (2)

which upon realification means restricting our-
selves on subset S3 of R4. There is still freedom
of multiplication by a complex phase eiφ, but
this can be eliminated by passing over to the
density operator representation of pure states:

ρ = |ψ〉 〈ψ| (3)

which is positive and satisfies both ρ2 = ρ and
Tr(ρ) = 1. The set of physical states of a sys-
tem is in one-to-one correspondence with the
set of these density operators. This density op-
erator can be represented by a matrix in a basis
(|0〉 , |1〉) and, like any other 2x2 Hermitean ma-
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trix, it can be expanded in a basis consisting of
identity and three Pauli matrices (1 ,~σ) as:

ρ =
1
2
(1 +~a ·~σ) (4)

where, due to ρ2 = ρ and Tr(ρ) = 1, |~a| = 1.
We again find that the space of states of a qubit
is a sphere S2 (in this context it is called a Bloch
sphere (Figure 1)).

Figure 1: Bloch sphere representation of quantum states

But, besides this nice representations of
quantum states, what we in fact obtained by
this construction is a certain map (normalized
|ψ〉 7→ ρ 7→ ~a ∈ S2) from the subset of nor-
malized states in C2 ∼= R4, namely S3, to S2.
This map "projects down" circles S1 ⊂ S3 con-
sisting of state vectors differing by a phase
factor eiφ ∈ U(1) to a distinct point on S2 and
therefore endows the S3 with a fibre bundle
structure. Fibration thus produced is, in fact,
none other than Hopf fibration.

II. Few remarks about fibre

bundles in general

Just as a manifold can be informally defined as
a space which locally "looks like" (formally "is
homeomorphic to") Rn, so a fibre bundle can
be viewed as a space which locally looks like
a Cartesian product of two topological spaces.
Although definitions vary widely across the

literature we will settle for the one found in [2].

Fibre bundle is an ordered quadruple (E,π,B,F)
(denoted as: F ↪→ E → B) consisting of 3
smooth manifolds, total space E, base space B
and fibre F with a continuous and surjective
projection map π : E → B. Also, for every
b ∈ B there is a neighbourhood Ob and a
homeomorphism (so called "local trivializa-
tion") ψβ : π−1(Ob)→ Ob × F which for every
x ∈ π−1(Ob) satisfies the following condition:

(π1 ◦ ψβ)(x) = π(x) (5)

where π1((x, y)) = x is a canonical projection
to the first factor.

This definition is a top-down approach to fibre
bundles. We are given a total space E with a
projection map π which induces a fibration in
such a way that E is now viewed as completely
made up of distinct fibres, each corresponding
to a point in base space B and each homeo-
morphic to a typical fibre F (for each b ∈ B
π−1(b) ∼= F). A fibre bundle which is globally
homeomorphic to a product space B × F is
called trivial . Although they are made of
"patches" which are trivial, fibre bundles in
general are not globally trivial.
The definition above gives us a way of decom-
posing the total space into a set of patches
which have the structure of Cartesian products,
but what about the other way around. What if
we are given a base space B and a collection of
open sets Oβ ⊂ B? How do we assemble the
original fibre bundle from pieces of the form
Oβ × F?
Given a base manifold B with an open cover
{Oβ}, we assign to each b ∈ B a homeomor-
phism g(b) : F → F such as to reproduce
the effect of the original transition functions
ψα ◦ ψ−1

β |b on F. For each b ∈ B g(b) belongs
to a group G - the so called structure group
of a bundle. Structure group is not uniquely
determined. Any group which contains the
structure group as a subgroup is also a struc-
ture group. Now, before we patch them to-
gether, we form the simple union of local
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trivializations:

Ẽ =
⋃
β

Oβ × F (6)

On this space we introduce the following equiv-
alence relation : (b, f ) ∼ (b‘, f ‘) ⇔ b = b‘ and
g(b) f = f ‘. We can now "glue" together the
total space E:

E = Ẽ/ ∼ (7)

which as we defined consists of equivalence
classes [(b, f )]. The projection map π : E→ B
is given naturally by [(b, f )] → b ∈ B. Also,
we can give inverses of local trivializations
ψ−1

β : Oβ × F → π−1(Oβ) by (b, f ) → [(b, f )].
A nice illustration of this construction using
a Moebius strip (which has a structure group
Z2) can be found in [3].
A principal fibre bundle P(B, G) is a fibre
bundle F ↪→ E → B for which the fibre F is
identical to the structure group G.
Also, a local cross section of a fibre bundle
over an open set O ⊂ B is a continuous map-
ping s : O → E which satisfies π ◦ s = idB (it
maps the point in the base space to the fibre
"directly above it"). A cross section is called
global if O = B. These two notions give us a
nice criterion for deciding whether a given fi-
bre bundle is trivial: A fibre bundle is trivial if
and only if a principal bundle associated with
it admits a global cross section.

III. Hopf fibration

The combination of words "Hopf fibration"
should not, strictly speaking, be used in sin-
gular. There are actually four different bun-
dles where total space, base space and fi-
bre are all spheres of different dimensions:
S0 ↪→ S1 → RP1 ∼= S1, S1 ↪→ S3 → CP1 ∼= S2,
S3 ↪→ S7 → HP1 ∼= S4 and S7 ↪→ S15 →
OP1 ∼= S8, where H and O denote the rings of
quaternions and octonions, respectively. These
are all called Hopf fibrations.

While we will mostly be interested in the
second case, let us try to get the general idea

by first analyzing briefly the simplest Hopf fi-
bration: S0 ↪→ S1 → RP1 ∼= S1. RP1 is just
a quotient manifold R2/ ∼ where the equiva-
lence relation is defined as follows:

(x, y) ∼ (x‘, y‘)↔ (x‘, y‘) = λ(x, y) (8)

for some λ 6= 0. As we can see, the total space
is just the regular circle:

E = S1 = {(x, y)|x2 + y2 = 1} (9)

We define projection map: π : S1 → RP1 by:

π((x, y)) = [(x, y)] ∈ RP1 (10)

From this we can immediately find the fibre:

F = π−1([(x, y)]) = {(x, y), (−x,−y)} (11)

The fibre is obviously homeomorphic to
{−1, 1} which is in fact the zero-sphere S0.
Now that we’ve shown that such a fibration
of S1 is possible, let’s see if we can see how the
S1 is patched together (when viewed as a total
space of a fibre bundle). First we give an open
cover of the base space RP1 :

O1 = {[(x, y)] ∈ RP1|x 6= 0} (12)

and

O2 = {[(x, y)] ∈ RP1|y 6= 0} (13)

On these open sets we introduce coordinates
φi : Oi → R by following definitions:

φ1([(x, y)]) =
y
x

(14)

and
φ2([(x, y)]) =

x
y

(15)

We can now use these coordinates to define
local trivializations ψi : π−1(Oi) → R × F
(where we’ve used R instead of Oi because
they are homeomorphic):

ψ1((x, y)) =
( y

x
, sgn(x)

)
(16)

and

ψ2((x, y)) =
(

x
y

, sgn(y)
)

(17)

To get the structure group, all we have to do
is to compute the transition function ψ1 ◦ ψ−1

2 .
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For the sake of brevity, we skip the computa-
tion and only give the result:

ψ1 ◦ ψ−1
2 (u, v) =

(
1
u

, sgn(u)v
)

(18)

where u ∈ R− {0} and v ∈ {−1, 1}. On the
fibre we have the following mapping:

v 7−→ sgn(u) · v (19)

It is clear now that the structure group is
in this case Z2, which, as it happens to be,
is homeomorphic to fibre F = S0 so that
S0 ↪→ S1 → RP1 ∼= S1 is, in fact, a principal
bundle P(S1, Z2).

Figure 2: A visual representation of S0 ↪→ S1 →
RP1 ∼= S1. Taken from [3].

A way to visually display this fibration is given
in Figure 2. A circle is patched together by
taking two circles S1 × {−1, 1}, "cutting" each
of them at a single point and gluing them
together using the procedure sketched in the
previous section (the effect of Z2 can be seen
in the way the upper and lower circle are glued
together). That this bundle is non-trivial can
be seen by the obvious impossibility of giving
a global cross-section (continuity must be vio-
lated if we are to preserve single-valuedness).

Now comes the time to entertain ourseleves
with the Hopf fibration that is of interest to us
in this seminar, namely S1 ↪→ S3 → CP1 ∼= S2.
A schematic representation of this fibration is
given in Figure 3.

Figure 3: Schematic representation of Hopf fibration.
Taken from [2].

The total space in this case is a 3-sphere S3

defined by:

S3 = {(x, y, u, v) ∈ R4|x2 + y2 + u2 + v2 = 1}
(20)

Although it is canonically defined as a sub-
set of R4, it will be more convenient for our
purposes to define it as a subset of C2:

S3 = {(z, w) ∈ C2||z|2 + |w|2 = 1} (21)

where z = x + iy and w = u + iv. We now
define the projection map π : S3 → CP1 as
follows:

π((z, w)) = [(z, w)] ∈ CP1 (22)

which is none other tnan the projection of an el-
ement on S3 on the corresponding equivalence
class in CP1 = C2/ ∼ with the equivalence
relation:

(z, w) ∼ (z‘, w‘)⇔ (z‘, w‘) = λ(z, w) (23)

where λ ∈ Cx. The fibre F is given, as usual,
by the inverse image of the point in the base
space under projection F = π−1([(z, w)]). This
corresponds to all the points on the 3-sphere
which belong to the same equivalence class i.e.
all the points on S3 related to (z, w) by:

(z‘, w‘) = λ(z, w) (24)

Since both (z, w) and (z‘, w‘) belong to S3 we
have the following relation:

1 = |z‘|2 + |w‘|2 = |λ|2(|z|2 + |w|2) = |λ|2
(25)
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⇒ (z‘, w‘) = (eiφz, eiφw) (26)

which implies that all the points (z‘, w‘) that
get "projected down" to [(z, w)] form a circle
S1. Therefore, F = S1.
The structure group of S1 ↪→ S3 → CP1 ∼= S2

can be found by looking at transition functions
between locally trivial patches. As usual we
give an open cover of the base space CP1 in a
way analogous to what we did in the example
S0 ↪→ S1 → RP1 ∼= S1.

O1 = {[(z, w)] ∈ CP1|z 6= 0} (27)

and

O2 = {[(z, w)] ∈ CP1|w 6= 0} (28)

Local trivializations ψi : π−1(Oi)→ Oi × F are
given by:

ψ1((z, w)) =

(
w
z

,
z
|z|

)
(29)

and

ψ2((z, w)) =

(
z
w

,
w
|w|

)
(30)

where we again used coordinates w
z and z

w to
label classes [(z, w)] on O1 and O2, respectively.
Note that z

|z| can be written as a complex phase

eiφz as it belongs to a fibre S1. To find the tran-
sition function ψ1 ◦ ψ−1

2 we need to compute
ψ−1

2 . If we label z
w by r and z

|z| by s, we have
the following relations:

1 + |r|2 =
1
|w|2 (31)

and
w = s|w| z = rw (32)

from which follows:

ψ−1
2 (r, s) =

(
rs√

1 + |r|2
,

s√
1 + |r|2

)
(33)

Finally, transition function is given by:

ψ1 ◦ ψ−1
2 (r, s) =

(
1
r

,
r
|r| s
)

(34)

The action on a fibre is obviously given by a
multiplication by a complex phase: s → eiφs.
Therefore, a structure group of S1 ↪→ S3 →
CP1 ∼= S2 is a group U(1) which is homeo-
morphic to S1 and we once again find that the
structure group is equal to the fibre. It follows
then:

S1 ↪→ S3 → CP1 ∼= P(S2, U(1) ∼= S1) (35)

IV. Visualizing Hopf fibration

In order to visualize the Hopf fibration we
must find a way to "see" the total space S3.
Already in Figure 3 it is sketched how we
might accomplish this. We shall use stereo-
raphic projections to identify the spheres S3

and S2 with the compactified 3-space R3 ⋃{∞}
and the compactified complex plane C

⋃{∞},
respectively (the latter projection is not really
necessary for visualization purposes, but we
introduce it anyway for future convenience).
Only then will we be able to see how the fibres
are arranged and how they link with each
other to form a (projected) total space.

First, we construct the mapping between CP1

and S2. Combining the local chart ψ2 : O2 → C:

ψ2([(z, w)]) =
z
w

, w 6= 0 (36)

with the inverse of a stereographic projection
from the north pole α−1

N : C→ S2 defined by:

α−1
N (x + iy) = (2σx, 2σy, σ(x2 + y2 − 1)) (37)

where we introduced the shorthand σ:

σ =
1

x2 + y2 + 1
(38)

we obtain the mapping γ : O2 → S2 as
γ = α−1

N ◦ ψ2 whose action is given by:

γ([(z, w)]) = (2ξRe(z̄w), 2ξ Im(z̄w), ξ(|z|2−|w|2))
(39)

where we again introduced the shorthand ξ to
stand for:

ξ =
1

|z|2 + |w|2 (40)
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This mapping can be extended to the whole
of CP1 by defining γ to map [z, 0] to the north
pole which represents the "point at infinity".
Since |z|2 + |w|2 = 1 for points (z, w) on the S3

it follows:

(γ ◦ π)(z, w) = (2Re(z̄w), 2Im(z̄w, |z|2 − |w|2)
(41)

Combining this with the stereographic projec-
tion αN whose inverse we defined above and
an inverse projection κ−1

N : R3 → S3 ⊂ R4

which is defined as follows:

κ−1
N (~x) =

(
2~x

|~x|2 + 1
,
|~x|2 − 1
|~x|2 + 1

)
(42)

we obtain φ = αN ◦ γ ◦ π ◦ κ−1
N : R3 → C

whose action is given by:

φ(~x) =
2(x1 + ix2)

2x3 + i(|~x|2 − 1)
(43)

where we used ~x to label elements of R3 and
written each mapping in terms of real com-
ponents. This map is just what we wanted
- a "projected projection" which allows us to
"fibrate" R3 ⋃{∞}.
Before we discuss the full-blown structure
of fibres in the Hopf fibration, let us say a few
words about its building blocks. Each pair
of S1 fibres in the Hopf fibration forms the
so-called Hopf link (Figure 4).

Figure 4: A Hopf link

Informally, a link is an assembly of knots
with mutual entanglements, where a knot is
just a smooth embedding of a circle S1 in R.
Each link is characterized by the so called
linking number which, in loose terms, is none
other than a number of times one component
of a link intersects an oriented surface spanned
by another component of a link. A Hopf link,

obviously, has a linking number 1. Stated in
more computational terms, the linking num-
ber for the two closed curves ~c1(t) and ~c2(t) in
R3 can be computed using the Gauss linking
integral:

Lc1c2 =
1

4π

∫
dt1dt2

d~c1

dt1
· ~c1 − ~c2

|~c1 − ~c2|3
× d~c2

dt2
(44)

Note that this integral can be computed for the
case c1(t) = c2(t) = c(t). In such a case it gives
the measure of knottedness (self-linking) of a
curve.

Figure 5: A graphic representation of fibres correspond-
ing to points on S2 aligned along the "paral-
lels".

Figure 6: A display of the way in which fibres are
grouped in toruses which subsequently fill the
R3 ⋃{∞}.

In Figure 5 and Figure 6 we see the way dis-
tinct fibres corresponding to points arranged
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along parallels of S2 form the nested tori which
ultimately fill the entire R3 ⋃{∞}.

Each tori is made up of circles (fibres) in
such a way that no two circles cross and each
circle is linked to every other one. Each circle in
such a configuration wraps once around each
circumference of the torus. By nesting such
tori into one another, the whole of three di-
mensional space, including the point at r = ∞
(R3 ⋃{∞} ∼= S3) can be filled with linked cir-
cles. There are two ‘special’ fibres: the cir-
cle of unit radius that corresponds to the in-
finitely thin torus, and the straight line, or cir-
cle of infinite radius, that corresponds to an
infinitely large torus. The Hopf map maps
such circles in R3 ⋃{∞} ∼= S3 to points on the
sphere S2 ∼= C

⋃{∞}. Each circle is projected
to a point, each torus onto a (parallel) circle on
S2. The circular and straight special fibres are
mapped to the north and south pole, respec-
tively.

V. Topological electromagnetism

Even tough we are primarily interested in the
construction of the solution of the Maxwell’s
equations based on the Hopf fibration - the
so called Hopf-Ranada solution - in this sec-
tion we are going to sketch the broader context
in which such a solution was first found by
Ranada [9].
While investigating the connection between
topology and electromagnetism, Ranada dis-
covered that a subset of radiation solutions
(those which satisfy ~E · ~B = 0 ) to Maxwell’s
equations in vacuum is associated with the set
of smooth maps S3 7−→ S2. He named these
solutions admissible fields. Additionally, he
showed that any radiation field is locally equal
to an admissible field and can therefore be
patched together from such fields. These dis-
coveries encouraged Ranada to put forth the
idea that standard electromagnetisam is just
the "linearized" (not an approximate) version
of an underlying topological theory based on
mappings S3 7−→ S2. This set of ideas he provi-
sionally called topological electromagnetism.
Let us sketch briefly the train of thought in-

volved here.
Consider a complex scalar field φ(~r) with a
well defined value as r → ∞ (limit does
not depend on the direction). Such a field
φ : R3 → C can, by identfying R3 ⋃{∞} with
S3 and C

⋃{∞} with S2 via stereographic pro-
jection, be viewed as a map φ : S3 → S2. In
this way, S3 comes to represent the compacti-
fied physical 3-space with only one "point at
infinity".
Given a map φ : S3 → S2, the inverse images
φ−1(a) and φ−1(b) of any two points a, b ∈ S2

are, in general, two closed curves in S3 and
therefore they form what we previously de-
fined as a link. Its linking number, as we de-
fined it above, is just equal to the number of
times one curve intersects the oriented surface
bounded by another one, where intersections
in the negative sense are counted with a minus
sign (Figure 7).

Figure 7: The curves φ−1(a) and φ−1(b) (here denoted
as f−1(a) and f−1(b)) forming, in this case,
a Hopf link with a linking number 1. Taken
from [8].

This linking number does not depend on
the particular pair of points a, b ∈ S2 chosen,
since by moving them continuously to any
other pair a‘, b‘ ∈ S2 the inverse images can nei-
ther untie or tie further since, for this to occur,
they would have to intersect and that would
mean that the same point in the domain is
mapped to two distinct points in the codomain.
For the same reason, if the map φ evolves con-
tinuously in time, the linking number does not
depend on time either. This gives us a con-
venient way to classify the maps φ : S3 → S2

into homotopy classes, labeled by this linking
number, which, in this context, is called the
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Hopf index and labeled as γ.
So, what does all this has to do with electro-
magnetic fields? Although Ranada in [8] seems
somewhat unclear at certain points about what
he is trying to accomplish, the bottom line
is this. He managed to show that given two
maps φ, θ : S3 → S2 he could, by pulling back
with φ and θ the normalized area 2-form from
S2, which in stereographic coordinates (z, z̄) is
given by (see the next section for details):

ε =
1

2πi
dz ∧ dz̄
(1 + z̄z)2 (45)

and adding a time dimension (because of co-
variance), construct two 2-forms, which when
written in terms of components are given by:

Φµν =
1

2πi
∂µφ̄∂νφ− ∂νφ̄∂µφ

(1 + φ̄φ)2 (46)

Θµν =
1

2πi
∂µ θ̄∂νθ − ∂ν θ̄∂µθ

(1 + θ̄θ)2 (47)

Furthermore, by requiring that Θ and Φ be
dual to each other:

Φµν =
1
2

εµνρσΘρσ Θµν =
1
2

εµνρσΦρσ (48)

he ensured that both Φ and Θ satisfy Maxwell’s
equations:

∂µΦµν = 0 ∂µΘµν = 0 (49)

εµνρσ∂νΦρσ = 0 εµνρσ∂νΘρσ = 0 (50)

The second pair is satsified automatically by
virtue of equations (46) and (47). The first pair
is satisfied by virtue of the second pair and the
duality conditions (48). The only thing left to
ensure is that if Θ and Φ start out as dual, they
remain so for all time. This is accomplished by
defining the lagrangian of the theory to have
the same form as in standard electodynamics:

L = −1
8
(ΦµνΦµν + ΘµνΘµν) (51)

Equations of motions are obtained by varying
this lagrangian subject to a constraint of duality
(48) using the method of Lagrange multipliers.

What these considerations show is that there is
a formal relation between mappings S3 7−→ S2

and electromagnetic fields. Φ seems to repre-
sent the electromagnetic 2-form F and Θ its
dual ∗F (strictly speaking, in making this iden-
tification we should insert a factor

√
a where

a is an action constant intended to convert the
expressions to physical units). If we take this
identification seriously, electric and magnetic
one forms can be extracted in the usual way
using contraction:

E = −iuΦ B = iuΘ (52)

which when written in terms of components in
the rest frame of the observer (uµ = (1, 0, 0, 0))
has the form:

Ei = −Φ0i Bi = Θ0i =
1
2

εijkΦjk (53)

The fields obtained in this way can be shown
to be of the form:

~B = −g(φ, φ̄)∇φ̄×∇φ (54)

~E = −g(θ, θ̄)∇θ̄ ×∇θ (55)

Let us now summarize what we have obtained:

(1) Maps from S3 to S2 can be classified into
homotopy classes which can be labeled by a
Hopf index (linking number of the level curves)
γ = 0,±1,±2, ...
(2) Corresponding to the pair of functions
φ, θ : S3 → S2, which are not independent be-
cause of the duality condition and for that rea-
son have orthogonal level curves, corresponds
a radiation field given by an electromagnetic
2-form in (46). Resulting electric and magnetic
fields are tangent to the level curves of φ and θ,
respectively (and therefore satisfy, as required,
the condition ~E · ~B = 0 ).
(3) The "admissible fields" obtained this way
can therefore also be classified according to
the Hopf index γ = ±1,±2, ... (γ = 0 case is
forbidden because it corresponds to the field
with the zero energy density).
(4) Since electric and magnetic fields are tan-
gent to the level curves of φ and θ, a solution
with γ = n corresponds to a field in which
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two distinct electric/magnetic field lines are
interlinked with each other with a linking
number γ. This γ is a topological constant of
the motion.
(5) Equations of motion are highly nonlinear at
the level of φ and θ; however they can be trans-
formed exactly into linear Maxwell’s equations
for ~E and ~B (there is no truncation involved).
For details see [10].

As we presented it, this seems as "merely"
a way to generate topologically non-trivial
solutions to Maxwell’s equations, but these
ideas may have a wider scope. It can be shown
that every radiation field is locally identical
to an admissible field (for a precise sense of
this statement see [8]). Therefore, electromag-
netism can be seen to emerge from an underly-
ing topological non-linear theory that differs
only globally from standard theory. There are
many difficulties with this, but there is much
to recommend it, too. Prime example of this
is charge quantization, which emerges in this
theory from simple topological considerations.

VI. Hopf-Ranada solution

In the last section we sketched (without delv-
ing into too much detail) how a topologically
non-trivial solution of Maxwell’s equations can
be constructed which has an arbitrary linking
number γ = ±1,±2, .... We’ve shown that such
solutions are based on maps S3 7−→ S2, where
S3 is meant to represent the compactified phys-
ical 3-space and S2 the compactified complex
plane. In this section we detail the construction
of perhaps the simplest instance of such solu-
tions based on the projecton map in the Hopf
fibration S1 ↪→ S3 → S2. Since fibres (level
curves of the projection map) are in this case
linked once, that will also be the case with the
electric and magnetic field lines.
To construct such a solution we must use the
pullback of a volume form on S2. Given
a m-manifold (M, gab) with metric gab, a
volume form ε ∈ Ωm(M) can be given using

a coordinate induced basis as:

ε =
√
|g| dx1 ∧ ....∧ dxm (56)

where g is a metric determinant. In spherical
polar coordinates (θ, φ), a normalized volume
form (volume form divided by the area of the
sphere) is given by:

ε̃ =
1

4π
sin θdθ ∧ dφ (57)

Before we can pull this form back on the
physical space using our "projected projection"
φ = αN ◦ γ ◦ π ◦ κ−1

N : R3 → C introduced ear-
lier, we must first pull this form to a complex
plane using the inverse stereographic projec-
tion α−1

N defined earlier in (37).
First, we express the volume form us-

ing the cartesian coordinates (x, y, z) of the
space R3 in which the sphere is embed-
ded. Using x2 + y2 + z2 = 1 and (x, y, z) =
(sin θ cos φ, sin θ sin φ, cos θ) we obtain:

ε̃ =
dx ∧ dy

4πz
(58)

Now, we can do the pullback:

ε = (α−1
N )∗ ε̃ ∈ Ω2(C) (59)

where, for the sake of clarity, we repeat the
definition of α−1

N :

α−1
N (a + ib) =

(
2σa, 2σ, σ(a2 + b2 − 1)

)
(60)

where:
σ =

1
a2 + b2 + 1

(61)

Using the properties of pullback we get:

⇒ ε =
d(x ◦ α−1

N ) ∧ d(y ◦ α−1
N )

4π(z ◦ α−1
N )

(62)

which, after expanding each one-form simpli-
fies to:

ε = − 1
π

da ∧ db
(a2 + b2 + 1)2 (63)

Now we express this in terms of z = a + ib and
z̄ = a− ib by first noting:

dz ∧ dz̄ = (da + idb) ∧ (da− idb) (64)

⇒ dz ∧ dz̄ = −2ida ∧ db (65)

9
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It now follows:

ε =
1

2πi
dz ∧ dz̄

(1 + |z|2)2 ∈ Ω2(C) (66)

As prescribed in the previous section we now
use our Hopf projection map φ = αN ◦ γ ◦ π ◦
κ−1

N : R3 → C whose action is given by:

φ(~x) =
2(x1 + ix2)

2x3 + i(|~x|2 − 1)
(67)

to construct our electromagnetic 2-form on the
physical space:

F = −
√

aφ∗ε = −
√

a
2πi

d(z ◦ φ) ∧ d(z̄ ◦ φ)

(1 + |z ◦ φ|2)2

(68)
where we’ve introduced a factor

√
a for dimen-

sional reasons.

⇒ F = −
√

a
2πi

dφ ∧ dφ̄

(1 + |φ|2)2 (69)

The "dual" map θ : R3 ⋃{∞} → C
⋃{∞} with

orthogonal level lines which "generates" ∗F
turns out to be given by a cyclic permutution
of coordinates in φ:

θ(~x) =
2(x2 + ix3)

2x1 + i(|~x|2 − 1)
(70)

⇒ ∗F =
√

aθ∗ε =

√
a

2πi
dθ ∧ dθ̄

(1 + |θ|2)2 (71)

It’s not too hard to check that this expres-
sion satisfies Maxwell’s equations dF = 0 and
d ∗ F = 0. Using the commutativity of exterior
derivative and pullback we get:

dF = d(−
√

aφ∗ε) = −
√

aφ∗(dε) = 0 (72)

d ∗ F = d(
√

aθ∗ε) = −
√

aθ∗(dε) = 0 (73)

where the last equality in both equations fol-
lows from the fact that dε = 0, since dε is a
3-form on a 2-dimensional space, which makes
it automatically zero. Using dφ = ∂µφdxµ and
(α ∧ β)µν = αµβν − ανβµ we can express the
components of F as:

Fµν = −
√

a
2πi

∂µφ∂νφ̄− ∂νφ∂µφ̄

(1 + |φ|2)2 (74)

For reasons of convenience and to be consis-
tent with the notation of the last section, we
abbreviate this expression by defining:

g(φ, φ̄) = −
√

a
2πi

1
(1 + |φ|2)2 (75)

Thus, we can now write:

Fµν = g(φ, φ̄)(∂µφ∂νφ̄− ∂νφ∂µφ̄) (76)

Since we are interested in the field lines, we
must extract ~E and ~B fields from an electromag-
netic 2-form (and its dual). We already showed
how to do this in the previous section. To avoid
having to take time derivatives (since, so far,
we’ve said nothing about time dependence of
φ and θ) we utilize following formulas.

Bi =
1
2

εijkFjk Ei = −
1
2

εijk(∗F)jk (77)

Using the expressions for F and ∗F and the
relation (~a×~b)i = εi

kla
kbl we find as expected:

~B = −g(φ, φ̄)∇φ̄×∇φ (78)

~E = −g(θ, θ̄)∇θ̄ ×∇φ (79)

Finally, by expressing everything in terms of di-
mensionless spacetime coordinates (T, X, Y, Z)
related to the physical ones by a factor λ we
can compute the expressions (78) and (79) to
find the Hopf-Ranada fields:

~B(~r, 0) =
4
√

aλ2

π(1 + |~r|2)3 [2(Y− XZ)êx−

− 2(X + YZ)êy + (X2 + Y2 − Z2 − 1)êz] (80)

~E(~r, 0) =
4
√

aλ2

π(1 + |~r|2)3 [(1+X2−Y2−Z2)êx+

+ 2(XY− Z)êy + 2(Y + XZ)êz] (81)

10
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VII. Time evolution and

conserved quantities

We close this treatment by making a few
sketchy remarks about the physical aspects
of these solutions. The fields (80) and (81)
we found represent the intial time values of
a Cauchy problem. Despite the fact that the
evolution of a function φ which "generates" our
fields is governed by a highly non-linear equa-
tion stemming from lagrangian (51), the evolu-
tion of fields can be found fairly painlessly
by Fourier decomposition. We will not go
through the procedure here (the derivation can
be found in [11]). It suffices for our purposes
to note that the time dependent functions φ, θ
can be written in closed form (using our di-
mensionless coordinates):

φ(~r, t) =
(AX− TZ) + i(AY + T(A− 1))
(AX + TZ) + i(A(A− 1)− TY)

(82)

θ(~r, t) =
(AY + T(A− 1)) + i(AX + TZ)
(AX− TZ) + i(A(A− 1)− TY)

(83)
where A = 1

2 (X2 + Y2 + Z2 − T2 + 1). This
time evolution is depicted in Figure 8. Both
magnetic and electric field lines are pictured.
At time t = 0, the Hopf fibration can be clearly
recognized. Special straight fibres correspond-
ing to the south pole of S2 under projection
are aligned along the x and y axes and their
cross product determines the direction of prop-
agation. The same sets of fibres are shown
at times t = 0.5 and 1. The fibration can be
seen to locally rotate about the z axis as well as
expanding and deforming, with the structure
remaining centred on the centre of energy of
the knot. The rotation and deformation seen
at these times slows down at subsequent times.
The electric and magnetic field lines remain
orthogonal at all times as required by construc-
tion.
Noether currents corresponding to spacetime
symmetries can also be computed. The evolu-
tion of the energy density 1

2 (
~E2 + ~B2) is given

in the Figure 9.

Figure 8: Time evolution of Hopf-Ranada field. Taken
from [7].

As we can see, it is initially spherical and
then subsequently propagates along the z-
axis and expands like an "opening umbrella".
When rescaled by the energy density, momen-
tum ~E × ~B and angular momentm density

11
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~r× (~E× ~B) can expressed as:

~P =

(
0, 0,

1
2

)
~L =

(
0, 0,

1
2

)
(84)

Figure 9: Time evolution of the energy density. Taken
from [7].

But among conserved quantities, there is
one which is perhaps the most interesting to

us, given the topological nature of our solu-
tion. It is called helicity, but it is not to be
confused generally with the helicity as used
in elementary particle physics which measures
the projection of spin along the axis of motion,
although in this case it can be related to it (see
[11]). What concerns us here is the connection
between topological and physical properties.
In section V we made a point that if our field
lines had a linking number (Hopf index) γ, and
if the functions φ and θ evolved continuously,
then the linking number would stay the same
for all times (since the field lines could neither
untie nor tie further without violating single-
valuedness of φ and θ). Therefore, perhaps
unsurprisingly, Hopf index is a (topological)
constant of the motion and consequently, fields
that start out in one homotopy class remain
in it forever. But, remarkably, this constant
can be shown to be equal (up to a dimensional
constant) as an integral over physical field vari-
ables, namely helicity.
We’ve already shown that the pullback of a
volume form of S2 by φ is a closed form
(d(φ∗ε) = 0). But because of the cohomological
properties of S3 it is also exact and, therefore,
there exists a function g such that φ∗ε = dg.
According to Whitehead’s theorem [10], a Hopf
index of a mapping φ : S3 → S2 can be ex-
pressed as the following integral:

γ(φ) =
∫

S3
g ∧ φ∗ε (85)

After expressing our 2-form in terms of com-
ponents in stereographic coordinates as before:

φ∗ε =
1
2
(φ∗ε)ijdxi ∧ dxj (86)

and defining a vector~b as:

bi =
1
2

εijk(φ
∗ε)jk (87)

we can, after some manipulation write:

γ(φ) =
∫

d3r(~a ·~b) (88)

where ~a is defined by ~b = ∇×~a. It is clear
from our previous constructions that~b and ~a,
as we defined them here, differ from magnetic
field ~B and vector potential ~A only by a factor
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of
√

a, which is just a constant, introduced for
dimensional reasons. Therefore:

hm =
∫

d3r~A · ~B = γ(φ)a (89)

and analogously:

he =
∫

d3r~C · ~E = γ(θ)a (90)

where hm and he are electric and magnetic he-
licities and ~E = ∇× ~C. Therefore, helicity, as
a physical property, is directly related to the
Hopf index (linking number) which makes it
both quantized (for "admissible fields") and
conserved.
The name "helicity" comes from fluid dynamics
where it is defined as measuring a projection
of vorticiy ∇ × ~v on velocity ~v. In our case,
magnetic field plays the role of vorticity of vec-
tor potential. Hopf-Ranada solution clearly has
both helicities 1 (we forget dimensions for the
moment). Using this "basic" solution, solutions
with arbitrary helicities he, hm ∈ Z can easily
be constructed by using, instead of φ and θ
defined in (67) and (70), their m-th and n-th
powers φn and θm.

VIII. Conclusion

To do justice to Hopf fibration, both in the con-
text of pure mathematics and its physical ap-
plications, is impossible in a somewhat limited
treatment like we attempted in this seminar.
Instead, what we tried to do is to motivate the
consideration of Hopf fibration in physics by
a simple and familiar example and then to in-
troduce the minimal mathematical apparatus
needed for us to appreciate and use this beauti-
ful structure to construct some surprising solu-
tions of the well known equations of classical
electrodynamics. We’ve sketched how Hopf fi-
bration fits in the broader context of the theory
of fibre bundles and tried to exhibit its geomet-
rical structure. Then we used it (and also some
of Hopf’s broader ideas about mappings) to
show that there is a class of topologically non-
trivial solutions of Maxwell’s equations and
we explicitly constructed simplest of these. We
tried to highlight the most important aspects,

but still much more can be said, given the ex-
panding interest in these solutions following
the article of Irvine [7]. Among the things
we ignored are the important questions of ex-
perimental realizations and also, the manifold
generalizations of these solutions that were
discevered through the years. In the end, we
apologize for the somewhat misleading title,
since to even scratch the surface of possible ap-
plications of Hopf fibration in physics would
require a much bigger seminar.
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