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1 Introduction
The aim of this paper is to provide an introduction into
the theory of characteristic classes and its application in
theoretical physics. However, first, a brief introduction
into cohomology theory and fibre bundles is presented.
Our interest is the study of topological properties of
manifolds and its fibre bundles, that is the properties
of these objects as a whole, which are then related to
local properties coming from differential geometry. We
mainly follow [1] and [2] with the help of the other ref-
erences in certain sections as specifically noted.

1.1 Basic topological definitions
We begin by introducing a few definitions we will need
in this exposition.

Definition 1.1 Define the following.

(a) A relation R defined in a set X is a subset of X2:
R ⊆ X2. If a point (a, b) ∈ X2 is in R then we may
write aR b.

(b) A relation is called an equivalence relation ∼ if
it is:

(i) reflective: a ∼ a,
(ii) symmetric: if a ∼ b, then b ∼ a,
(iii) transitive: if a ∼ b and b ∼ c, then a ∼ c.

Definition 1.2 Let a set X have a defined equivalence
relation ∼. Then, we have a partition of X into mu-
tually disjoint subsets called equivalence classes. An
equivalence class [a] is then:

[a] = {x ∈ X |x ∼ a}.

It can be shown that if a ∼ b, then [a] = [b], that is, an
equivalence class does not depend on its representa-
tive. The family of all classes is called the quotient
space, X/ ∼.

Definition 1.3 Define the following.

(a) A topological space X is connected if it cannot be
written as X = X1∪X2 for X1 and X2 both disjoint
and nonempty.

(b) A topological space X is arcwise connected if, for
any points x, y ∈ X, there exists a continuous map
f : [0, 1]→ X such that f(0) = x and f(1) = y.

(c) A loop in a topological space X is a continuous
map f : [0, 1]→ X such that f(0) = f(1).

(d) A topological space X is simply connected if any
loop in X can be continuously shrunken to a point.

Definition 1.4 Let X and X̃ be connected topologi-
cal spaces. X̃ or (X̃, p) is called a covering space
if p : X → X̃ is a continuous map such that:

(i) p is a surjection,

(ii) ∀x ∈ X | ∃U ⊆ X, x ∈ U connected and open,
such that p−1(U) is a disjoint union of open sets
in X̃, each one homeomorphically mapped onto U
by p.

If X̃ is simply connected then it is called the universal
covering space of X.

1.2 Topological invariants
In topology the equivalence of two spaces is defined by
continuous deformations; if one can be continuously de-
formed into the other it is said they are topologically
equivalent. Therefore we define the notion of homeo-
morphisms.

Definition 1.5 Let X1 and X2 be topological spaces. A
map f : X1 → X2 is a homeomorphism if it is con-
tinuous and has a continuous inverse f−1 : X2 → X1.
It can be shown that a homeomorphism is an equiva-
lence relation. If such a map exists, X1 and X2 are
said to be homeomorphic or topologically equivalent.

We are now interested in characterizing the equivalence
classes of homeomorphisms. It is highly nontrivial to
explicitly construct homeomorphisms between topolog-
ical spaces in general, therefore we construct quanti-
ties conserved under homeomorphisms called topolog-
ical invariants which if different indicate the spaces
in question are not homeomorphic. The complete set
of topological invariants, if known, would specify the
equivalence classes fully. One of the most popular topo-
logical invariants is the Euler characteristic which we
define now.

Definition 1.6 Let X be a subset of R3, which is
homeomorphic to a polyhedron K. Then the Euler
characteristic χ(X) is defined by:

χ(X) ≡ v − e+ f,

where v, e and f are the number of vertices, edges and
faces, respectively.

1



2 Homology and Cohomology

As we have seen, topological invariants are extremely
important in topologically classifying spaces. We now
build on the idea of Euler characteristics by introduc-
ing the homology group from which it will be trivial to
read out the Euler characteristic. On the other hand
we have manifolds and its fibre bundles on which differ-
ential forms are studied. In analogy with homology we
define the cohomology of forms. The relation between
homology and the cohomology of forms comes from de
Rham’s theorem stated later. Additionally to [1] and
[2], in this section [3] is used.

2.1 Preliminaries from group theory

Before we can delve into homology, a few definitions
and properties from group theory are necessary.

Definition 2.1 Let G be a group and H be a subgroup
of G. If g, g′ ∈ G we introduce an equivalence relation
∼ such that g ∼ g′ if g′ = gh, h ∈ H. The equivalence
class [g] = gH = {gh |h ∈ H} is called a left coset of
H. The quotient space G/H is a group if and only
if H is a normal subgroup of G, that is if

gHg−1 = H, ∀g ∈ G.

Definition 2.2 Let f : G1 → G2 be a homomorphism.
Define the:

(a) kernel of f :

ker f = {x ∈ G1 | f(x) = 0},

a subgroup of G1;

(b) image of f :

im f = {x = f(g1) | f(G1) ⊆ G2,∀g1 ∈ G1},

a subgroup of G2.

Theorem 2.1 (Fundamental theorem of homo-
morphisms) Let f : G1 → G2 be a homomorphism.
Then,

G1/ ker f ∼= im f.

Definition 2.3 Let G be a group. G is called finitely
generated if every element of G can be written as a
group operation combination of finitely many elements
of a finite set S ⊆ G, with elements of S the genera-
tors of the group.

Definition 2.4 If an Abelian group G is finitely gen-
erated by r linearly independent elements, G is called a
free Abelian group of rank r.

Definition 2.5 A cyclic group G is an Abelian group
generated by one element x:

G = {0,±x,±2x, . . . }.

If nx 6= 0, ∀n ∈ Z−{0}, G is an infinite cyclic group,
otherwise it is a finite cyclic group. Any infinite cyclic
group is isomorphic to Z and any finite cyclic group is
isomorphic to Zk for some 1 < k ∈ N, otherwise trivial.

2.2 Chains, cycles and boundaries

Just as when we considered the Euler characteristic we
must now construct polyhedrons homeomorphic to the
topological space (manifold) we want to classify. To
do this we define the building blocks of a polyhedron –
simplexes in Euclidean space first and then generalize
to arbitrary manifolds.

Definition 2.6 Let points p0, . . . , pr be geometrically
independent points in Rm with m ≥ r. An r-simplex
σr = 〈p0 . . . pr〉 is then:

σr =

{
x ∈ Rm

∣∣∣∣x =

r∑
i=0

cipi, ci ≥ 0,

r∑
i=0

ci = 1

}
.

An oriented r-simplex (p0 . . . pr) is an equivalence
class of even permutations of {p0, . . . , pr} in 〈p0 . . . pr〉.
Therefore,

(pi0 . . . pir ) = sgnP (p0 . . . pr),

where sgnP is the sign of the permutation of
{pi0 , . . . , pir}.

Definition 2.7 Let K be a set of a finite number of
simplexes in Rm. K is a simplicial complex if the
following are satisfied:

(i) if σ ∈ K and σ′ ≤ σ then σ′ ∈ K;

(ii) if σ, σ′ ∈ K then either σ ∩ σ′ = ∅ or both
σ ∩ σ′ ≤ σ and σ ∩ σ′ ≤ σ′.

It is time to define chains and its subgroups: cycles and
boundaries. These are the key ingredients needed in
defining the homology group later.

Definition 2.8 The r-chain group Cr(K) of a sim-
plicial complex K is a free Abelian group generated by
Ir oriented r-simplexes in K. Cr(K) is defined to be:
{0}, ∀r > dimK.1 Elements c ∈ Cr(K) are called r-
chains:

c =

Ir∑
i=0

ciσr,i, ci ∈ Z.

1The element 0 is understood as the identity element of an additive group, so {0} is the trivial group.
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Definition 2.9 If σr = (po . . . pr) is an oriented r-
simplex, then we define the boundary ∂rσr of σr as
an (r − 1)-chain:

∂rσr ≡
r∑
i=0

(−1)i(p0 . . . pi−1pi+1 . . . pr), ∀r > 0,

∂0p0 ≡ 0.

Definition 2.10 Define the boundary operator ho-
momorphism ∂r : Cr(K)→ Cr−1(K) as a linear opera-
tor:

∂rc =
∑
i

ci∂rσr,i ∈ Cr−1(K), c =
∑
i

ciσr,i ∈ Cr(K).

The boundary operator is nilpotent, that is,

∂r ◦ ∂r+1 = 0.

Therefore the boundary operator defines an exact se-
quence called the chain complex C(K):

0→ Cr(K)
∂r−→ Cr−1(K)

∂r−1−−−→ · · · ∂1−→ C0(K)
∂0−→ 0.

Moving from Euclidean space to general m-dimensional
manifolds, we have.

Definition 2.11 An r-simplex on a m-
dimensional manifold (also called a singular r-
simplex) M is the equivalence class of pairs sr =
[(σr,Θ)], where σr is the Euclidean r-simplex and

Θ : O →M, σr ⊆ O ⊆ Rr

a smooth map over an open neighbourhood O of σr,2
defined by the equivalence relation:

(σr,Θ) ∼ (χ(σr),Θ
′) ⇔ Θ = Θ′ ◦ χ,

for some affine transformation χ of the Euclidean sim-
plex.

Definition 2.12 A linear combination of r-simplices
in M with real coefficients is an r-chain on an m-
dimensional manifold (or singular r-chain) c. The
space of all chains c is the (singular) r-chain group
Cr(M) on M .

Definition 2.13 The boundary operator on a
manifold3 ∂ : Cr(M) → Cr−1(M) is defined by the
Θ map as:

∂c = ∂

(∑
i

cisr,i

)
≡
∑
i

ci∂sr,i,

∂sr = ∂(Θ(σr)) ≡ Θ(∂σr).

As in the Euclidean case it too is nilpotent:

∂2 = 0.

Definition 2.14 LetM be an m-dimensional manifold
and c ∈ Cr(M), then if

∂c = 0,

c is called an (singular) r-cycle. The set of all cycles
of a given r-chain is denoted Zr(M).

Zr(M) ≡ ker ∂r = {c ∈ Cr(M) | ∂c = 0}

is a subgroup of Cr(M) and is called the (singular) r-
cycle group.

Definition 2.15 Let c ∈ Cr(M), then if there exists
some d ∈ Cr+1(M) such that:

c = ∂d,

c is called an (singular) r-boundary. The set of all
boundaries of a given r-chain

Br(M) ≡ im ∂r+1

= {c ∈ Cr(M) | ∃d ∈ Cr+1(M); ∂d = c}

is a subgroup of Cr(M) called the (singular) r-
boundary group.

Theorem 2.2 If Zr(M) is the r-cycle group and
Br(M) the boundary group then:

Br(M) ⊆ Zr(M) ⊆ Cr(M).

2.3 Homology group

All the groups we have defined so far: Br(M), Zr(M)
and Cr(M) fail to be topological invariants. Therefore,
we must construct, out of these, a new group that will,
in fact, be a topological invariant. This turns out to be
the homology group defined below.

Definition 2.16 LetM be an m-dimensional manifold
and Zr(M) and Br(M) the r-cycle group and the bound-
ary group, respectively, then

Hr(M) ≡ Zr(M)/Br(M), 0 ≤ r ≤ m

is the r-th homology group4. For r > m and r < 0
we define the homology group to be Hr(M) ≡ {0}.

2It is worth noting that this map may not be one-to-one in general and is thus not a triangularization of M , hence the term singular.
3The index of the boundary operator ∂r and r-chain cr will be omitted wherever possible as it is usually implicit from context, this
notation choice is purely so the analogy with differential forms is more elegant since the exterior derivative operator is conventionally
written without an index, as will be shown below.
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As we have seen in definition 1.2 Hr(M) is a set of
equivalence classes:

Hr(M) = {[z] | z ∈ Zr(M)},

defined by the equivalence relation:

z ∼ z′ ⇔ z − z′ ∈ Br(M).

The equivalence class [z] is called a homology class
and z and z′ are said to be homologous to each other.

Theorem 2.3 Homology groups are topological invari-
ants.

Definition 2.17 The r-th Betti number br(M) is
the dimension of the r-th homology group,

br(M) ≡ dimHr(M).

Theorem 2.4 (Euler-Poincaré) If M is an m-
dimensional topological space then:

χ(M) =

m∑
r=0

(−1)rbr(M),

where χ(M) is the Euler characteristic from definition
1.6.

2.4 Stokes theorem and the de Rham
cohomology group

We now move our focus to the calculation of integrals.
As we know, only integrals of volume forms ω(x) on
an m-dimensional manifold (maximal forms5, forms of
degree m), are well defined. Instead of integrating over
the entire manifold we can integrate over an r-chain
c ∈ Cr(M), however as before this means that we can
only integrate r-forms. To define such an object our
aim is to define it via integrals over simplices in Rr.
Definition 2.18 Let c ∈ Cr(M), ω ∈ Ωr(M), σr be
an oriented r-simplex in Rr and Θ : σr 7→ Θ(σr) ≡ sr
be the map defining singular r-simplices in M , then we
define the integral of an r-form on M over an r-
chain in M :∫

c

ω =

∫
Σicisr,i

ω =
∑
i

ci

∫
sr,i

ω =
∑
i

ci

∫
Θ(σr,i)

ω

=
∑
i

ci

∫
σr,i

Θ∗ω

=
∑
i

ci

∫
σr,i

f(x1, . . . , xr) dx1 ∧ . . . ∧ dxr

=
∑
i

ci

∫
σr,i

f(x) drx,

as Θ∗ω is an r-form in Rr.

Definition 2.19 If c ∈ Cr(M) and ω ∈ Ωr(M), then
we define an inner product ( , ) : Cr(M)×Ωr(M)→ R
as:

c, ω 7→ (c, ω) ≡
∫
c

ω.

Due to the additivity of an integral with respect to the
domain of integration and the linearity of the operator,
this inner product is bilinear,

(c1+c2, ω1+ω2) = (c1, ω1)+(c2, ω2)+(c1, ω2)+(c2, ω1),

and non-degenerate with respect to the chain.

Now that we have defined integration over chains inM ,
we can state one of the most important theorems of this
paper.

Theorem 2.5 (Stokes) Let ω ∈ Ωr−1(M) and c ∈
Cr(M), then: ∫

c

dω =

∫
∂c

ω.

Or, written using the inner product just defined:

(c, dω) = (∂c, ω).

Therefore, in the sense of this inner product, the exte-
rior derivative operator d and the boundary operator ∂
are mutually adjoint.

Definition 2.20 Let M be an m-dimensional mani-
fold. Defined are the:

(a) r-th cocycle group:

Zr(M) ≡ ker dr = {ω ∈ Ωr(M) | dω = 0},

(b) r-th coboundary group:

Br(M) ≡ im dr−1

= {ω ∈ Ωr(M) | ∃ψ ∈ Ωr−1; dψ = ω}.

Since d2 = 0 it follows that Br(M) ⊆ Zr(M). It can
also be shown that:

(i) if ω ∈ Zr(M) and ψ ∈ Zs(M), then ω ∧ ψ ∈
Zr+s(M);

(ii) if ω ∈ Zr(M) and ψ ∈ Bs(M), then ω ∧ ψ ∈
Br+s(M);

(iii) if ω ∈ Br(M) and ψ ∈ Bs(M), then ω ∧ ψ ∈
Br+s(M).

4It is implicit here that the coefficients of the r-chain are real numbers since our homology group is over a manifold, that is
Hr(M) = Hr(M ;R). However in general this need not be the case as the coefficients can be Z or even Z2 elements depending on
the space in question.

5Volume forms other than being maximal, must also be globally defined and nonvanishing everywhere on M .
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Definition 2.21 The r-th de Rham cohomology
group is the quotient group of the r-th cocycle group
by the r-th coboundary group:

Hr(M) ≡ Zr(M)/Br(M).

For r > m and r < 0 we define the homology group to
be trivial, Hr(M) ≡ 0.

Just as homology, cohomology too is a set of equivalence
classes (cohomology classes):

Hr(M) = {[ω] |ω ∈ Zr(M)},

with the equivalence relation:

ω ∼ ω′ ⇔ ω − ω′ ∈ Br(M).

In complete analogy, ω and ω′ are called cohomologous.
It is not difficult to see the meaning of the 0-th cohomol-
ogy group H0(M). Since all forms of negative degree
are defined as 0 this implies that H0(M) = Z0(M), so
we are looking for all 0-forms (scalar functions) on M
whose gradient is 0. These are of course the constant
functions of which there are R (every function is its
own class since B0(M) = 0), therefore for n connected
components there are n times R classes and the 0-th de
Rham cohomology group is:

H0(M) ∼= R⊕ · · · ⊕ R︸ ︷︷ ︸
n connected components

.

Next is to show that the inner product from definition
2.19 induces an inner product Λ between elements of
Hr(M) and Hr(M).

Definition 2.22 Let [c] ∈ Hr(M) and [ω] ∈ Hr(M).
Define the inner product Λ : Hr(M)×Hr(M)→ R:

Λ ([c], [ω]) ≡ (c, ω) =

∫
c

ω.

This product is well defined due to Stokes’ theorem:

(c+ ∂c′, ω) = (c, ω) + (c′, dω) = (c, ω), c′ ∈ Cr+1(M),

(c, ω + dψ) = (c, ω) + (∂c, ψ) = (c, ω), ψ ∈ Ωr−1(M),

since dω = 0 and ∂c = 0 as they are elements of a
cohomology and homology class, respectively.

Theorem 2.6 (de Rham) If M is a compact mani-
fold, then Hr(M) and Hr(M) are finite dimensional.
Inner product Λ is then bilinear and non-degenerate.
Therefore, Hr(M) ∼= Hr(M) are dual vector spaces.

Because of this isomorphism the dimensions are the
same:

br(M) ≡ dimHr(M) = dimHr(M) ≡ br(M),

so the Betti number is the same with upper or lower
indices and the Euler characteristic:

χ(M) =

m∑
r=0

(−1)rbr(M).

The last point to make about the de Rham cohomology
group is the relation between Hr(M) and Hm−r(M)
given by the following.

Definition 2.23 (Poincaré duality) Define an inner
product 〈 , 〉 : Hr(M)×Hm−r(M)→ R,

〈ω, η〉 ≡
∫
M

ω ∧ η.

This product is bilinear and non-singular and so defines
the duality Hr(M) ∼= Hm−r(M).

This means that the Betti numbers are also the same

br = bm−r,

and that the Euler characteristic of odd-dimensional
spaces vanishes.

Definition 2.24 The cohomology ring of an m-
dimensional manifold M , H∗(M) is defined as:

H∗(M) ≡
m⊕
r=0

Hr(M),

with the exterior product as the multiplication:6

∧ : H∗(M)×H∗(M)→ H∗(M), [ω] ∧ [η] ≡ [ω ∧ η],

and the direct sum as the addition.

If we have a smooth map between manifolds f : M →
N , then its pullback f∗ : Ωr(N) → Ωr(M) natu-
rally induces a linear map Hr(N) → Hr(M) since
the pullback map commutes with the exterior deriva-
tive, f∗ d = df∗. This linear map also preserves
the algebraic structure of the cohomology ring since:
f∗(ω ∧ η) = f∗ω ∧ f∗η.

3 Lie groups and Lie algebras
Groups are extremely important structures in almost
all areas of physics and mathematics and are so also in
the study of characteristic classes. The most important
type of group relevant to this topic is the Lie group
defined next.

6This product is well-defined because if we chose ω′ = ω + dψ as the representative,

[ω′] ∧ [η] ≡ [(ω + dψ) ∧ η] = [ω ∧ η + d(ψ ∧ η)] = [ω ∧ η],

since η is closed (as is ω).
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3.1 Lie groups
Definition 3.1 A Lie group G is a group that is also
a manifold, such that it is compatible with the smooth
structure of the manifold; the following maps must be
smooth:

(a) composition:

◦ : G×G→ G, (g1, g2) 7→ g1 ◦ g2,

(b) inverse:
−1 : G→ G, g 7→ g−1.

It is useful to note that the set of all transformations of
an arbitrary set X constitute a group with respect to
the composition of transformations. If we add structure
to this set (X, s) then all transformations that preserve
s (automorphisms)7 form a group G, a subgroup of the
group of all transformations of set X. A few important
examples of these are given below.

Example 3.1 Let (X, s) be a (finite-dimensional)
(complex) real vector space V . The group of automor-
phisms of V : AutV ≡ GL(V ). It is the group of in-
vertible linear operators on V and is (non-canonically)8
isomorphic to (GL(n,C)) GL(n,R), the group of non-
singular (complex) real n× n matrices.

Example 3.2 Let (X, s) = (V, g) be a vector space V
with a defined bilinear map g : V × V → R that is sym-
metric9 and non-degenerate10 (a metric tensor in V )
with signature (r, s). The group of automorphisms of
this structure (invertible linear operators A that satisfy:
g(Au,Av) = g(u, v)) AutV ≡ O(r, s) is the pseudo-
orthogonal group isomorphic to the pseudo-orthogonal
matrix group.

Example 3.3 Let (X, s) = (V, ω) be a vector space V
with a defined volume form ω. The group of automor-
phisms of this structure (invertible linear operators A
such that: ω(Av1, . . . , Avn) = ω(u1, . . . , un)) is denoted
SL(V ) (isomorphic to SL(n,R)) and called the special
linear group of V .

The following can be shown for A ∈ O(r, s):

(i) detA = ±1;

(ii) there is a bijection between the two connected
components of O(r, s); detA = 1 and detA = −1;

(iii) the detA = 1 component is a subgroup of O(r, s)
designated SO(r, s) and called the special (pseudo)
orthogonal group;

(iv) SO(r, s) = O(r, s) ∩ SL(r + s,R).

Example 3.4 Let (X, s) = (V, o) be a vector space V
with a defined orientation. Then G, the group of auto-
morphisms (those invertible linear operators A such that
if E = {ea} is a right-handed basis, then E′ = {Aea}
is also a right-handed basis), is denoted GL+(V ) (iso-
morphic to GL+(n,R), the matrix group of n × n real
non-singular matrices with detA > 0, A ∈ GL(n,R)).

It is known that complex numbers can be written as
elements of R2, the same can be done for elements of
Cn in R2n. Define the map ρ:

ρ : GL(n,C)→ GL+(2n,R),

A ≡ B + iC 7→
(
B −C
C B

)
.

ρ is then an injective homomorphism with im ρ ⊆
GL(2n,R). Cn can also be thought of as R2n with a
linear complex structure, this is because i, the imagi-
nary unit, commutes with real numbers and is distribu-
tive with respect to vector addition. Therefore, we can
write:11

GL(n,C) =
{
A ∈ GL(2n,R) |AJ = JA; J =

(
0 −1n
1n 0

)}
.

Theorem 3.1 (Cartan) Any topologically closed sub-
group of a Lie group is a Lie group.

Theorem 3.2 The universal covering of a connected
Lie group is a Lie group.

We now move our attention to invariant fields of Lie
groups and define the following.

Definition 3.2 For any element g ∈ G we define:

(a) left translation Lg : G→ G, h 7→ Lgh = gh;

(b) right translation Rg : G→ G, h 7→ Rgh = hg.
7An automorphism is an isomorphism from an object onto itself. See section 3.3
8A map is canonical if it is uniquely determined by construction.
In linear algebra, the most important example of a non-canonical isomorphism is the isomorphism between a vector space V and
its dual space V ∗. This isomorphism depends on the choice of a basis in V .
In topology, non-canonical isomorphisms often arise between bundles because the fibres of bundles are homeomorphic but the home-
omorphisms are not canonical; the canonicity of the homeomorphisms between fibres implies the triviality of the bundle. Therefore,
the homotopy and homology groups of different fibres are isomorphic, but the isomorphisms are not always canonical because the
products of the base and the fibres may be twisted. [3]

9If g is, instead, antisymmetric (a non-degenerate 2-form in V ∗), then the group becomes the symplectic group Sp(m,R), where V
must be even dimensional (dimV = 2m).

10Non-degenerate in the sense that if g(u, v) = 0, ∀u ∈ V , then v = 0.
11If A anticommutes with J then it corresponds to an antilinear operator on Cn, so any matrix in GL(2n,R) corresponds uniquely
to a sum of a linear and an antilinear operator on Cn.
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Translations are diffeomorphisms with the following
properties:

Lgh = Lg ◦ Lh Rgh = Rh ◦Rg;
L−1
g = Lg−1 R−1

g = Rg−1 .

Since Lg is a diffeomorphism (for each g), L∗g, its pull-
back, can be applied to any tensor field on G with the
result being in G again. Therefore of interest are fields
that remain unchanged under this pullback.

Definition 3.3 A tensor T on a Lie group G is said
to be left-invariant if

L∗gT = T, ∀g ∈ G.

Left-invariant fields are smooth and uniquely specified
by their value at a single point in G.

Three points can be made for T ∈ TLpq(G), a left-
invariant tensor field generated by (say) its value at
the identity e:

(i) since T is completely determined by T (e), there is
an isomorphism between the space of all (p, q) ten-
sors at e ((Te)pq) and the space of all left-invariant
(p, q) type tensor fields on G,

(ii) because of this isomorphism the dimension of the
space of all left-invariant (p, q) type tensor fields
on G is (dimG)p+q;

(iii) the space of all left-invariant scalar functions is
the space of all constant functions on G.

It is useful to look at left-invariant vectors and 1-forms
in more detail.

Example 3.5 Let {Ea} be a basis of Te(G) and denote
by {ea} the set of left-invariant vector fields generated
by {Ea}, ea(g) ≡ Lg∗Ea. Then:

(i) {ea} is a global frame field on G,

(ii) therefore any Lie group must be parallelizable and
orientable;

(iii) left-invariant vector fields V = V aea have
constant components (V a) with respect to left-
invariant frame fields.

Example 3.6 Let {Ea} be a basis of T ∗e (G) dual to
{Ea} and denote by {ea} the set of left-invariant 1-form
fields generated by {Ea}, ea(g) ≡ (L−1

g )∗Ea. Then:

(i) {ea} is a global coframe field on G;

(ii) {ea} and {ea} are dual to each other;

(iii) left-invariant 1-form fields ω = ωae
a have

constant components (ωa) with respect to left-
invariant coframe fields;

(iv) if and only if iV ω = const. for all left-invariant
vector (1-form) fields V (ω) then ω (V ) is left-
invariant too.

Theorem 3.3 Let f : G → H be a homomorphism of
Lie groups and ω a left-invariant form field on H, then
f∗ω is a left-invariant form field on G.

Definition 3.4 If G is a Lie group then a left-
invariant volume form always exists and is defined
uniquely up to a non-zero constant factor:

ωL = λ e1 ∧ . . . ∧ en, 0 6= λ ∈ R,

where {ea} is a left-invariant coframe field and n =
dimG.

Then, the integral∫
G

fωL =

∫
G

(f ◦ Lg)ωL

is called left-invariant.12

3.2 Lie algebras
Definition 3.5 A Lie algebra g is a vector space over
a field K together with the Lie bracket map [ , ] :
g × g → g, that is antisymmetric, alternating, bilinear
and satisfies the Jacobi identity:[

[V,W ], U
]

+
[
[W,U ], V

]
+
[
[U, V ],W

]
= 0.

Definition 3.6 Let X,Y ∈ Te(G) ≡ g and LX , LY ∈
XL(G) so X = LX(e) and Y = LY (e).13 We define
the Lie bracket on g as the value of the commutator of
vector fields LX and LY at e:

[X,Y ] ≡ [LX , LY ](e),

or alternatively as:

L[X,Y ] ≡ [LX , LY ].

g together with this Lie bracket now defines a Lie al-
gebra called the Lie algebra of (associated to) Lie
group G.

12 Two trivial examples are consequences of this:

(a) G = U(1):
∫ 2π
0 f(α+ β)dα =

∫ 2π
0 f(α)dα;

(b) G = GL(1,R):
∞∫
−∞

f(αx) dx
x

=
∞∫
−∞

f(x) dx
x
.

One can also define a right-invariant volume form and, consequently, a right-invariant integral over G. Which does not, in general,
coincide with the left-invariant integral.
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Lie algebras of Lie groups (usually called just Lie alge-
bras for short) have the following property: if {Ea} is
the basis of a Lie algebra g (also called the generators
of g) then they satisfy:

[Ea, Eb] = CcabEc,

where Ccab are called the structure constants of g.
Structure constants:

(i) constitute components of a left-invariant tensor
field:

C =
1

2
Ccab

(
ea ∧ eb

)
⊗ ec ∈ Ω2

L(G)⊗ XL(G);

(ii) are anholonomy coefficients of left-invariant frame
fields and since left-invariant fields are uniquely
defined by one point (e) it follows that structure
constants contain almost all information about the
Lie group G;

(iii) satisfy the Maurer-Cartan structure equation:

dea +
1

2
Cabc e

b ∧ ec = 0;

(iv) satisfy:
Cfd[aC

d
bc] = 0.

Definition 3.7 If G is a Lie group and g its Lie alge-
bra then we define the g-valued canonical or Maurer-
Cartan 1-form θ ∈ Ω1(G, g) by:

θ : TgG→ TeG ≡ g; X 7→ (L−1
g )∗X, X ∈ TgG.

This Maurer-Cartan one-form has the following prop-
erties:

(i) it is left-invariant Lg∗θ = θ;

(ii) if {Ea} is the basis of g and {ea} the left-invariant
coframe field, then θ can be written as:

θ = eaEa;

(iii) it satisfies the Maurer-Cartan equation:

dθ +
1

2
[θ ∧ θ] = 0,

where we define for ω, η ∈ Ω1(G, g):

[ω ∧ η] ≡ (ωa ∧ ηb)⊗ [Ea, Eb].

Definition 3.8 One-parameter subgroups are
curves γ(t) on a Lie group G defined by the property:

γ(s+ t) = γ(s)γ(t), γ(0) = e, s, t ∈ R.

It can also be thought of as the image of the homomor-
phism γ : (R,+)→ G.

Now, we have a one-to-one correspondence between the
following concepts:

(i) element X of a Lie algebra g of group G;

(ii) left-invariant vector field on G generated by X;

(iii) one-parameter subgroup with γ̇(0) = X.

Definition 3.9 An exponential map is defined by:

exp : g→ G, X 7→ expX ≡ γX(1),

where γX(t) is the one-parameter subgroup generated by
X ∈ g.

Because the one-parameter subgroup satisfies:
γX(kt) = γkX(t), for k ∈ R, we can express the one-
parameter subgroup via the exponential map:

γX(t) = exp tX,

which means one-parameter curves correspond to
straight lines in g. The exponential map has also the
following properties:

exp 0 = e,

exp−X = (expX)−1,

exp(s+ t)X = exp sX exp tX.

Definition 3.10 Let f : G → H be a homomorphism
of Lie groups, then the map

f ′ : g→ h, X 7→ f ′(X) ≡ f∗X

is called a derived homomorphism of Lie algebras.

Definition 3.11 An ideal i of Lie algebra g is a subal-
gebra such that the Lie bracket of any element in i and
g is again an element of i, [i, g] ⊆ i.14

Definition 3.12 Define (inductively) two descending
chains of subalgebras:

(a) lower central series:

D1g = [g, g], Dkg = [g,Dk−1g];

(b) derived series:

D1g = [g, g], Dkg = [Dk−1g,Dk−1g].

Before we move on to actions we give a rough classifi-
cation of Lie algebras.

Definition 3.13 Lie algebra g is:
13X(M) denotes the space of all vector fields on a manifold M . The index L in XL(G) indicates the subset of all left-invariant vector
fields on the Lie group G.

14The symbolic Lie bracket of two Lie algebras a and b: [a, b], designates also all linear combinations of such brackets.
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(a) nilpotent if Dkg = {0} for some k;

(b) solvable if Dkg = {0} for some k;

(c) perfect if the commutator subalgebra Dg ≡ D1g =
D1g = g;

(d) simple if g has no non-trivial ideals and dim g > 1;

(e) semisimple if g has no non-zero solvable ideals.

Note here that no semisimple Lie algebra can ever be
solvable.

3.3 Representations
Since representations fall into the much more general
category of actions, we therefore define actions in gen-
eral first. Using also [4], [5], [6], [7] and [8].

Definition 3.14 Let G be a Lie group and M a man-
ifold, then the (right) left action of G on M is a
diffeomorphism (Rg) Lg such that ∀g, h ∈ G:

Lg : M →M Lgh = Lg ◦ Lh Le = idM ;

Rg : M →M Rgh = Rh ◦Rg Re = idM .

Actions can also be thought of as maps L,R : G×M →
M that satisfy:

L(g, x) ≡ Lgx L(gh, x) = L(g, L(h, x));

R(g, x) ≡ Rgx R(x, gh) = R(R(x, g), h).

A manifold M with a (right) left action of group G is
called a (right) left G-space.

Definition 3.15 If M is a G-space, then if any two
points on M can be connected by an action of G, the
action is called transitive. A G-space with a transi-
tive action is called a homogeneous space.

Definition 3.16 Let M be a G-space and x ∈M . The
subgroup Gx ⊆ G that contains only elements g ∈ G
that leave a point fixed is called the stabilizer or little
group (or stationary subgroup) of x. In other words,

Gx ≡ {g ∈ G |Lgx = x} or Gx ≡ {g ∈ G |Rgx = x},

depending on whether it is a left or right G-space.

Definition 3.17 An action of a group on a G-spaceM
is free if the stabilizer of every point is trivial,

∀x ∈M, Gx = {e};

and effective if there exists at least one point in which
the stabilizer is trivial,

∃x ∈M, Gx = {e}.

Before moving to representations we define one very im-
portant object of an action, the fundamental field.

Definition 3.18 The fundamental field (or genera-
tor) of the right action Rg on a manifold M is a vector
field defined for X ∈ g and p ∈M as:

ξX(p) ≡ d

dt
Rexp tXp

∣∣∣∣
t=0

= γ̇(0), γ(t) ≡ p exp tX.

Now, if we restrict ourselves to manifolds that are vec-
tor spaces V , actions on such manifolds are a very spe-
cial class of actions called representations defined be-
low. Before this, however, it is important to clarify the
spaces associated to linear maps of spaces onto them-
selves. Endomorphisms are maps from an object onto
itself, the set of all endomorphisms of an object V ,
EndV , is naturally endowed with an associative algebra
structure. Endomorphisms that are invertible are called
automorphisms, AutV , and have a group structure in-
stead. Therefore, if we are interested in linear maps that
are homomorphisms from a Lie group G, they cannot
be to EndV but to AutV ⊆ EndV instead.

Definition 3.19 A homomorphism15

ρ : G→ AutV ≡ GL(V ) ⊆ EndV, ρ(gg′) = ρ(g)ρ(g′)

is called a representation of group G in vector
space V . The dimension of V is called the dimen-
sion of representation ρ. Thus, a representation is
a left linear action.

As was needed for representations of groups to have
group structure which lead to automorphisms, endo-
morphisms constitute an associative algebra and are
thus used to represent Lie algebras.

Definition 3.20 A representation of a Lie algebra
g in a vector space V is a map16

f : g→ EndV ≡ gl(V )

satisfying two linearities:

f(X + λY ) = f(X) + λf(Y );

f([X,Y ]) = [f(X), f(Y )] ≡ f(X)f(Y )− f(Y )f(X).

As expected, linear operators, representations of basis
vectors of g (generators of the representation), ρ′i ≡
f(Ei), satisfy the same commutation relations:

[Ea, Eb] = CcabEc ⇒ [ρ′a, ρ
′
b] = Ccabρ

′
c.

Definition 3.21 Let G be a Lie group and ρ its repre-
sentation, then the derived homomorphism ρ′:

ρ (expX) = exp ρ′(X), ρ′(X) =
d

dt
exp(tX)

∣∣∣
t=0

is a representation of g and is called a derived repre-
sentation of g.

15If G is a Lie group, then, obviously, the representation map G× V → V, (g, v) 7→ ρ(g)v must be smooth.
16A Lie algebra homomorphism.
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Definition 3.22 Let ρ : G → AutV be a representa-
tion of Lie group G. Define ρ̃ : G→ AutV ∗:17

〈ρ̃(g)ω,X〉 ≡ 〈ω, ρ(g−1)X〉, ω ∈ V ∗, X ∈ V,

called the dual representation.

If we define a basis {va} and {va} of V and V ∗ respec-
tively, and {Ei} of g, then a representation of G and its
dual, and the derived representation and its dual can
be expressed as matrix elements:

ρ(g)va ≡ Abavb ⇒ ρ̃(g)va = (A−1)abv
b;

ρ′(Ei)va ≡ ρbaivb ⇒ ρ̃′(Ei)v
a = −ρabivb.

Definition 3.23 A representation ρ of Lie group G (or
ρ′ of Lie algebra g) is said to be faithful if ρ : G →
AutV (or ρ′ : g → EndV ) is injective. If a represen-
tation is faithful then G is isomorphic to the subgroup
im ρ ⊆ AutV .18

Definition 3.24 Let G be a Lie group with representa-
tion ρ in an inner product space (V, h). If action ρ and
the inner product h are compatible in the sense that:

h(ρ(g)v, ρ(g)w) = h(v, w), v, w ∈ V, g ∈ G,

then h is said to be a ρ -invariant inner product.

If we have a ρ -invariant inner product h of type (r, s)
in V , then it can be shown that operators ρ(g) must be
(pseudo) orthogonal,

ρ : G→ O(r, s) ≡ Aut(V, h) ⊆ AutV, r + s = dimV.

Obviously operators of the derived representation of g
must satisfy:

h(ρ′(X)v, w) = −(v, ρ′(X)w), X ∈ g,

and are therefore (pseudo) antisymmetric operators,

ρ′ : g→ o(r, s) ⊆ EndV.

Expressed in matrix notation (in a defined basis) this
means:

ρabi = −ρbai, ρabi ≡ hacρcbi.

In case of a complex inner product space, instead of the
orthogonal representation, we get the unitary represen-
tation of G and derived antihermitian representation of
g.

Definition 3.25 Let (ρ, V ) be a representation of
group G. Define an invariant subspace W ⊆ V as
one that is closed with respect to all transformations of
representation ρ,

ρ(G)W ⊆W ⇔ w ∈W ⇒ ρ(g)w ∈W, ∀g ∈ G.

If W can only be trivial (W = V or W = {0}) then
(ρ, V ) is said to be an irreducible representation
otherwise it is called reducible. Furthermore, say
there exists a non-trivial invariant subspace W , if there
exists another invariant subspace W̄ such that it is the
complement of W : V = W ⊕ W̄ , then (ρ, V ) is called
completely reducible or decomposable.

A few properties on the reducibility of representations
of Lie groups:

(i) reducibility or complete reducibility of ρ carries
over to the derived representation ρ′;

(ii) if there is a invariant inner product then reducibil-
ity necessarily implies decomposability;

(iii) for compact groups reducibility necessarily implies
decomposability.

Definition 3.26 Two representations (ρ1, V1) and
(ρ2, V2) are said to be equivalent if there exists an
isomorphism A such that:

ρ2(g) = Aρ1(g)A−1, ∀g ∈ G.

This implies that if V has a ρ -invariant inner product,
then the dual representation ρ̃ is equivalent to the rep-
resentation ρ itself.

Theorem 3.4 (First Schur’s lemma)19Let (ρ1, V1)
and (ρ2, V2) be two irreducible representations of group
G and A a linear map such that:

A : V1 → V2, Aρ1(g) = ρ2(g)A.

Then:

(i) either ρ1 and ρ2 are inequivalent and A = 0 or
they are equivalent and A is an isomorphism;

(ii) if ρ1 and ρ2 are equivalent complex representations
then A is unique up to a scalar factor ∈ C.

17Here we have used the bracket notation for contraction 〈ω,X〉 ≡ iXω for X ∈ V and ω ∈ V ∗.
18A well known, however, rarely emphasised, faithful representation is the (non-canonical see footnote on page 6) isomorphism
between the abstract general linear group GL(V ) (where V is an n-dimensional vector space above field K) and GL(n,K), the
space of all n×n invertible matrices. Because this representation is faithful a distinction between these spaces is very rarely made
and matrices, elements of GL(n,K), are understood as group elements of matrix group GL(n,K). The same is valid for the
corresponding Lie algebra gl(n,K) that consists of all n× n matrices. [12]

19It is important to note that Schur’s lemma applies to any family of operators that act irreducibly and commute with the whole
family, not just representations of groups.
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Theorem 3.5 (Second Schur’s lemma)19 Let
(ρ, V ) be an irreducible complex representation and A a
linear operator in V that commutes with all operators
of the representation:

[A, ρ(g)] = 0, ∀g ∈ G.

A must then be of the form:

A = λ1, λ ∈ C.

Definition 3.27 Define the conjugation map Ig : G→
G (a bijective homomorphism) which maps h 7→ ghg−1.
The derived homomorphism

Adg ≡ Ig∗ : G→ Aut g

or,
exp AdgX ≡ g expXg−1, X ∈ g;

is a representation called the adjoint representation
or inner automorphism.

Since the adjoint representation uses g as the carrier
space it is not only linear but also preserves the Lie
bracket,

Adg[X,Y ] = [AdgX,Adg Y ], X, Y ∈ g.

Adjoint representations arise when right-translating left
invariant objects and when considering relations be-
tween right and left-invariant fields. Let LX be a left-
invariant vector field generated by X at e ∈ G, also let
{Ei} and {Ei} be bases of g and g∗, respectively, and
{ei} and {ei} the corresponding left-invariant frame and
coframe fields. Then the following holds:

L∗gLX = LX R∗gLX = LAdg X ,

or for the frame and coframe fields:

L∗gei = ei R∗gei = (Adg)
i
jej ;

L∗ge
i = ei R∗ge

i = (Adg−1)jiej .

If θ is the Maurer-Cartan 1-form on G then we have:

L∗gθ = θ (L∗gθ
i)Ei = θiEi;

R∗gθ = Adg−1 θ (R∗gθ
i)Ei = (Adg−1)ijθ

jEi.

Definition 3.28 Let ρ = Ad be the adjoint represen-
tation of G in g, then the derived adjoint represen-
tation ad is:

ρ′ = Ad′ ≡ ad : g→ End g, AdexpX = exp adX .

This is a representation of g in g with the following
properties:

(i) adX Y = [X,Y ];

(ii) adX+λY = adX +λ adY ;

(iii) ad[X,Y ] = [adX , adY ];

(iv) if {Ei} is a basis of g then the representation ma-
trix elements are given by the structure constants
of g:

adEi Ej = (adEi)
k
jEk = CkijEk.

Definition 3.29 If G is a Lie group and g is its Lie
algebra, then we define a bilinear symmetric form K :
g× g→ R

K : (X,Y ) 7→ K(X,Y ) ≡ tr(adX adY )

≡ 〈Ei, adX adY Ei〉,

where Ei and Ei are basis vectors of g and g∗ respec-
tively. K is called the Killing-Cartan form.

The Killing-Cartan form has very useful properties:

(i) the matrix components in basis Ei ∈ g

kij ≡ K(Ei, Ej) = CkilC
l
jk

satisfy:
kij = (Adg)

i
r(Adg)

j
s = krs;

(ii) K(X,Y ) is invariant to all automorphisms of
group G,

K(A(X), A(Y )) = K(X,Y ), A ∈ Aut g

(including Ad-invariance: A = Adg);

(iii) Ad-invariance can be stated in infinitesimal form
as:

K(adZ X,Y ) = −K(X, adZ Y ),

or:
K([Z,X], Y ) = −K(X, [Z, Y ]),

or:
Cijk + Cjik = 0, Cijk ≡ kilCljk;

(iv) we can therefore construct a 3-form with compo-
nents Cijk:

C ≡ 1

3!
Cijk E

i ∧ Ej ∧ Ek,

that is also Ad-invariant,

C(AdgX,Adg Y,Adg Z) = C(X,Y, Z).

The Killing-Cartan form is not always non-degenerate,
however, and does not always define an invariant scalar
product in g.

Theorem 3.6 A Lie algebra g is semisimple if and
only if:

(i) (Cartan’s criterion) the Killing-Cartan form on
g is non-degenerate;

(ii) g = g1⊕· · ·⊕gm, where gj are simple Lie algebras.
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Theorem 3.7 A Lie algebra g is solvable if and only
if its Killing-Cartan form K satisfies:

(i) (Cartan’s criterion)

K(X,Y ) = 0, ∀X ∈ g, ∀Y ∈ [g, g];

(ii) K(g,Dg) = 0;

(iii) K(adX , adX) = 0, ∀X ∈ g.

We are now interested in the tensor field induced by the
Killing-Cartan metric in g (if g is semisimple). Since K
is non-degenerate so must the tensor field be, thus we
have a metric tensor on G: K. K is by construction
left-invariant, however, it is also right-invariant:

K ≡ kij ei ⊗ ej , kij ≡ K(Ei, Ej);

L∗gK = K, R∗gK = K.

Returning to volume forms, let ωL ≡ e1 ∧ · · · ∧ en and
ωR ≡ f1 ∧ · · · ∧ fn be left and right-invariant volume
forms (we denote the right-invariant coframe field by
{f i}). It can be shown that they are related by:

ωR(g) = det Adg ωL(g).

Theorem 3.8 Let G be a compact Lie group. All
(right) left-invariant volume forms are also (left) right-
invariant.

Theorem 3.9 There always exists a positive-definite
Ad-invariant metric tensor on the Lie algebra of a com-
pact Lie group.

Definition 3.30 A Lie algebra with a positive-definite
Ad-invariant metric tensor is called a compact Lie
algebra. Compact Lie algebras correspond to compact
Lie groups.

And lastly, we move our focus to the dual Lie algebra
g∗.

Definition 3.31 Let G be a Lie group and Adg its ad-
joint representation. The coadjoint representation
Ad∗g is then the dual representation to Adg:20

〈Ad∗gX
∗, Y 〉 ≡ 〈X∗,Adg−1 Y 〉, X∗ ∈ g∗, Y ∈ g.

The coadjoint representation has the following proper-
ties:

(i) if there exists a non-degenerate Ad-invariant
scalar product in g, then the coadjoint represen-
tation is equivalent to the adjoint;

(ii) Ad∗g E
i = Ej(Adg−1)ij ;

(iii) in the derived representation ad∗X the generators
are given by:

〈ad∗X Z
∗, Y 〉 = −〈Z∗, [X,Y ]〉,

ad∗Ei
Ej = (ad∗Ei

)jkE
k = −CjikE

k.

To finish off this section we go back to actions of groups
on manifolds. Let ξX be a fundamental field on man-
ifold M , then it can be shown that ξX behaves with
respect to the right action as:

R∗gξX = ξAdg X , R∗gξEi ≡ R∗gξi = (Adg)
j
i ξj .

Two statements are valid:

(i) [ξX , ξY ] = ξ[X,Y ], [ξi, ξj ] = Ckijξk;

(ii) the prescription X 7→ ρ′(X) ≡ ξX is a representa-
tion of the Lie algebra g in F(M) ≡ T 0

0 (M).21

Definition 3.32 Let A ∈ T rs (M) be a tensor field on
a right G-space M , then the prescription

A 7→ ρ(g)A = R∗gA, A 7→ ρ′(X) = £ξX A

defines a representation of G in T rs (M) and the derived
representation of g.22

Say we have a set of N tensor fields Aa ∈ T rs (M),
a = 1, . . . , N such that upon the action R∗g of G they
mix only amongst themselves and this mixing is defined
by matrix rab : R

∗
gA

a = rab (g)Ab, then:

(i) the prescription g 7→ rab (g) is a right action (an
antirepresentation);

(ii) the prescription g 7→ rab (g−1) ≡ ρ̂ab (g) is a repre-
sentation;

(iii) if Aa is a component of a V -valued tensor field
then ρ̂ is a representation in space V with basis
{Ea}: ρ̂(g)Ea = ρ̂ba(g)Eb then the right action is:

(R∗gA
a)Ea = Aa(ρ̂(g−1)Ea)

m
R∗gA

a = ρ̂ab (g−1)Ab.

20It is important to note that, had we defined the coadjoint representation by:

〈Ad∗g X
∗, Y 〉 ≡ 〈X∗,Adg Y 〉,

we would have arrived at a right linear action and Ad∗g would, therefore, have been an antirepresentation (one where the commutator
has opposite sign).

21It is actually just the derived representation of the representation of G in F(M) defined by the prescription: ψ 7→ ρ(g)ψ ≡ ψ ◦Rg .
This representation also has an interesting property, it preserves the product: ρ(g)(ψφ) = (ρ(g)ψ)(ρ(g)φ).

22The Lie derivative is denoted as £X : T rs (M)→ T rs (M) for X ∈ X(M).
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Definition 3.33 Let A be a (V, ρ̂)-valued tensor field.
If A satisfies:

R∗gA = ρ̂(g−1)A,

then it is called a tensor field of type ρ̂.

We can now explicitly state the representation ρ for
(V, ρ̂)-valued tensors in T rs (M,V ).

Definition 3.34 The prescription:

ρ(g) ≡ ρ̂(g) ◦R∗g = R∗g ⊗ ρ̂(g)

m
ρ(g)A = ρ(g)(AaEa) ≡ (R∗gA

a)(ρ̂(g)Ea).

is the representation of (V, ρ̂)-valued tensors in
T rs (M,V ).

It then follows that tensor fields of type ρ̂ are just fields
that are invariant with respect to representation ρ,

ρ(g)A = A.

The derived representation of ρ is then:

ρ′(X) = £ξX + ρ̂′(X)

m
ρ′(X)A = ρ′(X)(AaEa) = (£ξX A

a)Ea +Aa(ρ̂′(X)Ea).

The requirement that a field be of type ρ̂ can now be
written as:

£ξX A = −ρ̂′(X)A.

Now that we have introduced the very basics of Lie
groups and algebras we move on to more complicated
geometrical objects on manifolds.

4 Fibre bundles and connections

A basic differential manifold is a very rich structure,
however, from it an even richer manifold can be con-
structed, a fibre bundle. Fibre bundles play an ex-
tremely important role in mathematical physics but
can also be applied to almost all branches of physics.
Therefore, this section is dedicated to the study of fibre
bundles and a special additional structure that can be
placed on them called a connection.

4.1 Fibre bundles
Definition 4.1 A (differential) fibre bundle
(E, π,M,F,G) or π : E → M for short, is a collec-
tion of :23

(i) the total space, a differentiable manifold E;24

(ii) the base manifold, a differentiable manifold M ;

(iii) the fibre, a differentiable manifold F ;

(iv) the projection, a surjection π : E →M with the
inverse π−1(p) ≡ Fp ∼= F ;

(v) the structure group, a group25 G which acts on
the fibre from the left;

(vi) the local trivialization, a diffeomorphisms φi :
Ui × F → π−1(Ui) such that π ◦ φi(p, f) = p,
∀f ∈ F , where {Ui} is an open covering of M ;

(vii) the transition functions, smooth maps tij :
Ui ∩ Uj → G if Ui ∩ Uj 6= ∅ such that φj(p, f) =
φi(p, tij(p)f).

So a fibre bundle is, essentially, an, in general,“twisted”
product manifold M × F . The transition functions
tij : Ui ∩ Uj → G must satisfy:

tii(p) = 1,

tij(p) = tji(p)
−1,

tij(p)tjk(p) = tik(p).

These transition functions are not unique as they de-
pend on the chosen local trivializations, tij = φ−1

i ◦ φj .
If all transition functions can be chosen to be identity
maps, then the bundle is globally a product bundle (in
general bundles are only locally product structures) also
called a trivial bundle. Fibre bundles are often called
according to some additional structure the fibre mani-
fold has, such as a vector bundle26 if the fibre is a vector
space or a principal bundle if the fibre is the structure
Lie group.

Definition 4.2 Let π : E → M be a fibre bundle. A
map

σ : M ⊇ U → E, π ◦ σ = idU ,

is called a local section, obviously, σ(p) ∈ Fp ≡
π−1(p). If U = M then the section is said to be global,
though not all fibre bundles admit global sections. The
set of all local sections on U is denoted by Γ(U,F ).27

23Strictly mathematically, a fibre bundle cannot depend on the choice of open covering {Ui} so this definition is more precisely a
coordinate bundle (E, π,M,F,G, {Ui}, {φi}). Two coordinate bundles (E, π,M,F,G, {Ui}, {φi}) and (E, π,M,F,G, {Vj}, {ψj})
are said to be equivalent if (E, π,M,F,G, {Ui}∪{Vj}, {φi}∪{ψj}) is again a fibre bundle. Then, an equivalence class of coordinate
bundles is a fibre bundle. In a physical context a covering is usually implicitly defined so this distinction is ignored.

24E itself is often referred to as the fibre bundle.
25Most often a Lie group.
26For example, the tangent bundle TM and cotangent bundle T ∗M are vector bundles.
27For example, the set of all vector fields X(M) ≡ Γ(M,TM) or 1-form fields Ω1(M) ≡ Γ(M,T ∗M).
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Definition 4.3 Let π : E → M and π′ : E′ → M ′ be
fibre bundles. A pair of smooth maps f̄ : E′ → E and
f : M ′ →M is called a bundle map if π′ ◦ f̄ = f ◦ π,
that is, f̄ maps each fibre F ′p of E′ onto Fp of E. Two
bundles are equivalent if there exists a bundle map
such that f̄ is a diffeomorphism and f is an identity
map.

Definition 4.4 If π : E → M is a fibre bundle and
f : N → M , then we define a new bundle f∗E called a
pullback bundle:

f∗E ≡ {(p, u) ∈ N × E | f(p) = π(u)},

with the maps π1 : f∗E → N and π2 : f∗E → E.
The transition functions of a pullback bundle are then:
t∗ij(p) = tij(f(p)).

Theorem 4.1 Fibre bundle π : E →M is trivial if M
is contractible to a point.

Definition 4.5 Let π : E → M and π : E′ → M ′ be
vector bundles over M . The tensor product bundle
E⊗E′ is a bundle with fibre Fp⊗F ′p, ∀p ∈M . If

⊗r
E

is a tensor product bundle and {ea} is a basis of fibre F ,
then the fibre of

⊗r
E is spanned by {ea1⊗· · ·⊗ear}.28

Definition 4.6 A principal bundle is a fibre bundle
P (M,G) ≡ π : P →M where the fibre is diffeomorphic
to the structure group G. Other than the left action of
the transition functions, there is also a defined free and
transitive right action:

Rg : P → P, Rgh = Rh ◦Rg, π ◦Rg = π,

with the requirement that the local trivialization satisfy:

φi : Ui×G→ π−1(Ui); (p, hg) 7→ ug ≡ Rgu, ∀g ∈ G.

If a section σi(p) is given, we can always construct a lo-
cal trivialization φi(p, e) = σi(p) called the canonical
local trivialization.

For two principal bundles to be equivalent there is an-
other requirement stemming from the additional right
action defined on them: if P (M,G) and P ′(M,G) are
two G-bundles over the same base space M they are
equivalent if there exists a diffeomorphism

f : P → P ′, R′g ◦ f = f ◦Rg, π′ ◦ f = π.

Therefore if there exists such a diffeomorphism between
a principal bundle P and M ×G, it is a global trivial-
ization and so P is trivial.

Theorem 4.2 A principal bundle is trivial if and only
if it admits a global section.

4.2 Vertical subspaces and lifts

Definition 4.7 Let π : E →M be a fibre bundle. The
existence of a projection mapping π means that there is
always a special subspace of the tangent space TuE:

VuE ⊆ TuE, Vu ≡ kerπ∗u,

called a vertical subspace. Thus, a vector W ∈ TuE
is said to be vertical if π∗W = 0 (written W v or
verW ).

Geometrically, if a vector is vertical this means that it
is tangent to the fibre at that point. If our fibre bundle
is a principal bundle then for the added structure of
right action we have:

Rg∗VuP = VugP.

Definition 4.8 If π : E → M is a fibre bundle then a
lift is in general a procedure29 which assigns to a ge-
ometrical object of the base manifold M a geometrical
object on the total space E of the bundle.

We introduce the concept of lifts through two examples
of the tangent and cotangent bundles.

Example 4.1 (Curves in M) Let

γ : R→M, t 7→ γ(t)

be a curve in M , then:

γ̂ : R→ TM, t 7→ γ̇(t),

is a lift called the natural lift of γ to TM . It can be
shown that this lift is always exactly over γ: π ◦ γ̂ = γ.

Example 4.2 (Vectors on TM) Let u ∈ TpM ≡ π−1(p)
be a vector on M (point in TpM). Define a curve in fi-
bre π−1(p):

Σ(t) ≡ u+ tw ∈ TpM,

for point w ∈ π−1(p). Then, the tangent vector to curve
Σ,

uv ≡ Σ̇(0) =
d

dt

(
u+ tw

)∣∣∣
t=0
∈ VwTM ⊆ TwTM

is called a vertical lift of vector u in p to w ∈ TM . If
u ∈ X(M) is a vector field, then we can simply define
its vertical lift at every point by the previous construc-
tion and obtain the vertical lift of the vector field 30 u,
uv ∈ X(TM).31

28We can also define the ΛrE bundle with respect to the antisymmetrised tensor product ∧, therefore, Ωr(M) ≡ Γ(M,ΛrT ∗M).
29Most certainly not unique.
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Let us take the canonical coordinates of a coordinate
patch U of the tangent bundle TM (dimM = m) given
by its local trivialization:

φ : R2m[x1, . . . , xm, v1, . . . , vm]→ π−1(U).

This means that at a point u ∈ TU{
∂

∂x1
, . . . ,

∂

∂xm
,
∂

∂v1
, . . . ,

∂

∂vm

}
span TuTU . It trivially follows that

{
∂
∂v1 , . . . ,

∂
∂vm

}
span the vertical subspace VuTU ⊆ TuTU . It is now
natural to assume

{
∂
∂x1 , . . . ,

∂
∂xm

}
spans a “horizontal”

subspace, however this is false in the sense that this sub-
space depends on the choice of coordinates. If we take
a change of coordinates xi 7→ x′i(p) we see that

{
∂
∂vi

}
transform amongst themselves and therefore still span
the same space, whereas

{
∂
∂x′i

}
contain ∂

∂vi terms and
thus no longer span the complementary space we called
“horizontal”. This implies that it is impossible to canon-
ically decompose an arbitrary vector w ∈ TuTM into
its “vertical” and “horizontal” components. This triv-
ially generalises to arbitrary fibre bundles. The only
way to define a horizontal space in a coordinate inde-
pendent way is by adding additional structure to the
bundle, this structure is called a connection and is de-
fined next.

4.3 Connections and curvature on prin-
cipal G-bundles

One way to define a connection on a vector bundle is to
start by defining one on a principal bundle first. This
is the construction that will be used here.

Definition 4.9 A connection on a principle G-bundle
is a unique separation of the tangent space TuP into the
vertical VuP and horizontal HuP subspaces such that:

(i) TuP = VuP ⊕HuP ;

(ii) a smooth vector field X on P is decomposed into
smooth vector fields Xv ∈ VuP and Xh ∈ HuP ,
X = Xv +Xh;

(iii) HugP = Rg∗HuP , ∀u ∈ P and g ∈ G.

Definition 4.10 Let P (M,G) be a principle G-bundle
and γ : [0, 1]→M be a curve in M , then its horizon-
tal lift is a curve γ̃ : [0, 1]→ P such that π ◦ γ̃ = γ and
tangent vector

d

dt′
γ̃(t′)

∣∣∣
t′=t
∈ Hγ̃(t)P.

Theorem 4.3 Let γ : [0, 1] → M be a curve in M ,
then:

(i) if u0 ∈ π−1(γ(0)) there exists a unique horizontal
lift γ̃(t) in P such that γ̃(0) = u0;

(ii) if there are two horizontal lifts γ̃ and γ̃′ such
that γ̃′(0) = γ̃(0)g, it follows that γ̃′(t) = γ̃(t)g,
∀t ∈ [0, 1] and g ∈ G.

Definition 4.11 Define function Ψu:

Ψu : g→ VuP, X 7→ ξX(u),

where X ∈ g and ξX is the fundamental field of action
Rg on P .

One can show two properties:

(i) Ψp is a linear isomorphism;

(ii) any vertical vector at point u ∈ P can always
be written as a certain fundamental field in that
point, that is, there is always an element X ∈ g
such that V ≡ verV = ξX(u).

Definition 4.12 Define at point u ∈ P a Lie algebra
valued 1-form ωu by the property:

〈ωu,Wu〉 ≡ Ψ−1
u (verW ),

or:
ωu ≡ Ψ−1 ◦ ver : TuP → g.

A connection 1-form (Ehresmann connection) is a
smooth 1-form field on P ω ∈ Ω1(P, g) such that ω(u) ≡
ωu, ∀u ∈ P .

A connection 1-form has the following properties:

(i) if W = Wh ≡ horW , then 〈ωu,W 〉 = 0,

(ii) HuP = kerωu,32

(iii) R∗gω = Adg−1 ω, this means that ω is of type Ad:
ω ∈ Ω1(P,Ad),

(iv) 〈ω, ξX〉 = X;

or infinitesimally:

(i) £ξX ω = − adX ω,

(ii) iξXω = X,

(iii) iξX dω = −[X,ω].

Therefore, the connection 1-form is just the projection
operator onto the the vertical subspace VuP ∼= g.

Definition 4.13 Define the horizontal part of a p-
form α ∈ Ωp(P ) as:

(horα)(U, V, . . . ) ≡ α(horU,horV, . . .).

30Notice that this construction of lifted fields is pointwise. In general, however, this need not be.
31Analogous to this construction is the vertical lift of a 1-form (field) in T ∗M .
32This is sometimes regarded as the definition of a horizontal subspace.
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This map, hor : Ωp(P ) → Ωp(P ), has the following
properties:

(i) it is a projection:

hor ◦ hor = hor, iverV horα = 0;

(ii) the connection form is completely vertical:
horω = 0;

(iii) it is an endomorphism of the Cartan algebra Ω(P ),
its image defines a subalgebra

Ω̄(P ) ≡ im hor ⊆ Ω(P );

(iv) it preserves the type ρ of the form.

Definition 4.14 The exterior covariant derivative
is defined as:

Dα ≡ hor dα.

It is a differential operator D : Ωp(P ) → Ω̄p(P ) of de-
gree +1 that preserves the type of forms.

Definition 4.15 Curvature is a g-valued 2-form de-
fined as the exterior covariant derivative of the connec-
tion 1-form ω,

Ω ≡ Dω ≡ hor dω.

The curvature has the following properties:

(i) it can also be expressed as:

Ω = dω +
1

2
[ω ∧ ω];

(ii) it is a horizontal 2-form of type Ad,

hor Ω = Ω, R∗gΩ = Adg−1 Ω;

(iii) it satisfies the Bianchi identity:

DΩ ≡ D Dω = 0.

Definition 4.16 Let α be a Lie algebra g-valued p-
form and β a q-form with values in representation space
(W,ρ′) of g. Define the dot wedge product for α = αiEi
and β = βaEa:

ρ′(α) ∧̇ β ≡ αi ∧ βaρ′(Ei)Ea.

If ρ′ = ad then ad(α) ∧ β = [α ∧ β].

If ω = ωiEi is the connection form, α = αaEa a hor-
izontal p-form of type ρ, and Φ = ΦaEa a function of
type ρ then their exterior covariant derivatives can be
expressed as:

Dα = dα+ ρ′(ω) ∧̇ α Dα = ρ′(Ω) ∧̇ α;

DΦ = dΦ + ρ′(ω)Φ DΦ = ρ′(Ω)Φ.

This means that the Bianchi identity can be rewritten
in the form:

dΩ + [ω ∧ Ω] = 0.

4.4 Local connections and local curva-
ture

Definition 4.17 Let {Ui} be an open covering of the
base manifold M and σi a local section for each Ui,
then the local connection 1-form33 Ai is a Lie alge-
bra valued 1-form on Ui:

Ai ≡ σ∗i ω ∈ Ω1(Ui, g).

Definition 4.18 Let Ω be the curvature of the princi-
ple bundle P (M,G) and σi a local section on a chart
Ui, then we define the local curvature34 on Ui ⊆ M
as the pullback of the curvature by σi,

Fi ≡ σ∗i Ω ∈ Ω2(Ui, g).

Theorem 4.4 Let Ai be a g-valued 1-form on Ui and
σi : Ui → π−1(Ui) a section on Ui, then there always
exists a connection 1-form ω such that its pullback by
σi is: Ai = σ∗i ω.

Theorem 4.5 Let Ui and Uj be overlapping charts on
M and (Ai) Fi and (Aj) Fj local (connection forms)
curvatures on these patches, then on Ui ∩ Uj they sat-
isfy:

Aj = t−1
ij Aitij + t−1

ij dtij ,

Fj = Adt−1
ij
Fi,

where tij are the transition functions between the charts.

If v is a vector at point p ∈ U ⊆ M , and σ and σ′

two sections on U related by the function S : U → G,
σ′(p) = σ(p)S(p), then:

σ′∗v = Rg∗(σ∗v) + ξX(u),

where g = S(p), X = 〈S∗θ, v〉 and u = σ(p)S(p). The
pullbacks by these sections of the connection, curvature,
a horizontal p-form of type ρ: λ = σ∗Λ, and function
of type ρ: φ = σ∗Φ, transform with respect to S in the
following way:

A′ = Adg−1 A+ S∗θ,

F ′ = Adg−1 F,

λ′ = ρ(S−1)λ,

φ′ = ρ(S−1)φ.

33In a physical context more commonly called the gauge field or potential because of its significance in gauge theory.
34Also in physics commonly called the gauge field strength.
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Let ρ be a representation of G inW (the representation
space in which Λ, a type ρ horizontal p-form and Φ, a
type ρ function have their values), then let Ea and Ei
be bases in W and g respectively and ρ′ the derived
representation of g. Then, obviously,

ω = ωiEi A ≡ σ∗ω = AiEi λ ≡ σ∗Λ = λaEa

Ω = ΩiEi F ≡ σ∗Ω = F iEi φ ≡ σ∗Φ = φaEa

are the components in these bases. In the derived repre-
sentation we denote the local connection and curvature
as:

A ≡ ρ′(A) = Aiρ′(Ei) AEb = AiρcbiEc ≡ AcbEc;
F ≡ ρ′(F ) = F iρ′(Ei) FEb = F iρcbiEc ≡ FcbEc.

Definition 4.19 Define the exterior covariant
derivative on the base space (local exterior co-
variant derivative) by:

D ◦ σ∗ = σ∗ ◦ D.

A local exterior derivative defined in this way satisfies:

(i) the Cartan structure equations,

F = DA = dA+A ∧A
Fab = DAab = dAab +Aac ∧ Acb;

(ii) the Bianchi identity,

DF ≡ dF +A ∧ F − F ∧A = 0

DFab ≡ dFab +Aac ∧ Fcb −Fac ∧ Acb = 0;

(iii) the action on horizontal p-forms and functions of
type ρ:

Dλ = dλ+A ∧ λ Dλa = dλa +Aab ∧ λb,
Dφ = dφ+Aφ Dφa = dφa +Aabλb;

(iv) the Ricci identity:

DDλ = F ∧ λ DDλa = Fab ∧ λb,
DDφ = Fφ DDφa = Fab φb.

This concludes our study of connections and curvatures
on principal bundles. Next we will see how to move
on from principal bundles and its connections to vector
bundles.

4.5 Associated bundles
Definition 4.20 Let P (M,G) be a principal bundle.
An associated fibre bundle (E, π,M,G, F, P ) is the
quotient space,

P ×ρ F ≡ (P × F )/G,

in which a point is an equivalence class,

[(u, f)] ∼ [(ug, ρ(g−1)f)],

for u ∈ P , f ∈ F , g ∈ G and ρ a left action of G on F .
The projection is given by:

πE : E →M, [u, f ] 7→ π(u) ≡ p,

the transition functions by ρ(tij(p)) if tij(p) are those of
P , and the local trivialization by ψi : Ui×F → π−1

E (Ui).

The most important associated bundle is the associated
vector bundle in which the fibre F = V is a vector space
and (V, ρ) a representation of G. Notice, also, that sec-
tions of associated vector bundles can be canonically
identified with quantities of type ρ.35

Example 4.3 Let M be a manifold, then TM and
T ∗M are associated vector bundles to the frame bundle
LM . More generally, all tangent tensor bundles T rsM
are associated to LM .

Obviously we can reverse the “direction” of association;
a vector bundle E, also, induces an associated princi-
pal bundle P (E) ≡ P (M,G) where G is the structure
group of E.36 Since the transition functions of the as-
sociated bundles are the same as those of the principal
bundle this implies the global topological properties of
these bundles must also coincide. In particular we have
the following.

Theorem 4.6 A vector bundle E is trivial if and only
if its associated principal bundle admits a global section
(is trivial).

Moving on now to connections on associated bundles.
A connection on P (M,G) implies a connection on E as
well defined through the use of the covariant derivative
of a section of E.

Definition 4.21 Let P (M,G) be a principal bundle
and E an vector bundle associated to it, and s : M → E,
s(p) = [σi(p), η(p)] a section. Along a curve γ : [0, 1]→
M we choose s(t) = [γ̃(t), η(t)] with respect to a hori-
zontal lift of γ. Then, we define a covariant deriva-
tive of section s on associated vector bundle E
along curve γ at p0 = γ(0) by:

∇Xs ≡
[(
γ̃(0),

d

dt
η(γ(t))

∣∣∣
t=0

)]
.

35Quantities of type ρ are a type of mapping known as equivariant maps on P , in this case they are maps that commute with the
action of G:

Φ : P → (V, ρ), Φ ◦Rg = ρ(g−1) ◦ Φ.

For section s : M → E we can identify s(p) = [u, v] = [u,Φ(u)] and since this does not depend on the choice of u over p:
[ug,Φ(ug)] = [ug, ρ(g−1)Φ(u)] = [u,Φ(u)] = s(p), we have a one-to-one correspondence.

36Therefore, we can also say LM is the associated principal bundle of T rsM .
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It is very important to notice that this derivative does
not depend on the choice of horizontal lift γ̃. Say we
picked another lift γ̃′(t) = γ̃(t)g, g ∈ G:

s(t) = [γ̃(t), η(t)] = [γ̃′(t), ρ(g−1)η(t)],

[(
γ̃′(0),

d

dt

(
ρ(g−1)η(γ(t))

)∣∣∣
t=0

)]
=

[(
γ̃′(0)g−1,

d

dt
η(γ(t))

∣∣∣
t=0

)]
= ∇Xs.

Therefore, the covariant derivative can be understood
as a map:

∇ : Γ(M,E)→ Γ(M,E)⊗ Ω1(M), ∇s(X) ≡ ∇Xs,

for X ∈ X(M) and s ∈ Γ(M,E). Moving on to the local
case, a horizontal lift of a curve can always be written
as γ̃(t) = σigi(t), where gi : [0, 1]→ G is a unique func-
tion. Say the basis of V is {Ea}, then a frame field of
E along γ ea(t), can be written as:

ea(t) ≡ [σi(t), Ea] = [γ̃(t), ρ(gi(t)
−1)Ea].

The covariant derivative in terms of the local connection
form is then:

∇Xea = [σi,Ai(X)Ea] =
dxµ

dt
Abiµaeb,

that is:
∇ea = Abiaeb.

For a general section of E, s(p) = [σi(p), ζi(p)] =
ζai (p)ea, we can write:

∇Xs =

[(
σi,

dζi
dt

+Ai(X)ζi

∣∣∣∣
t=0

)]
=
dxµ

dt

(
∂ζai
∂xµ

+Aaiµbζbi
)
ea.

We can generalise the map ∇ to vector valued p-forms:

∇(s⊗ η) = (∇s) ∧ η + s⊗ dη, η ∈ Ωp(M).

The following can then be shown:

∇∇ea = eb ⊗Fbia,

for ea = [(σi, Ea)] ∈ Γ(Ui, E). The Ricci identity for a
section s(p) = ζa(p)ea(p) is then:

∇∇s = ea ⊗Faibζb.

Definition 4.22 If π : E →M is a vector bundle with
a symmetric inner product defined at every point p ∈M
by:

gp : π−1(p)⊗ π−1(p)→ R,

then a connection that preserves the inner product:

dg(s1, s2) = g(∇s1, s2) + g(s1,∇s2),

or:
dgab = Aciagcb +Acibgac,

is called a metric connection.

Now we make a brief detour to the concepts of torsion
and the Levi-Civita connection with the help of [14].

Definition 4.23 Let M be a differential manifold,
P (M,G) a principal bundle on it with a connection,
(F, ρ) a representation space of G, P×ρF an associated
vector bundle to P , and let there exist an isomorphism
κ : TM → TTpM , p ∈ M . A canonical (or solder)
form is a horizontal equivariant 1-form field on P , that
is, pointwise, a map:

θu : TuP → TF ; U 7→ u−1
∗ (κ−1π∗U),

where u ∈ P is understood as a map u : F → Tπ(u)M .

Definition 4.24 If a vector bundle admits a canonical
1-form it is said to be soldered to M .37

Example 4.4 A frame bundle LM and its associated
tangent bundle TM are soldered to M . In this case,
the canonical 1-form is nothing more then the form of
which the pullback by a section σ : U ⊆ M → P is the
coframe field:

σ∗θa = ea.

So θ for LM is a RdimM -valued 1-form of type id.
Since canonical 1-forms are linearly independent they
can be used as a global basis for horizontal forms on
LM . Therefore we can decompose the curvature with
respect to this basis as:

Ωab =
1

2
θc ∧ θd,

the components Ωabcd constitute a global function of type
id⊗ĩd⊗ ĩd⊗ ĩd. The traditional curvature tensor is the
local curvature of connection ω:

Rabcd = Rabcd ≡ σ∗Ωabcd.

Definition 4.25 LetM be a differential manifold, LM
its frame bundle with a connection form ω, and θ the
canonical form, then:

Θ ≡ Dθ ≡
(

dθa + ωab ∧ θb
)
Ea,

is called the torsion 2-form of connection ω. Compo-
nents Θa

bc are global functions on LM of type id⊗ĩd⊗ĩd.
Local torsion (usually just called torsion) is defined by
section σ : U ⊆M → P :

T a = T a ≡ σ∗Θa =
1

2
T abc e

b ∧ ec.
37Notice that dimV = dimM must hold.
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Definition 4.26 Let E = TM and ∇ be a metric con-
nection, then if torsion vanishes ∇ is called a Levi-
Civita connection.

The final note to make in this section is on the re-
duction of structure groups. The structure group of
a general (real) vector bundle is GL(n,R). However, if
this bundle has additional structure the structure group
is reduced to a subgroup. Therefore, the restriction of
a structure group to one of its subgroups corresponds
to the introduction of additional structure and may not
always be possible.38

Example 4.5 Say we have a manifold M , some of the
possible restrictions to LM are:

(a) O(p, q) ⊂ GL(n,R), corresponds to the introduction
of a metric tensor of signature (p, q) on M ;

(b) GL+(n,R) ⊂ GL(n,R), corresponds to the intro-
duction of an orientation on M ;

(c) SL(n,R) ⊂ GL(n,R), corresponds to the introduc-
tion of a volume form on M ;

(d) {e} ⊂ GL(n,R), corresponds to complete paral-
lelism on M .

If we have a connection ω on a principal bundle
P (M,G), and assume the Lie algebra is decomposable
g = h⊕ l. A connection on a subbundle Q(M,H) (H is
a subgroup of G) ωh can be produced by the decompo-
sition:

ω = ωh + ωl,

if l happens to be AdH -invariant (AdH l ⊆ l). In the
opposite direction, if we have a connection on Q we can
always extend it to P by relation: R∗gω = Adg ω, from
which it follows that:

ωqg = Adg Rg∗ωq, qg ∈ P.

This is obviously not the most general connection on P
however it is important because it is compatible with,
that is, it preserves, the additional structure that has
arisen from the reduction of the structure group.

This ends our introduction to fibre bundles and their
connections. We now, finally, have all the basic tools
needed to start the construction of characteristic classes
in the next section.

5 Characteristic classes
We are finally ready to give an exposition of charac-
teristic classes, a bridge between algebraic topology
and differential geometry. What we are interested in
is characterising the topology of fibre bundles, that is
how “much” they differ from trivial bundles. This will

(in most cases) be expressed as de Rham cohomology
classes associated to the curvature of the bundle. It will
be seen that the geometry of a bundle is a way to com-
pute completely topological quantities. (Based also on
[9].)

5.1 Invariant polynomial and Chern-
Weil theory

Definition 5.1 Let G be a Lie group and g its Lie al-
gebra. Define the space Sr(g) as the vector space of all
completely symmetric, multilinear C-valued functions
on g:

P̃ :

r⊗
g→ C,

and the ring S∗(g) as the formal sum

S∗(g) =

∞⊕
r=0

Sr(g)

with the product:

P̃ Q̃(X1, . . . , Xp+q)

=
1

(p+ q)!

∑
σ

P̃ (Xσ(1), . . . , Xσ(p))

· Q̃(Xσ(p+1), . . . , Xσ(p+q)),

where σ denote permutations of {1, . . . , p+ q}.

Definition 5.2 Let P̃ ∈ Sr(g) and g ∈ G, then if:

P̃ (AdgX1, . . . ,AdgXr) = P̃ (X1, . . . , Xr),

P̃ is called an Ad-invariant polynomial. The set of
all invariant polynomials of degree r is denoted Ir(G).

Definition 5.3 A homogeneous invariant polyno-
mial of degree r is a map P : g → C such that
∃P̃ ∈ Ir(G) for which:

P (X) ≡ P̃ (X, . . . ,X).

Definition 5.4 Any invariant polynomial P defines
also a symmetric, invariant and r-linear form by ex-
panding P (t1X1 + · · · trXr) as a polynomial in ti. The
coefficient of the highest order term multiplied by 1/r!
is invariant and symmetric and is called the polariza-
tion P̂ .

Definition 5.5 If P (M,G) is a principal bundle, obvi-
ously we can extend the domain of invariant polynomi-
als to g-valued p-forms on M by the definition:

P̃ (λ1, . . . , λr) ≡ λi11 ∧ . . . ∧ λirr P̃ (Ei1 , . . . , Eir ),

where λ ∈ Ωp(M, g) and {Ei} is a basis in g.

There are two points important to make:
38For example, if a manifold is non-orientable then the structure group cannot be restricted to GL+(n,R).
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(i) curvature on a principal bundle is a global form,
whereas the local curvature Fi is only defined with
respect to some local section. However, since
the transition between two coordinate patches is
given by the adjoint action Fj = Adt−1

ij
Fi, the

Ad-invariant polynomial of F is globally defined
because of this invariance;

(ii) local curvature is defined with respect to some
local section (gauge). The field strength 2-form
gauge transforms adjointly, F ′ = Adg−1 F , there-
fore the invariant polynomial is gauge invariant
(does not depend on the choice of defining sec-
tion).

Theorem 5.1 (Chern-Weil) If P ∈ Ir(G), then:

(i) P (F ) ∈ Z2r(M);

(ii) if we have two local curvatures F and F ′ corre-
sponding to two connections A and A′:

P (F )− P (F ′) ∈ B2r(M).

The first part of the theorem is obvious since P (Ω) is
Ad-invariant and horizontal:

R∗gP (Ω) = P (Ω) ⇒ P (Ω) is of type id

dP (Ω) = DP (Ω)

= P̃ (DΩ, . . . ,Ω) + · · ·+ P̃ (Ω, . . . ,DΩ) = 0

dP (F ) = dP (σ∗Ω) = σ∗ dP (Ω) = 0.

The second part is more complicated, however, it can
be shown that:

P (F ′)− P (F ) = d

[
r

∫ 1

0

dtP̂ (A′ −A,Ft, . . . , Ft)
]
,

where Ft = F + tD(A′ −A) + t2(A′ −A)2 is the inter-
polating field strength of At = A + t(A′ − A).39 This
means that an invariant polynomial defines a cohomol-
ogy class of M . From this it follows that the integral
of an invariant polynomial over a 2m-dimensional man-
ifold without a boundary (a 2m-cycle) M does not de-
pend on the connection (and then also curvature) cho-
sen,∫

M

Pm(F ′)−
∫
M

Pm(F ) =

∫
M

dTPm(A′, A)

=

∫
∂M

Pm(A′, A) = 0.

An invariant polynomial does also not depend on the
cycle it is integrated over within the same homology

class (it is invariant to transformations of the kind
M2m 7→ M2m + ∂M2m+1). Then, by construction we
have a topological invariant:∫

M

P (F ).

Definition 5.6 A characteristic class is a mapping
χ associating to each fibre bundle over a manifoldM an
element of the de Rham cohomology ring H∗(M) such
that if two bundles (E1 and E2) are homeomorphic to
each other χE1

= χE2
.

Theorem 5.2 Let P ∈ I∗(G) and E be a fibre bundle
over M with structure group G. The mapping

χE : I∗(G)→ H∗(M)

is a homomorphism called a Weil homomorphism. A
Weil homomorphism has the following naturality prop-
erty:

χf∗E = f∗χE ,

for a differentiable mapping between manifolds f .

It is obvious now that an invariant polynomial defines
a characteristic class, some examples of which will be
given in the following sections. A characteristic class
measures how much a bundle differs from a product
bundle, that is how “twisted” it is. Therefore, the fol-
lowing theorem is no surprise.

Theorem 5.3 All characteristic classes of a trivial
(product) bundle are trivial.

5.2 Pontryagin classes
Observe that the following determinant can be written
as a polynomial in λ ∈ R:

det(λ1 +A) =

n∑
k=0

λn−kPk(A),

where A ∈ Mn(R) is a real n × n matrix. The coeffi-
cients Pk(A) of λn−k are polynomials in matrices A. A
simple example is for n = 2:

det(λ1 +A) = λ2 + λ trA+ detA.

If we understand A as an element of gl(n,R) (or any
of its subalgebras), it is trivial to show that this de-
terminant is Ad-invariant and, therefore, so must the
polynomials Pk(A) be:

det(AdB(λ1 +A)) = det(λB1B−1 +BAB−1)

= det(B (λ1 +A)B−1)

= det(λ1 +A).

39The expression in square brackets is called the transgression of Pr, TPr:

TPr(A
′, A) ≡ r

∫ 1

0
dtP̂ (A′ −A,Ft, . . . , Ft).

20



Lets examine the case of A ∈ o(n) ⊂ gl(n,R) further,
A must be antisymmetric, AT = −A so

det(λ1 +A) = det(λ1 +A)T

= det(λ1 + (−A))

⇒ Pk(A) = (−1)kPk(−A)

⇒ P2k+1(A) = 0.

Returning to bundles; say we have a real n-dimensional
vector bundle, in general its structure group is GL(n,R)
so it has a principal GL(n,R)-bundle associated to it.
However, if we construct a fibre metric on this vec-
tor bundle then it can be reduced to O(p, q) (where
p + q = n). A curvature on a principal O(p, q)-bundle
is antisymmetric. Then, we can extend this connection
(and then the curvature) to the full bundle and, since
it is compatible with o(p, q) it must too be antisymmet-
ric (ΩT = −Ω). All this consideration also descends
to the associated vector bundle (although only through
sections with values in the reduced principal bundle)40
and its curvature F .41

Definition 5.7 Let π : E →M be a vector bundle with
curvature F , then:

p(E) ≡ det

(
1 +

F
2π

)
=

n∑
k=0

Pk(F/2π) ≡
n∑
k=0

Pk(F),

is the total Pontryagin class where the 4j-forms,
pj(E) ≡ P2j(F), are called the j-th Pontryagin
classes.42 The integral of a Pontryagin class over a
4j-cycle,

pj ≡
∫
M4j

pj(E),

is called the j-th Pontryagin number and is a topo-
logical invariant (and always an integer).

Obviously we need at least a 4-dimensional manifold to
benefit from Pontryagin classes. The first three Pon-

tryagin classes are given below.

p0(E) = 1

p1(E) = −1

2

(
1

2π

)2

trF

p2(E) =
1

8

(
1

2π

)4 (
(trF2)2 − 2 trF4

)
...

pbj/2c =

(
1

2π

)j
detF

It can be shown that:

p(E ⊕ F ) = p(E) ∧ p(F ).

5.3 Chern classes

Lets construct a new determinant for matrix A, an an-
tihermitian square n× n matrix (A† = −A), as:

det(λ1 + iA) =

n∑
k=0

λn−kPk(iA).

This determinant is real:

det(λ1 + iA) = det(λ1 + iA)†

= det(λ1− iA†) = det(λ1 + iA),

and, therefore, so is the polynomial Pk(iA). Moving
on to a complex vector bundle with fibre Cn now, it
has a principal GL(n,C)-bundle P̃ (M,GL(n,C)) asso-
ciated to it. Say we have a connection ω̃ on it and say
Ω̃ is its curvature 2-form. The curvature is a gl(n,C)-
valued 2-form, in matrix representation over Cn it is
a square n × n matrix with C-valued 2-form elements
(Ω̃ab = αab + iβab , α

a
bµν(ũ), βabµν(ũ) ∈ R, u ∈ P̃ ). Repeat-

ing the procedure of Pontryagin classes, we introduce a
Hermitian fibre metric.43 The introduction of this ad-
ditional structure induces a reduction in the structure
group GL(n,C) to U(n) to which, in matrix represen-
tation, correspond unitary matrices. Therefore we now
have a smaller U(n) principal bundle P (M,U(n)) with

40It was shown, however, that Ad-invariant polynomials do not depend on the choice of section.
41In matrix representation over the fibre vector space F ≡ ρ′(F ).
42More often written as p(F ) and pj(F ) in literature, however this is misleading as the class does not depend on the choice of
connection.

43For details see [11], [10] and [1].

Definition 5.8 A complex (0,2)-type tensor field g ∈ Γ(E ⊗ E)∗ on a vector bundle E over a(n almost) complex manifold M is
called a Hermitian metric if it satisfies for Z,W ∈ Γ(E):

(i) g(Z,W ) = g(W,Z);

(ii) g(Z,Z) > 0, for any non-zero vector field.

Theorem 5.4 A complex manifold always admits a Hermitian metric.
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connection ω and curvature Ω both u(n)-valued. In ma-
trix representation curvature Ω is an n×n antihermitian
matrix of 2-forms. Motivated by the determinant from
the beginning we define the following.

Definition 5.9 Let π : E → M be a complex vector
bundle with fibre Cn. Then, the structure group G is a
subgroup of GL(n,C), the connection and curvature, A
and F , are g-valued. The total Chern class c(E) is
given by:

c(E) ≡ det

(
1 +

iF
2π

)
=

n∑
k=0

Pk(iF/2π) ≡
n∑
k=0

ck(E),

where ck(E) are the k-th Chern classes. The integral
of the k-th Chern class is a topological invariant,

ck ≡
∫
M2k

ck(E),

called the Chern number.

On anm-dimensional manifold Chern classes with 2k >
m or k > n vanish identically. Again, since ck(E)
is closed, it defines an equivalence class [ck(E)] ∈
H2k(M). The first three Chern classes are given be-
low.

c0(E) = 1

c1(E) =
i

2π
trF

c2(E) =
1

2!

(
i

2π

)2 (
(trF)2 − trF2

)
...

ck(E) =

(
i

2π

)k
detF

The total Chern class of a Whitney sum bundle is:

c(E ⊕ F ) = c(E) ∧ c(F ).

Since the total Chern class of a trivial bundle is 1, the
following can be shown: if E = E1⊕E2 and E2 is trivial,
then:

ci(E) = 0, dimE1 + 1 ≤ i ≤ dimE1 + dimE2.

Theorem 5.5 (Splitting principle) Let π : E → M
be a n-dimensional complex vector bundle. The to-
tal Chern class of E is identical to that of bundle
L1 ⊕ L2 ⊕ · · · ⊕ Ln:

c(E) = c(L1) ∧ . . . ∧ c(Ln).

5.4 Chern characters and the Chern-
Simons form

Another characteristic class are the Chern characters,
important because of their appearance in the Atiyah-
Singer index theorem.

Definition 5.10 Let π : E → M be a complex vector
bundle with curvature F and fibre dimension n, then
the total Chern character is:

ch(E) ≡ tr exp

(
iF
2π

)
=

n∑
j=0

1

j!
tr

(
iF
2π

)j
≡

n∑
j=0

chj(E),

where we have defined the j-th Chern character
chj(E).

The two following properties of Chern characters can
be shown:

ch(E ⊗ F ) = ch(E) ∧ ch(F ),

ch(E ⊕ F ) = ch(E) + ch(F ),

and from the splitting principle:

ch(E) = ch(L1) + · · ·+ ch(Ln),

where Li are complex line bundles. Finally we define
the integral of the j-th Chern character:

Chj(E) ≡
∫
M

chj(E).

The Chern character can also be expressed in terms of
Chern classes:

ch0(E) = n,

ch1(E) = c1(E),

ch2(E) =
1

2

(
c1(E)2 − 2c2(E)

)
,

... .

Definition 5.11 Let Pj(E) be an arbitrary 2j-form
characteristic class. By Poincaré’s lemma, since it is
closed we can write Pj(E) locally as:

Pj(F) = dQ2j−1(A,F), Q2j−1(A,F) ∈ Ω2j−1(M, g).

Q2j−1(A,F) is called the Chern-Simons form of
Pj(E).

From section 5.1 it is obvious that the Chern-Simons
form can be expressed as:

Q2j−1(A,F) = TPj(A, 0) = j

∫ 1

0

dtP̂j(A,Ft, . . . ,Ft),

(see footnote on page 20) where Ft = tF + (t2 − t)A2.
It is important to note that this is valid only for a local
chart on which A′ can be set to zero; however, since a
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Chern-Simons form is only defined locally this is con-
sistent. Observe the following:∫

M

Pl(F) =

∫
M

dQ2l−1(A,F) =

∫
∂M

Q2l−1(A,F),

for dimM = 2l, this means that a Chern-Simons form is
to be understood as a characteristic class of the bound-
ary of M . We calculate the first three Chern-Simons
forms of the Chern characters. Since the polarization
is the symmetrised trace str, from the definition of the
j-th Chern character we arrive at:

Q2j−1(A,F) =
1

(j − 1)!

(
i

2π

)j∫ 1

0

dt str(A,Ft, . . . ,Ft).

Then it follows that the first three Chern-Simons forms
of the Chern character are:

Q1(A,F) =
i

2π
trA,

Q3(A,F) =
1

2!

(
i

2π

)2

tr

(
AdA+

2

3
A3

)
,

Q5(A,F) =
1

3!

(
i

2π

)3

tr

(
A(dA)2 +

3

2
A3 dA+

3

5
A5

)
.

It is important to note that a Chern-Simons form is a
polynomial of both connection A and field strength F
and is therefore not necessarily gauge invariant since
a connection does not transform adjointly (remember
that A′ = Adg−1 A + S∗θ).44 It can be shown that
the Chern-Simons form of the Chern character gauge
transforms by a locally exact form.

5.5 Euler classes and the Gauss-Bonnet
theorem

So far we have constructed characteristic classes from
determinants and traces. There is also a third option.

Definition 5.12 Let V be an even-dimensional vector
space (dimV = 2m) and V ∗ its dual space with bases
{Ea} and {Ea} respectively. Also, let A be an antisym-
metric 2m × 2m matrix (AT = −A), then we define
2-form:

αEA ≡
1

2
AabE

a ∧ Eb ∈ Λ2V ∗,

with respect to basis {Ea}. The Pfaffian of matrix A
is defined by the relation:

αEA ∧ . . . ∧ αEA ≡ m! Pf(A) E1 ∧ . . . ∧ E2m.

The Pfaffian has the following properties:

(i) explicitly, it is given by

Pf A =
1

2mm!
εa1a2···a2m−1a2mAa1a2 · · ·Aa2m−1a2m ;

(ii) if B ∈ GL(2m,R) and B is its representation in
V , then:

αEBTAB = αEBA ,

or:
Pf(BTAB) = detB Pf A;

(iii) (Pf A)2 = detA.

Because of these properties the Pfaffian can be used to
construct a characteristic class. From property (ii) we
see that if B ∈ SO(2m):

Pf(BTAB) = Pf(B−1AB) = Pf(AdB A) = Pf A.

Therefore, if we can reduce our structure group to
SO(2m), we can use the Pfaffian to construct a char-
acteristic class for even-dimensional manifolds. Such
a reduction is made by, in addition to defining a fibre
metric, choosing an orientation in each fibre. This is
not always possible.45

Definition 5.13 Let π : E → M be a real orientable
vector bundle with 2m-dimensional fibre. The Euler
class is:

e(E) ≡ Pf

(
F
2π

)
=

1

(4π)mm!
εa1a2···a2m−1a2mFa1a2 ∧ . . . ∧ Fa2m−1a2m ,

where Fab ≡ δacFcb .

The two and four-dimensional Euler classes are:

e(E) =
1

2π
F1

2 ,

e(E) =

(
1

2π

)2

(F1
2F3

4 −F1
3F2

4 + F1
4F2

3 ).

For the case of E = TM since the tangent bundle is
canonically defined for a manifold M , the Euler class is
a topological characteristic over M itself, so it is often
written e(M) ≡ e(TM). From the expression for the
two-dimensional Euler class we get:

e(M2) =
1

2π
Kω,

where K is the Gaussian curvature and ω the volume
element. The integral of this quantity over a closed
2-manifold is the Euler characteristic. This is known
as the Gauss-Bonnet theorem. Its generalization to
higher 2m dimensions is the following theorem.

Theorem 5.6 (Chern-Gauss-Bonnet or gener-
alised Gauss-Bonnet) For any closed and oriented 2m-
dimensional manifold M the following holds:∫

M

e(M) = χ(M).

44The precise transformation is given by Cartan’s homotopy operator which will not be given here.
45An example of this is the Möbius strip, understood as a vector bundle over a circle.
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5.6 Stiefel-Whitney classes
The final characteristic class is slightly different in that
it cannot be expressed in terms of the curvature of the
bundle. Its main importance is in the fact that the sec-
ond Stiefel-Whitney class determines whether a mani-
fold admits a spin or not. Therefore, we begin with the
definition of a spin group.

Definition 5.14 A spin group Spin(p, q) is the two-
sheeted covering of the SO(p, q) group. For n = p+ q >
2 it coincides with the universal covering.

Some accidental isomorphisms with the spin groups are:

Spin(1, 1) ∼= GL(1,R),

Spin(2, 1) ∼= SL(2,R),

Spin(3, 1) ∼= SL(2,C),

Spin(2, 2) ∼= SL(2,R)× SL(2,R),

Spin(1) ∼= O(1),

Spin(2) ∼= U(1),

Spin(3) ∼= SU(2),

Spin(4) ∼= SU(2)× SU(2).

Before defining Stiefel-Whitney classes we need to de-
fine spin bundles and Čech cohomology groups.

Definition 5.15 Let (M, g) be an m-dimensional ori-
entable (pseudo) Riemannian manifold. The spin
bundle SM is a principal Spin(p, q)-bundle with an
equivariant function of type ρ, ρ being the spinor rep-
resentation of group Spin(p, q) such that SM is a two-
sheeted covering of OM , the total space of the bundle
of (right-handed) orthonormal frames π : OM →M .

Let tij be transition functions of LM , then a spin struc-
ture on M must have the following properties:

ϕ(t̃ij) = tij ,

t̃ij t̃jk t̃ki = 1,

t̃ii = 1;

where homomorphism ϕ is the two-sheeted covering
Spin(p, q)→ SO(p, q).

Definition 5.16 Let Z2 ≡ Z/2Z = {−1,+1} be the
multiplicative cyclic group, and let M be a manifold.
A Čech r-cochain is a totally symmetric function
f(i0, . . . , ir) ∈ Z2 on Ui0 ∩ · · · ∩ Uir 6= ∅ ⊆M :

f(iσ(0), . . . , iσ(r)) = f(i0, . . . , ir),

where σ is a permutation of {0, . . . , r}. The group of
all Čech r-cochains is denoted Cr(M,Z2).

Definition 5.17 Define the coboundary operator
δ : Cr(M,Z2)→ Cr+1(M,Z2) by:

(δf)(i0, . . . , ir+1) =

r+1∏
j=0

f(i0, . . . , ij−1, ij+1, . . . , ir).

The coboundary operator is nilpotent:

δ2f = 1.

Definition 5.18 Define the:

(a) cocycle group Zr(M,Z2) by:

Zr(M,Z2) = {f ∈ Cr(M,Z2) | δf = 1},

(b) coboundary group Br(M,Z2) by:

Br(M,Z2)

= {f ∈ Cr(M,Z2) | f = δf ′, f ′ ∈ Cr−1(M,Z2)}.

Definition 5.19 The Čech cohomology group
Hr(M,Z2) is defined by:

Hr(M,Z2) = ker δr/ im δr−1

= Zr(M,Z2)/Br(M,Z2).

Finally, a Stiefel-Whitney class is a characteristic class
that takes its values in Hr(M,Z2). We will define the
first two.

Definition 5.20 Let (M, g) be a (pseudo) Riemannian
manifold of dimension m, then the structure group is
O(p, q). If {Ui} is a simple open covering of M then
define function:

f(i, j) ≡ det tij = ±1,

where tij : Ui ∩ Uj → O(p, q) is the transition function
of the local frames, eiα = tijeαj. The first Stiefel-
Whitney class is then:

w1(M) ≡ [f ] ∈ H1(M,Z2).

It is trivial to show for f ∈ Zr(M,Z2):

δf(i, j, k) = det tij det tjk det tki = 1.

Theorem 5.7 If TM is the tangent bundle with fibre
metric, M is orientable if and only if w1(M) is trivial.

Definition 5.21 Let M be an orientable m-
dimensional manifold and TM its tangent bundle with
fibre metric. If tij ∈ SO(p, q) are transition functions,
define t̃ij ∈ Spin(p, q) such that:

ϕ(t̃ij) = tij , t̃ji = t̃−1
ij ,

where ϕ : Spin(p, q) → SO(p, q) is the 2:1 covering ho-
momorphism. Define a Čech 2-cochain f : Ui ∩ Uj ∩
Uk → Z2 by:

t̃ij t̃jkt̃ki = f(i, j, k)1 ∈ kerϕ = {±1}.

The equivalence class defined by f is the second
Stiefel-Whitney class w2(M) ≡ [f ] ∈ H2(M,Z2).

Since a spin bundle must have t̃ij t̃jk t̃ki = 1 satisfied,
this is only possible if f(i, j, k) = 1. This leads us to
the following theorem.

Theorem 5.8 If TM is the tangent bundle with fibre
metric of an orientable manifold M , then there exists a
spin bundle over M if and only if w2(M) is trivial.
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5.7 Physical examples

In addition to [1] in example 5.3 [13] was also used.

Example 5.1 (2D Gravity) The standard Einstein-
Hilbert action for gravity is:

S[g] ∼
∫
R
√
|g|dnx,

where R is the scalar curvature (Ricci scalar). For two-
dimensional gravity this would read:

S[g] ∼
∫
R
√
|g|d2x ∼

∫
Kω,

where ω =
√
|g|d2x is the volume element, however,

this is the integral of the two-dimensional Euler class.
Therefore, since a characteristic class transforms up to
an exact form upon change of connection, this results
in a surface term not affecting the equations of motion.
This means the standard Einstein-Hilbert action does
not give dynamical results in 2D.

Example 5.2 (Dirac monopole) The Dirac
monopole is defined on Euclidean space with the ori-
gin removed. R3 − {0} (for simplicity everything is
assumed to be time-independent) is homotopic to S2,
therefore, the appropriate principal bundle is the U(1)-
bundle: P (S2,U(1)). S2 is covered by two charts:

UN ≡
{

(θ, φ)
∣∣ 0 ≤ φ ≤ 2π, 0 ≤ θ ≤ π

2
+ ε
}
,

US ≡
{

(θ, φ)
∣∣ 0 ≤ φ ≤ 2π,

π

2
− ε ≤ θ ≤ π

}
.

Let ω be a connection form on P , and σN and σS be
sections on UN and US respectively, then we have the
gauge potentials (local connection forms) given by:

AN = σ∗Nω, AS = σ∗Sω.

Gauge potentials AN and AS can be chosen to be of the
form:

AN = ig(1− cos θ) dφ, AS = −ig(1 + cos θ) dφ,

with g the strength of the monopole. The transi-
tion function defined on an infinitesimally thick ribbon
around the equator is:

tNS(φ) = exp−iα(φ), α : S1 → R.

Therefore, the gauge potentials are related by:

AN = t−1
NSAStNS + t−1

NS dtNS = AS − idα,

it follows then that:

dα = i(AN −AS) = −2g dφ.

For the transition functions to be well defined the inte-
gral of function α over 2π must be a multiple of 2π:

∆α =

∫ 2π

0

dα = −2g

∫ 2π

0

dφ = −4πg ∈ 2π Z,

or −2g ∈ Z. On the other hand we have the topological
invariant from the Chern character:

chP = 1 +
iF

2π
;

Z 3 Ch1 P =

∫
S2

ch1 P

=

∫
S2

− g

2π
sin θ dθ ∧ dφ = −2g.

Thus, the quantization of the magnetic monopole g is
a topological consequence, and its magnitude character-
izes the twisting of the principal P bundle.

Example 5.3 (Chiral anomaly) Let M be an even-
dimensional manifold (dimM = m = 2l) (for simplicity
in this case R2l) and ψ be the field of a massless Dirac
particle. The partition functional is:

Z =

∫
DADψDψ̄ exp

∫
M

ψ̄i /Dψ dmx,

where i /D = is the Dirac operator. A chiral transforma-
tion is:

ψ(x)→ eiγ
m+1α(x)ψ(x)

ψ̄(x)→ ψ̄(x)eiγ
m+1α(x)

or infinitesimally,

ψ → ψ + iα γm+1ψ

ψ̄ → ψ̄ + iα ψ̄γm+1.

Classically, the action is invariant with respect to this
chiral symmetry because of the conservation of the axial
current jµm+1(x) = ψ̄(x)γm+1γµψ(x):

S[A,ψ, ψ̄] =

∫
M

ψ̄i /Dψ dmx

→
∫
M

ψ̄i /Dψ dmx− i
∫
M

α(x)∂µj
µ
m+1(x) dmx

∂µj
µ
m+1(x) = 0.

In the quantum case, however, in the partition func-
tional we must also transform the path integral measures
Dψ and Dψ̄. The Jacobian of this transformation can
be shown to be:

DψDψ̄ → DψDψ̄ exp−2i

∫
M

α(x)
∑
i

ψ†i (x)γm+1ψi(x),
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where ψi are the eigenstates of the Dirac operator,
i /Dψi = λiψi. The full transformation of the path inte-
gral is then:

Z →
∫

DADψDψ̄ exp

∫
M

(
ψ̄i /Dψ

− iα∂µjµm+1 − 2iα
∑
i

ψ†i γ
m+1ψi

)
dmx,

therefore, the anomalous axial Ward identity is:46

〈∂µjµm+1〉 = −2
∑
i

〈ψi|γm+1|ψi〉.

Calculation of the right hand side for m = 4 produces:

〈∂µjµ5 〉 = − 1

16π2
tr εµνρσFµνFρσ,

but this is nothing other then the second Chern charac-
ter ch2 F :∫

M

ch2 F =

∫
M

1

2!

(
i

2π

)2(
1

2
Fµν dxµ ∧ dxν

)2

=

∫
M

− 1

16π2
tr εµνρσFµνFρσ d4x

=

∫
M

〈∂µjµ5 〉d4x.

Generalising this to an arbitrary dimension m = 2l it
follows that,

Chl F ≡
∫
M

chl F =

∫
M

〈∂µjµm+1〉dmx,

the chiral anomaly (also called the axial or Abelian
anomaly) is a topological effect of the twisting of the
spin complex and is the consequence of the Atiyah-
Singer index theorem.47

Example 5.4 (Euler characteristic of S2) Let
M = S2 be endowed with a Levi-Civita connection of
curvature R. Consider TS2, if we choose the coor-
dinates on S2 as (θ, φ) in the standard manner, the
coframe fields, ea = σ∗θa, can be chosen to be:

e1 = dθ, e2 = sin θ dφ.

From this we can calculate the components of the cur-
vature:

R1
2 = e1 ∧ e2, R2

1 = −e1 ∧ e2,

and then the trace:

trR2 = −2(e1 ∧ e2)2.

Symbolically, the first Pontryagin class of TS2 is:48

p1(TS2) = − 1

8π2
trR2 =

1

4π2
(e1 ∧ e2)2

=

(
1

2π
sin θ dθ ∧ dφ

)2

.

As the Euler class is just the square of the Pontryagin
class it is then given by:

e(S2) =
1

2π
sin θ dθ ∧ dφ,

in agreement with results from section 5.5 for two-
dimensional manifolds: e(E) = 1

2πR
1
2. Integrating the

Euler class we obtain:∫
S2

e(S2) =
1

2π

∫ 2π

0

dφ

∫ π

0

sin θ dθ = 2,

the Euler characteristic of a sphere as per the gener-
alised Gauss-Bonnet theorem.

Example 5.5 (Massive vector field) Let M be a
three-dimensional manifold and A a connection form on
a principal U(1)-bundle on it. The second Chern char-
acter is ch2 F = − 1

8π2F ∧ F , since the gauge group is
U(1).49 Lets find the Chern-Simons form of this char-
acter, we guess the form to be:

Q3 ∼ F ∧A,
dQ3 ∼ dF ∧A+ F ∧ dA = F ∧ F ;

⇓

Q3 = − 1

8π2
F ∧A,

where the Bianchi identity was used (dF = 0 for U(1)).
This is in agreement with the explicit result obtained
in section 5.4 for the third Chern-Simons form of the
Chern character:

Q3(A,F ) =
1

2!

(
i

2π

)2

tr

(
A ∧ dA+

2

3
A3

)
= − 1

8π2
F ∧A,

46Since the vacuum expectation value of an arbitrary operator H in the path integral formalism is:

〈H〉 =
1

Z

∫ ∏
i

DADφiH(A, φi) expS[A, φi]; Z =

∫ ∏
i

DADφi expS[A, φi],

Z being the partition functional of the given theory.
47The complex of two eigenspaces of sections of the spin bundle (those with positive and those with negative chirality) generated by
the Dirac operator D.

48It is actually zero because one cannot have a 4-form on a two-dimensional manifold, however this is unimportant since it is only a
tool to compute the “square root” i.e. the Euler class.

49Again, it is actually zero, but for the purposes of this calculation we pretend it is not.
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in the case of U(1). Since the Chern-Simons form of
a Chern character gauge transforms by an exact form,
we can build a gauge invariant action from it (up to
constant factors):

L d3x = −1

4
FµνF

µν d3x+
1

4
mεµνρFµνAν d3x

= −1

2
F ∧ ∗F +

1

4
mF ∧A.

The gauge invariance trivially follows as for U(1) F
does not transform and A transforms as A → A + df
for some function f :

L → −1

2
F ∧ ∗F +

1

4
mF ∧A+

1

4
mF ∧ df

= −1

2
F ∧ ∗F +

1

4
mF ∧A+

1

4
m ( d(fF )− f dF )

= −1

2
F ∧ ∗F +

1

4
mF ∧A+

1

4
m d(fF ).

An exact form only contributes on the boundary which
makes this action gauge invariant according to the usual

assumptions that fields die off sufficiently quickly to-
wards the boundary. The Euler-Lagrange equations pro-
duce the following field equation:

∂µF
µν − 1

2
mεµνρFνρ = 0.

However, it pays off to view it as an equation of forms
as the following transformations are much more com-
pact in coordinate-free notation:

∗ d∗F +m ∗ F = 0, d∗F +mF = 0.

And consequently,

∗d∗ d∗F −m2 ∗ F = 0,

m
(� +m2)(∗F )µ = 0.

This is nothing else but the field equation of a massive
vector field. Therefore, the Chern-Simons form of the
second Chern character describes the mass term of the
action of a massive vector field in 3D.
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