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Tidal work, or tidal heating, is an interesting phenomenon in planet-moon systems in which tidal
flexing by the planet on a moon pumps energy into the moon, which rises tides and is dissipated
as heat. It is the source of geological activity on Jupiter’s moon Io, as well as source of the heat
required to keep oceans on Jupiter’s Europa and Saturn’s Enceladus liquid. Here, we use quasilocal
and pseudotensor approaches to theoretically assess tidal work.

I. INTRODUCTION

Tides have been an interesting phenomenon to people
long before there was an explanation. The aboriginal
Yolngu people correctly noticed that the tides were
related to the position of the Moon. However, they
attributed this to Moon filling with water and emptying
out.1 The first correct explanation for tides came from
Newton.2 Newton attributes tides to the tidal forces.

Tidal forces are apparent forces an observer attached
to the center of a body notices in the presence of a
non-uniform external gravitational field, e.g. a moon,
a parent planet or star. These forces have an apparent
effect of stretching the body in one direction and
squeezing it in the other.

Numerous effects occur under the stretching and
squeezing of tidal forces. Firstly, it causes tides, i.e.
two tidal bulges, under the presence of a liquid on the
surfaces of the body because the liquid is displaced easily
compared to the rigid surface of a body. Secondly, it can
create vortexes in the presence of a layer of liquid under
the surface of the body which dissipate energy as heat
and can produce magnetic fields in the body if the liquid
is ferromagnetic, as is the case for Earth. The dissipation
into heat also occurs as the body rotates under the tidal
bulges and it slows down or speeds up the rotation of the
body until tidal locking is achieved, which is a state in
which the same side of the moon faces the parent planet
all the time. Finally, the tidal forces can be large enough
to cause disintegration of the object if the object is at
the Roche limit, which created Saturn’s rings.3

The tidal forces can input or extracts energy from the
system and that is called tidal work. In this work we
study tidal work as the change of mass-energy of the
system due to changes of mass distribution of the object
in a non-uniform external gravitational field.

II. PREPARATION

In order to derive an expression for tidal work we will
consider isolated body and an external gravitational field,
i.e. external universe curvature. This can represent a far-
enough-away body and a planet, a star or a black hole.
Isolated means that the radius of curvature of external
universe R and the length scale on which it changes L

are a lot bigger than the size of the body R. That is,
R/R � 1 andR/L � 1. We will also consider the system
to be slow-moving, which means that the timescale T of
changes to mass-energy M and current moments is much
larger than the body, i.e. R/T � 1. We are using natural
units such that G = c = 1.

Furthermore, to derive an expression for tidal work we
examine the rate of change of mass-energy dM/dt and
identify the term which corresponds to tidal work. In
order to do that we use the following expression4:

dM

dt
= −

∮
d2Sj t

0j (1)

where tµν is an energy-momentum pseudotensor of
gravitational field and d2Sj = njr

2dΩ is the surface
element of 2-sphere of radius r such that r/R � 1,
r/L � 1 and M/r � 1. This means that the frame
of reference we are using is a local asymptotic rest frame
of the isolated body.

Immediately a question is raised. Since tµν is a
pseudotensor, does the choice of mathematics we use to
arrive at the expression for (1) impact the expression?
In other words, is the expression for dM/dt ambiguous?
The answer to this question is yes, but we will argue
that the expression for the tidal work part of it is
unambiguous.

A related problem is also present. Since we are not
working with asimptotically flat spacetime here, but only
locally asimptotically flat spacetime, the mass-energy
does not have a precisely defined value. In fact4, the
value of mass-energy is defined up to ∆M ∼ QijE ij .
Here Eij = Ri0j0 is the tidal field of external universe
and Qij is the mass quadrupole moment of the isolated
body defined as:

Qij =

∫
d3x ρ

(
xixj −

1

3
r2
)

Lastly, we will expand the metric gab in a dimensionless
parameter ε around Minkowski metric ηab, with signature
convention (−, +, +, +), to get:

gαβ = ηαβ + εhαβ + ε2kαβ +O(ε3) (2)

where hab contains terms linear in the parameters M , Q
and E while kab contains products of any two of them.
All parameters will be considered linear in ε.
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We present here a derivation of tidal work on the
body by utilising Einstein pseudotensor, known also as
canonical pseudotensor. It is derived using formula
for energy-momentum tensor of a classical field with
Lagrangian density L and field variable χ which can be
a tensor of any rank5:

T ν
µ =

∂L

∂∂νχ
∂µχ− Lδ νµ (3)

The variable is the metric tensor gab and the
Lagrangian L is6:

L =
1

16π

√
−g gαβ

(
ΓγαβΓσγσ − ΓσαγΓγβσ

)
where g is the determinant of the metric.

Therefore equation (3) becomes:7

√
−g t νµ =

∂L

∂∂νgαβ
∂µgαβ − Lδ νµ (4)

The Einstein pseudotensor is therefore:

√
−g t νµ =

1

16π

[(
Γναβ − δ νβ Γσασ

)
∂µ
(
gαβ
√
−g
)
− δ νµ L

]
III. CALCULATION

To get the accuracy of ε2 we need to expand the metric
to the order ε because we have

√
−g gab terms only. We

therefore have:
√
−g = 1 +

1

2
εh+O(ε2) (5)

where h = hαα.

gαβ = ηαβ − εhαβ (6)

We thus have:

√
−g t νµ =

ε2

16π

[
1

2
∂µh ∂αh

να − 1

4
∂µh ∂

νh

− ∂µhαβ ∂βhνα +
1

2
∂µh

αβ ∂νhαβ

− 1

4
∂µh ∂

νh+
1

2
∂αh ∂µh

αν − δ νµ
(

1

2
∂γh ∂αh

γα

− 1

4
∂γh ∂

γh− 1

2
∂γhασ∂σhαγ +

1

4
∂γhασ ∂γhασ

)]
Now we introduce the de Donder gauge:

∂νh
µν =

1

2
∂µh (7)

This reduces the equation to:

√
−g t νµ =

ε2

16π

[
− ∂µhαβ ∂βhνα +

1

2
∂µh

αβ ∂νhαβ

− 1

4
∂µh ∂

νh+
1

2
∂αh ∂µh

αν

+ δ νµ

(
1

2
∂γhασ∂σhαγ −

1

4
∂γhασ ∂γhασ

)]

Furthermore, we only need to evaluate the
√
−g t j0

terms. In order to evaluate these terms we need the
following identities:8

h00 = 2
M

r
+ 3
Qijxixj

r5
− Eijxixj (8)

h0j = −2
Q̇jaxa

r3
− 10

21
Ėabxaxbxj +

4

21
Ėjaxar2 (9)

hij = δij

(
2
M

r
+ 3
Qklxkxl

r5
− Eklxkxl

)
(10)

We will ignore all terms except EQ̇ and QĖ because
only they contribute to tidal work. This can easily
be seen since the tidal work must arise through
coupling of the quadrupole moment and an external tidal
field. Dimensional analysis fixes the choice to the two
mentioned ones.

First we notice that, because we are calculating the
non-diagonal t j0 term, anything proportional to δ νµ
vanishes. This means that equation for

√
−g t j0 is

reduced to:

√
−g t j0 =

ε2

16π

(
− ∂0hαβ ∂βhjα +

1

2
∂0h

αβ ∂jhαβ

− 1

4
∂0h ∂

jh+
1

2
∂αh ∂0h

αj
)

Furthermore, because we only consider first time
derivatives of E and Q with no derivatives of coordinates
we see that ∂0h

0j will be ignored and our equation
reduces to:

√
−g t j0 =

ε2

16π

(
− ∂0hkl ∂lhjk +

1

2
∂0h

00 ∂jh00

+
1

2
∂0h

kl ∂jhkl −
1

4
∂0h ∂

jh+
1

2
∂kh ∂0h

kj
)

Now, because hij ∝ δij we have a further reduction
(we drop the Einstein summation convention):

√
−g t j0 =

ε2

16π

(
− ∂0hjj ∂jhjj +

1

2
∂0h

00 ∂jh00

+

3∑
i=1

1

2
∂0h

ii ∂jhii −
1

4
∂0h ∂

jh+
1

2
∂jh ∂0h

jj

)
Finally, because hjj = h00 then h = 2h00 and, because

we thus only have ∂0h
00∂jh

00 combinations our equation
becomes:

√
−g t j0 =

ε2

16π
∂0h00∂

jh00 (11)

After some algebra (see Appendix A) we have:

√
−g t j0 =− ε2

4π

[
3

2
QjaĖbc

xaxbxc

r5

+
3

2
Q̇abEjc

xaxbxc

r5
− 15

4
QabĖbc

xaxbxcxdxj

r7

]
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Because we already have ε2 we can set
√
−g = 1. Since

our choice of region was such that tidal field is constant
and multipole moments do not vary spatially we are left
with solving the integrals of the form:9∮

dΩna1na2 . . . nap =
4π

2p+ 1
δ(a1 a2 . . . δap−1, ap)

Finally, setting ε = 1, we get:

dM

dt
= −1

2
Ejk

dQjk

dt
+

d

dt

(
3

10
EjkQjk

)
(12)

IV. DISCUSSION

Calculations similar to the presented one are possible
for different choices of pseudotensors. For example,
a calculation using the Landau-Lifshitz pseudotensor,
related to Einstein pseudotensor as:

(−g)t[LL]µν =(−g)gµρt[E] νρ

− 1

16

gρα√
−g
(√
−g gµρ

)
×

∂λ
[
−g
(
gναgσλ − gσαgνλ

)]
yealds:

dM

dt
= −1

2
Ejk

dQjk

dt
+

d

dt

(
− 1

10
EjkQjk

)
We see that different pseudotensors yield different final

forms. The question remains, is this a problem? The
answer is no, because the interpretations of each of the
terms is different.

The first term represents the change in self-energy of
the isolated body. That is a physical observable and is
therefore unchanged6 regardless of which pseudotensor
we use. It is unambiguous.

The second term represents the change in interaction
energy. It is easy to see that, since the only variables
in the system are Q, E and M , the interaction energy
must be of the form QjkEjk. It is also easy to see why

there is no QjkĖjk term, since tidal force does no work if
there is no displacement on the body. The change in the
interaction energy is a reversible term, i.e. it is the full
derivative in time coordinate. We can think of it as the
potential energy which is the reason why its ambiguity is
not a problem, the potential energy is always ambiguous.

V. CONCLUSION

We managed to derive an expression for tidal work
on an isolated body in a slow-changing external
gravitational field. We also made physical arguments as
to the derived terms and their physicality and showed
that the tidal work part is unambiguous.

However, we only considered slow-moving and isolated
body and thus dropped the higher order terms. We
leave higher-order approximations for further research.
Further research is also needed in systems with quickly-
varying fields such as neutron star binaries and mergers
and, of course, black holes.

Lastly, experimental methods measuring tidal heating
need various models of the body10 and are presently
inconsistent with measurements made on Jupiter’s moon
Io.11

VI. APPENDIX

A. Calculation of
√
−gt j

0

We substitute the h00 to begin the calculation:

√
−g t j0 =

ε2

16π
∂0h00∂

jh00

=
ε2

16π
∂0

(
2
M

r
+ 3
Qabxaxb

r5
− Eabxaxb

)
×

× ∂j
(

2
M

r
+ 3
Qklxkxl

r5
− Eklxkxl

)
First we ignore the M term and distribute the time
derivative to Q and E while distributing the spatial
derivative to x:

√
−g t j0 =

ε2

16π

(
3
Q̇abxaxb

r5
− Ėabxaxb

)
×

×
[
3
Qkl
r5

(
δkjxl + δljxk − 5

xkxlxj

r2

)
− Ekl

(
δkjxl + δljxk

) ]
Now renaming indexes k and l properly:

√
−g t j0 =

ε2

16π

(
3
Q̇abxaxb

r5
− Ėabxaxb

)
×

×
[
3
Qkl
r5

(
2δkjxl − 5

xkxlxj

r2

)
− 2Eklδkjxl

]
We multiply out but only keep the terms Q̇E and ĖQ, we
also contract over j:

√
−g t j0 =

ε2

16π

(
−6Q̇abEjl

r5
xaxbxl −

6QjlĖab
r5

xaxbxl

+
15QklĖab

r7
xaxbxkxlxj

)
Finally, proper renaming of k, l, a and b and extracting
−4 from the parentheses we get the result.
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