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The purpose of this article is to provide a convenient overview of content needed to fully under-
stand derivation of the first law of black hole thermodynamics in the extended phase space embedded
in the context of the usual first law derivation. Here by the extended phase space we mean including
cosmological constant Λ as a thermodynamic variable equivalent to pressure which makes black hole
mass no longer equivalent to internal energy, rather equivalent to enthalpy. We will also recover the
actual result basing our analysis on derivation given in the article by David Kastor, Sourya Ray and
Jennie Traschen11 and recapitulated in the Appendix A of the article by David Kubizňák, Robert
B. Mann and Mae Teo 12.

I. INTRODUCTION

Pondering upon the idea of relationship between grav-
itation, thermodynamics and quantum theory, the disci-
pline of black hole thermodynamics arose. Inception of
that idea may be traced to the early 1970s firstly with
Hawking formulating the concept of a black hole’s abso-
lute horizon and proving that the surface areas of abso-
lute horizons always increases. Such law, as Bekenstein
noticed, closely resembled to the the second law of ther-
modynamics - the area theorem becomes the second law
of thermodynamics if one merely replace the phrase ’hori-
zon area’ by the ’entropy’. Nevertheless, important fact
was that Bekenstein didn’t think of it as it was mere co-
incidence, he interpreted it as the equivalence between
the notion of entropy and black hole horizon area. Lead
by that idea Bekenstein calculated the proportionality
of black hole entropy and black hole horizon area which
lead him to the notion of so called characteristic temper-
ature but noting: ’...we emphasize that one should not
regard TBH as the temperature of the black hole; such
an identification lead to all sorts of paradoxes, and is
thus not useful.’23 The idea that the laws of black hole
mechanics are in more than analogous relation to the
laws of thermodynamics (and that the notion of TBH is
not really paradoxical) wasn’t established until Hawking
proved that black holes radiate as though they actually
had temperature proportional to their surface gravity,
in a way similar to black body radiation. From then,
black hole thermodynamics established itself as a valid
discipline intending to investigate relationship between
gravity and quantum physics - as thermal properties of
ordinary system reflect the statistical mechanics of un-
derlying microstates, it is to be questioned does black
hole thermodynamics tells us something about the un-
derlying quantum gravitational states.
Black hole chemistry extends on the idea of thermody-
namics in the way that it actually extends the phase
space to accommodate the cosmological constant as a
thermodynamical variable. Needless to say, to explore
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black hole chemistry, we shall first explore some of the
relations of black hole mechanics on which we will base
our later formulation and argumentation. Also, in the ap-
pendix we provide recollection of crucial notions of gen-
eral relativity and differential geometry. The reader is
encouraged to refer to those, or to the references if any
mentioned notion is unfamiliar.
Technical note For simplicity we will assume Λ = 0 in all
derivations until chapter VII where non-vanishing Λ will
be recovered by substituing R→ R− 2Λ.

II. BLACK HOLE THERMODYNAMICS

The black hole thormodynamics was officially estab-
lished by Bardeen, Carter, and Hawking25 under the as-
sumption that the event horizon is a null hypersurface
generated by a corresponding Killing vector field, thus
associating the the four laws of black hole mechanics with
the four laws of thermodynamics. Although in this paper
we will focus our attention only on the first law, here we
state all of them for completeness:
0th The surface gravity κ is constant over the event hori-
zon of a stationary black hole.
This yields identification of surface gravity with the tem-
perature of the black hole radiation. It can be shown26

that the exact relation is:

T =
~

2π
κ (1)

1st For a black hole with a mass M

δM =
κ

8πG
δA

where κ is its surface gravity. As we said, surface gravity
is to be identified with the temperature of a black hole
radiation (κ ∼ T ), while area of the event horizon is now
associated with the entropy (A ∼ S) and the mass of the
black hole with internal energy (M ∼ Eint).
2nd The area A of a black hole’s event horizon can never
decrease.
This is Hawking’s area theorem24:

δA > 0
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3rd It is impossible to reduce the surface gravity κ to zero
in a finite number of steps.

III. LAGRANGIAN FORMULATION

Let us recall briefly Lagrangian formulation of a field
theory. Let ψ denote some tensorial field and let ψλ
be a smooth one-parameter family of field configurations
starting from ψ0 which satisfy appropriate boundary con-
ditions. We will denote by δψ derivation of ψλ along
parameter lambda:

δψ ≡ dψλ
dλ

∣∣∣∣
λ=0

(2)

Suppose that there exists a smooth tensor field χ dual
to ψ. We say that S is functionally differentiable at ψ0

if for all one parameter families we have

dS

dλ
=

∫
M

χδψ (3)

We call χ the functional derivative of S and denote it
as

χ =
δS

δψ

∣∣∣∣
ψ0

(4)

Now consider a functional S of the form

S[ψ] =

∫
M

L[ψ] (5)

where L is a local function of ψ and a finite number of
its derivatives:

L|x = L
(
ψ(x),∇ψ(x), . . . ,∇kψ(x)

)
(6)

S is called an action and L is called a
Lagrangian density if it is functionally differentiable and
if the field configurations ψ which extremize S

δS

δψ

∣∣∣∣
ψ

= 0 (7)

are the ones which are solutions of the field equation for
ψ.

Dynamical equations for ψ are obtained by introduc-
ing a variation that is arbitrary within V but vanishes
everywhere on ∂V if the variation is about the actual
path q (xα):

δψ|∂V = 0 (8)

Upon variation we get:

δS =

∫
V

(
∂L
∂ψ

δψ +
∂L

∂(∂αψ)
δ∂αψ

)√
−gd4x

=

∫
V

(
(
∂L
∂ψ

δψ +∇α
(

∂L
∂(∂αψ)

δψ

)
−∇α

(
∂L

∂(∂αψ)

)
δψ
√
−gd4x

=

∫
V

(
(
∂L
∂ψ
−∇α

(
∂L

∂(∂αψ)

))
δψ
√
−gd4x

+

∮
∂V

∂L
∂(∂αψ)

δψdΣα

The surface integral will vanish upon using relation (8)
giving:

δS = 0⇒ ∇α
∂L

∂(∂αψ)
− ∂L
∂ψ

= 0 (9)

We arrived at the Euler-Lagrange equation which de-
termine the field equations. This can be generalized to
higher order derivative dependence in L.

In general relativity, the field variable is the spacetime
metric gab defined on a four-dimensional manifold M .
The integral of a continuous n -form field φ over an n -
dimensional orientable manifold (with respect to the ori-
entation ε ) is given by:

I =

∫
φ(x)

√
|g|dnx (10)

where

ε =
√
|g|dx1 ∧ . . . ∧ dxn ≡

√
|g|dnx (11)

is invariant volume element IX.5.
The volume element itself depends on the field variable,
and hence its variation must be taken into account when
calculating functional derivatives. One choice would be
to incorporate the volume element into L but this would
mean that L would become a totally antisymmetric four-
index tensor rather than a scalar. Since the field variable
in this case is scalar, we would like Lagrangian to keep
its scalar property in order to ensure local Lorentz invari-
ance (no preferred frame of reference). Furthermore, one
should have in mind that first order partial derivative of
metric tensor is not tensorial quantity and we cannot ex-
pect L depending only on zeroth and first derivative of
metric to end up being a scalar object. In order to keep
its scalar property, L has to depend on second derivative
of metric tensor also. We define the action functional for
general relativity by:

S[gab] =

∫
V
L(gab(x), ∂cg

ab(x), ∂c∂dg
ab(x))

√
|g|dnx

(12)
where V is finite 4D volume and δV its 3D boundary.
We will assume that the boundary is simply connected
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domain. One could argue that the simplest scalar object
in which dependence on zeroth, first and second order
partial derivative of metric tensor would be packed is
Ricci scalar R, yielding Lagrangian density:

L =
√
−gR (13)

R is quantity which describes curvature and is defined by
contractions of Riemann curvature tensor (for definition
see Appendix, section IX.5):

Rab ≡ gcdRacbd
R ≡ gabRab

(14)

where Rab represents Ricci tensor. The action of GR is:

SG[g] = SH [g] + SB [g]− S0 (15)

where we have:

SH [g] =
1

16π

∫
V
R
√
−gd4x

SB [g] =
1

8π

∮
∂V

εK|h|1/2d3y

S0 =
1

8π

∮
∂V

εK0|h|1/2d3y

Here ε is equal to +1 where ∂V is timelike and -1
where ∂V is spacelike. Boundary is assumed to be
nowhere null (or at least null on the set of measure zero).
h denotes the determinant of the induced metric on the
boundary ∂V and K is trace of the extrinsic curvature
of the boundary (see (30)).

In the relation (15) we have SH [g] the Hilbert term
(also known as Einstein-Hilbert action) which is the
term associated with the bulk volume. It generates side
of Einstein equation containing Gab tensor. Then SB [g]
the boundary term and S0 will be the gravitational
action of the flat spacetime. The difference SB − S0 is
then well defined in the limit r → ∞, where r is spatial
radial coordinate, yielding a well defined gravitational
action for asymptotically flat spacetimes (SG → 0). K0

is extrinsic curvature of δV embedded in flat spacetime.
Notice that the boundary term was vanishing in case of
Lagrangian depending only on the zeroth and first order
partial derivative of the field ψ while here it is necessary
in order to make variation vanishing at the boundary, as
equation (8) suggests.

IV. HAMILTONIAN FORMULATION OF
GENERAL RELATIVITY

Recall that for field theory in the flat spacetime we
have Lagrangian density which depends on field and its
derivatives L(ψ, δαψ) and from that we calculate the as-
sociated canonical momentum π = δL

δtψ
. At the level

Figure 1. Foliation of spacetime by spacelike hypersurfaces
1

of Lagrangian density, we still had manifest Lorentz in-
variance but introducing time derivative in canonical mo-
mentum forces us to pick a Lorentz frame. So at the level
of Hamiltonian density H = πδtψ − L we lost manifest
Lorentz invariance. To generalise this to curved space-
time we have to consider more sophisticated approach,
such that would not jeopardize general covariance.
Notice that in the Hamiltonian approach to field the-
ory in flat spacetime we were really foliating Minkowski
spacetime in terms of stacks of t=const flat surfaces.
Considering time derivative really meant comparison of
field configuration in successive slices i.e. considering how
the field changes when we move from one hypersurface
to another. In curved spacetime we want to do it in a
similar manner but in a way which wouldn’t tie us to a
specific coordinate system.

IV.1. (3+1) decomposition

Let us consider foliation (refer to Figure 1 and Figure
7 for visual insight) of spacetime with arbitrary hyper-
surfaces - only condition constraining that arbitrariness
is that hypersurfaces should not intersect, as this would
produce ill defined coordinate system (for this reason we
are restricting our analysis to a finite patch). Let coor-
dinate system of our 4D space be some xα. We introduce
time function t(xα) scalar field such that t=const. on
each hypersurface Σt and such that it is unambiguously
defined. Though it may not correspond to time in our
coordinate system of course (as our choice of coordinate
system is still arbitrary), this is gives us notion of time in
a sense that it is monotonically increasing function tied
to our foliation, constant as in Minkowski space on each
hypersurface. The normal on the hypersuface nα ∼ ∂αt
with appropriate norm nαn

α = −1.
On each hypersurface we introduce a coordinate sys-

tem ya (see Figure1). In principle, we can choose on
each hypersurface coordinate system independently but
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what we actually want is to propagate coordinate system
picked on one hypersurface. For that purpose we intro-
duce congruence of curves γ (family of non-intersectig
curves) parameterized by t, intersecting our foliation so
that each curve is curve of constant ya. The curves are
not assumed to be orthogonal to foliation, though they
may chosen to be. Let tα denote vector field tangent
to the curves. If we look at the displacement along the
curve

dxα = tαdt (16)

and the change in t

dt =
∂t

∂xα
dxα =

(
∂t

∂xα
tα
)
dt (17)

⇒ tα∂αt = 1 (18)

Note that this construction gives us an alternative
choice of 4D coordinate system (t, yα). In general there
will be some relation xα = xα((t, yα)) yielding a system
of parametric relations for curves γ. Tangent vector field
to the congruence is given by:

tα =

(
∂xα

∂t

)
ya

(19)

and tangent to the hypersurface (coresponding to the dis-
placement on each Σt)

eαa =

(
∂xα

∂ya

)
t

(20)

Since:

∂2xα

∂ya∂t
= 0⇒ Lte

α
a = 0 (21)

where is Lie derivative

Lte
α
a = tµ∇µeαa − eµa∇µtα (22)

So tα is Lie transported along the tangent vectors of each
hypersurface and vice versa, eαa will be Lie transported
along the vector field tangent to the congruence of curves.
Since congruence is not orthogonal to the hypersurface
we will have:

nα = −N∂αt (23)

Notice that since nαe
α
a = 0 we have good choice of coor-

dinate system in terms of (nα, eαa ). N is a lapse function
- it is normal component of the flow vector in the basis
(nα, eαa ). In a sense N is measure of proper distance be-
tween two hypersurfaces. It will be useful to decompose
tα in terms of those as pictured on Figure 2:

tα = Nnα +Naeαa (24)

Figure 2. Decomposition of tangent congruence vectors tα

in terms of lapse and shift 1

Here Na represents shift function, tangent to the hy-
persurface. To finalise our discussion on (3+1) decompo-
sition we will find the metric in the (t, ya) coordinate sys-
tem following the decomposition of the displacement dxα

in terms of components along the congruence of curves
and components along the hypersuface:

dxα = tαdt+ eαady
a

= (Nnα +Naeαa )dt+ eαady
a

= Ndtnα + eαa (dya +Nadt)

ds2 = gαβdxαdxβ

= gαβ [Ndtnα + eαa (dya +Nadt)][Ndtnβ + eβb (dyb +N bdt)]

⇒

ds2 = −N2dt2 + hab (dya +Nadt) (dyb +N bdt) (25)

with projection of the spacetime metric on each hyper-
surface:

hab = gαβe
α
ae
β
b (26)

Relation (25) represents (3+1) decomposition. In
terms of this discussion the 4D volume element

√
−g

takes the simple factorised form:

√
−g = N

√
h (27)

IV.2. Calculating the Hamiltonian

For purposes of our discussion we will restrict our at-
tention on the gravitational part of the action, the part
yielding the Einstein tensor Gαβ in the Einstein equa-
tions. To work out the calculation we will first have to
invoke some useful relations in Technical note.

Technical note The Einstein equation for the gravita-
tional field of a matter-energy configuration described by



5

the energy-momentum tensor Tab is given by:

Gab = Rab −
1

2
Rgab = 8πTab (28)

where Rab represents Ricci tensor and R Ricci scalar. Rab
and R describe the curvature, as they are just contrac-
tions of the Riemannian curvature tensor as we will see
bellow. From this it will be useful to express Ricci scalar:

−Rgabnanb = 2
(
Gabn

anb −Rabnanb
)

−Rnbnb = 2
(
Gabn

anb −Rabnanb
)

R = 2
(
Gabn

anb −Rabnanb
) (29)

We will be working in terms of foliation, meaning in
terms of family of hypersurfaces Σ and associated nor-
mals. We will have the relations that are defined only
on Σ and which are purely tangent to the hypersurface.
To accomplish that we will pullback tensors defined on
the whole spacetime (in other words, we will project it
on the base space of Σ defined by the coordinate system

eαa ). We introduce the notation: Aa|b = ∇βAαeαae
β
b for

covariant derivative along the hypersurface.
The extrinsic curvature is defined as the gradient of the
normal field of the hypersurfaces:

Kab = ∇αnβeαae
β
b (30)

We also introduce the Gauss-Codazzi equation:

Rαβγδe
α
ae
β
b e
γ
c e
δ
d = Rabcd + ε (KadKbc −KacKbd) (31)

to have a relation between Rabcd and the full Riemann
tensor. Or alternatively:

Rµαβγn
µeαae

β
b e
γ
c = Kab|c −Kac|b (32)

The spacetime Ricci tensor is given by

Rαβ = gµvRµαvβ

= (εnµnν + hmneµme
v
n)Rµαvβ

= εRµαvβn
µnv + hmnRµανβe

µ
me

ν
n

(33)

and the Ricci scalar is

R = gαβRαβ

=
(
εnαnβ + habeαae

β
b

)
(εRµαvβn

µnν + hmnRµανβe
µ
me

v
n)

= 2εhabRµαvβn
µeαan

veβb + habhmnRµανβe
µ
me

α
ae
v
ne
β
b

(34)
where we used the Gauss-Codazzi equation. From this

we have:

Gabn
anb =

1

2

[
(3)R−KabK

ab +K2
]

(35)

where Kab is the extrinsic curvature of Σt and K it’s
trace.

The intention is to express everything in terms of ex-
trinsic curvature Kab because it will be easier to do the
variation of Lagrangian with respect to it. So let us also
rewrite the Ricci tensor Rab:

Rab = Rcacb

Rabn
anb = Rcacbn

bna

= − (∇a∇c −∇c∇a)ncna

= (∇ana) (∇cnc)−∇a (na∇cnc)
− (∇cna) (∇anc) +∇c (na∇anc)
= K2 −KacK

ac −∇a (na∇cnc) +∇c (na∇anc)

Last two terms are divergences and can be neglected for
the purposes of variation. This then yields:

Rabn
anb = K2 −KacK

ac (36)

Now we are ready to go back to the Hamiltonian cal-
culation. As we said, we will concentrate on the gravita-
tional term of the Lagrangian:

L =
√
−gR

= N
√
hR

= 2N
√
h
(
Gabn

anb −Rabnana
)

= 2N
√
h

(
1

2

[
(3)R−KabK

ab +K2
]
−K2 −KabK

ab

)
L = N

√
h
(

(3)R+KabK
ab −K2

)
(37)

where we used relation (27), (29), (35) and (36). Hamil-
tonian density is defined by:

H = πabḣab −
√
−gLbulk (qi, q̇i) (38)

where πab is canonical momentum as canonically conju-
gate variable of ḣab. Let us evaluate:

πab =
∂
√
−gL

∂ḣab

=
∂Kmn

∂ḣab

∂

∂Kmn

(
16π
√
−gL

)
=
√
hN

[
∂(3)R

∂ḣab
+
∂
(
KabK

ab
)

∂ḣab
− ∂K2

∂ḣab

]
=
√
h
(
Kab − habK

)
(39)

Recall that the purpose of (3+1) decomposition was to
keep Lorentz invariance at the level of Hamiltonian. We
provide that by promoting ∂tψ → Ltψ where Lt is Lie
derivative along the time flow. This gives us:

ḣab ≡ Lthab (40)

Substituting relation (26) we get:

ḣab = Lt

(
gαβe

α
ae
β
b

)
= (Ltgαβ) eαae

β
b (41)
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We also have Lie derivative of the metric along tα

Ltgαβ = ∇βtα +∇αtβ
= ∇β (Nnα +Nα) +∇α (Nnβ +Nβ)

= nα∂βN + nβ∂αN

+N (∇βnα +∇αnβ) +∇βNα +∇αNβ

where Nα = Naeαa . Projecting this along eαae
β
b gives

ḣab = 2NKab +Na|b +Nb|a (42)

where we used the notation for the intrinsic curvature
derivative of vector within the hypersurface:

Na|b = ∇βNαeαae
β
b (43)

This yields:

Kab =
1

2N

(
ḣab −Na|b −Nb|a

)
(44)

From (39) we have:

√
hKab =

(
πab − 1

2
πhab

)
(45)

where π ≡ habπab is the trace.
Hamiltonian density is then given by:

H = πabḣab − L (qi, q̇i)

= −
√
hN (3)R+

N√
h

[
πabπab −

1

2
π2

]
+ 2πabDaN

a

=
√
h

[
N

[
−(3)R+ h−1πabπab −

1

2
h−1π2

]
− 2Na

[
Da

(
h−1/2πab

)]
+ 2Da

(
h−1/2Naπab

)
=
√
h

[
N

[
−(3)R+ h−1πabπab −

1

2
h−1π2

]
− 2Na

[
Da

(
h−1/2πab

)]
(46)

where we introduced Da the covariant derivative oper-
ator with respect to hab on Σ in stead of vertical bar
notation to get expression as in1112. We write gravita-
tional Hamiltonian more compactly: H = NH +NaHa,
where

H = −R(d−1) +
1

|h|

(
π2

d− 2
− πabπab

)
Hb = −2Da

(
|h|− 1

2πab
) (47)

Notice that hamiltonian depends on the laps and shift
meaning it depends on the choice of flow (tαs of our
congruence of curves). It depends on how we choose to
slice our spacetime (choice of foliation Σt) and on how
we choose to pick our boundary (we tend to push the
boundary all the way to infinity where we constraint
hypersurfaces to asymptotically approach hypersurfaces

of some space e.g. flat space or AdS etc though we may
choose to have two component boundary as we will in
our discussion (cf.22)).

Note on picking the choice of foliation
Let us considere asymptotically flat spacetime and let
us constraint our hypersurfaces to approach surface of
constant time in Minkowski spacetime we would. Notice
that we still have freedom when it comes to flow choice,
meaning we still have the freedom to pick any N and
Na in tα = Nnα + Naeαa . But let’s make a chocie, let’s
pick N = 1 and Na = 0. Notice that this will give us
tα = nα which will point in the direction of timelike con-
stant vector in asymptotic Minkowski space. This means
that we have picked the flow to be asymptotic time trans-
lation. In this way evaluated hamiltonian is associated
with the notion of mass for the total spacetime. If we
pick a flow to be constraint with N = 0 and Na = 1
we will get asymptotic spatial translation. Hamiltonian
evaluated in this case would be total linear momentum.
If we pick N = 0 and Nα = φa = ya

φ̄
where φ̄ is rotational

coordinate in asymptotically flat spacetime, we would get
angular momentum of our spacetime.

Note on the initial value problem
To solve equations of motion we need to impose the ini-
tial values for the metric tensor and its derivative. First
step is making an arbitrary choice of a spacelike hyper-
surface and choose one of them as the surface on which we
will specify initial data. We define some coordinate sys-
tem on hypesurface and decompose the specatime metric
gαβ in terms of components along the hypersurface and
components that characterize displacements away from
the hypersurface. Initial values for the spacetime metric
is given by intrinsic metric hab. Given that, it is to be
noticed that this implements the fact that the choice of
coordinates is arbitrary as the initial values for gab can
only be the six components of the induced metric hab
leaving the remaining four components arbitrary.
Next we need to fix the initial values for the time deriva-
tive of the metric. It is described by extrinsic curvature
tensor Kab which can be seen from the fact that it Kab

carries information about the derivative of the metric in
the direction normal (i.e. time derivative) to the hyper-
surface.
Therefore the initial-value problem consist in specifying
two symmetric tensor fields, hab and Kab, on a spacelike
hypersurface Σ. But hab and Kab are not arbitrary, they
are related to Gab and curvature tensor in way we have
seen in a technical note above, i.e. there exist constraint
equations fixing our initial value tensor fields. Presence
of such constraints in the Hamiltonian formulation is a
characteristic feature of gauge theories or generally co-
variant theories.
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IV.3. Stationary and axially symmetric spacetimes
(Komar formulae and pertubation)

As we said in Note on picking the choice of foliation,
Hamiltonian evaluated for the flow picked to be associ-
ated with asymptotic time translation gives us the notion
of mass for the total spacetime and a flow associated with
asymptotic rotational translation gives us angular mo-
mentum of the total spacetime. Specifically, for station-
ary and axially symmetric spacetimes we have formulae
know as Komar formulae:

M = − 1

8π
lim
St→∞

∮
St

∇αξβ(t)dSαβ (48)

and

J =
1

16π
lim
St→∞

∮
St

∇αξβ(φ)dSαβ (49)

where we denoted Killing vectors with ξ(t) and ξ(φ) and
the surface element is given by

dSαβ = −2n[αrβ]

√
σd2θ (50)

where nα and rα are the timelike and spacelike normals
to St respectively. Surface St is 2D surface, boundary
of hypersurface Σ. Our intrinsic coordinate system de-
fined on a St is ya = (λ,ΘA), in accordance with the
discussion in IX.1. Note that Hamiltonian definitions for
mass and angular momentum do not involve a specific
choice of coordinates. We can use Stokes’ theorem to get
hypersurface integrals:

M = 2

∫
Σ

(
Tαβ −

1

2
Tgαβ

)
nαξβ(t)

√
hd3y (51)

J = −
∫

Σ

(
Tαβ −

1

2
Tgαβ

)
nαξβ(φ)

√
hd3y (52)

Those relations allows us to define mass density and
angular momentum density for spacetime via energy
momentum tensor (remember that

√
hd3y is invariant

volume element so densities are the rest of the integrand).

Let us consider test energy momentum tensor repre-
senting a flow of matter (along the same lines with clas-
sical procedure where we invoke test mass or charge)
meaning Tαβ very small such that it does not partici-
pate in building up curvature in our spacetime. From
this we are interested in calculating transfer of mass and
angular momentum across a hypersurface in a stationary,
axially symmetric spacetime where we have ξ(t) and ξ(φ)

as Killing vectors.
We will not provide here entire derivation of expres-

sions but let us try to motivate them a bit in purpose
of better understanding. Consider a perfect fluid with
stressenergy tensor Tαβ = ρuαuβ (i.e. dust model). Here

ρ is the rest mass density and uα the 4-velocity. Energy-
momentum conservation we can get:

0 = ∇βTαβ = ρ((∇βuα)uβ + uα(∇βuβ)) (53)

Notice that here we have aα = uβ∇βuα acceleration in
the first term and velocity uα in the second. Since veloc-
ity and acceleration are always orthogonal to each other,
both terms in relation (53) must be zero in order to yield
zero:

aα = 0 =⇒ uα satisfies the geodesic equation

and that

jα = ρuα is a conserved vector:

∇αjα = 0 (54)

This vector can be interpreted as the flux of rest mass
for the fluid. To get the energy carried by the fluid el-
ement we have to consider a conserved quantity that is
going to be carried by the geodesic motion of the fluid
element. That will involve Killing vectors: Ẽ ≡ −uαξα(t)
conserved energy per unit rest mass and L̃ ≡ uαξ

α
(φ) the

conserved angular momentum per unit rest mass (both

Ẽ and L̃ are constants of the motion). Then εα = Ẽjα

represents a flux of energy density, while `α = L̃jα is a
flux of angular-momentum density. Notice that

εα = Ẽjβ = −uαξβ(t)j
β = −Tαβ ξ

β
(t)

similarly

`α = L̃jβ = uαξ
β
(φ)j

β = Tαβ ξ
β
(φ)

Those vectors are divergence-free. For example

∇αεα = −∇αTαβ ξ
β
(t) − T

α
β ∇αξ

β
(t) = 0

the first term vanishes by virtue of energy-momentum

conservation, and the second vanishes because ∇αξβ(t)
is an antisymmetric tensor field while Tαβ is symmetric.
This implies that the integral of εα or `α over a hyper-
surface ∂V is identically zero:∮

∂V

εαdΣα = 0 (55)

meaning that the total transfer of energy across a
closed hypersurface ∂V is zero. This is clearly a state-
ment of conservation of total energy (i.e. total mass). We
can now claim that the transfer of mass energy across hy-
persurface Σα is:

δM =

∫
Σ

εαdΣα =

∫
Σ

−Tαβ ξ
β
(t)dΣα (56)

where we integrate across a piece of ∂V denoted by Σ.

δJ =

∫
Σ

`αdΣα =

∫
Σ

Tαβ ξ
β
(φ)dΣα (57)
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The generalisation of Komar formulae to the D dimen-
sions is given by:

D − 2

8πG

∫
∂Σ

dSab∇aξb = 0 (58)

This statement is proved by rewriting the volume in-
tegral using Gauss’ law for Ac = ∇bBbc as∫

Σ

dvncA
c =

∫
∂Σ∞

darbncB
bc −

∫
∂Σh

darbncB
bc (59)

where na is the unit normal to Σ (future pointing)
and rb is the unit normal to ∂Σ within Σ taken to point
toward infinity. We have for the surface volume element
dSbc = 2dar[bnc]. Invoking identity for Killing vector:

∇a∇aξb = −Rbcξc

and noting that the resulting volume integrand then van-
ishes by the vacuum Einstein equations Rab = 0 gives re-
lation (59). Note that we here picked the boundary of Σ
to have two components, an inner boundary at the hori-
zon and an outer boundary at infinity. We could have
picked it in different manner but we are choosing here
what is useful for the context of this discussion11 ( cf.22).

V. STATIONARY BLACK HOLE

The case of stationary balck holes arises when we have
time independent metric (in a suitable coordinates) and
time independent stress energy tensor. More generally,
the spacetime is said to be stationary if there exists a
timelike Killing vector field. Static black holes are more
restrictive category where we demand that the metric
is not only time independent but that there exist time
reversal invariance which yields a restriction on Killing
vector to be a hypersurface orthogonal. By the theo-
rem of Stephen Hawking24, stationary black hole is ei-
ther static (non rotating) or axially symmetric (rotat-
ing). In both cases we will have two Killing vectors: ξ(t)
and ξ(φ) (though ξ(φ) is not that important in static case
of course). Hawking also showed there is going to be a
linear combination of a Killing vectors such that it is null
on the event horizon:

ξα(t) + ξα(φ)ΩH ≡ ξ
α
(Θ) (60)

A linear combination of two Killing vectors with a con-
stant coefficients is again a Killing vector. Here ΩH is the
black hole’s angular velocity (in the static case ΩH = 0
but in the stationary case it nonzero).
Since ξα(Θ) is null recall that it will be both tangent and

orthogonal. As a consequence ξα(Θ) will satisfy geodesic

equation on event horizon:

ξβ(Θ)∇βξ
α
(Θ) = κξα(Θ) (61)

where we parameterized by some non affine parameter v.
Here κ measures the failure of v to be an affine parameter

on the horizon and it can be proved that κ = const (cf.
1). Physically κ is surface gravity . The surface gravity
is basically the force required of an observer at infinity
to hold a particle (of unit mass) stationary at the event
horizon.

VI. FIRST LAW OF THERMODYNAMICS

During a quasi-static process a stationary black hole
of mass M, angular momentum J, and surface area A
under the infinitesimal change of its parameters is taken
to another stationary state. A statement of the first law
is that changes in mass, angular momentum, and surface
area are related by:

δM =
κ

8πG
δA+ ΩHδJ (62)

Let us prove that. Suppose that a black hole is perturbed
by a small quantity of matter described by the infinites-
imal stress-energy tensor Tαβ . Recall that the changes
of mass and momentum generated by transfer of matter
across the hypersufrace, in this case horizon, is given by
relations (56) and (57):

δM = −
∫
H

Tαβ ξ
β
(t)dΣα

and

δJ =

∫
H

Tαβ ξ
β
(φ)dΣα

where the integrations are over the entire event horizon.
To the first order we can use dΣα = ξα(Θ)dSdv the di-

rected surface element where ξα(Θ), as already discussed,

denotes direction of an element, dv integration along the
generators and dS =

√
σd2θ cross sectional area on the

event horizon. Further, we will denote by H(v) cross-
sections by which horizon is foliated. Substituting this
into

δM − ΩHδJ =

∫
H

Tαβ

(
ξβ(t) + ΩHξ

β
(φ)

)
ξα(Θ)dSdv

=

∫
dv

∮
H(v)

Tαβξ
α
(Θ)ξ

β
(Θ)dS

(63)

Let us consider a small bundle of generators as de-
picted on Figure 3. By looking at the rate of change of
small area δS as we move along the generators, we define
quantity θ as fractional rate of change of the congruence’s
cross-sectional area:

θ =
1

δS

d

dv
δS (64)

We need θ in this discussion sice there is one convenient
result regarding it which we will invoke to work out the
integral; it is called Raychaudhuri’s equation:

dθ

dλ
= −1

2
θ2 − σαβσαβ + ωαβωαβ −Rαβkαkβ (65)
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where Bαβ = ∇βuα. It describes divergence or con-
vergence of geodesics within the congruence in terms of
quantities introduced: the expansion scalar θ = Bαα =
∇αuα, the shear tensor σαβ = B(αβ) − 1

3θhαβ and
ωαβ = B[αβ] the rotation tensor. Because θ and σαβ
are quantities of the first order in Tαβ , it is appropri-
ate to neglect the quadratic terms and Raychaudhuri’s
equation simplifies to

dθ

dv
= κθ − 8πTαβξ

αξβ (66)

We now have:

δM − ΩHδJ = − 1

8π

∫
dv

∮
H(v)

(
dθ

dv
− κθ

)
dS

= − 1

8π

∮
H(v)

θdS

∣∣∣∣∣
∞

−∞

+
κ

8π

∫
dv

∮
H(v)

θdS

Notice that v in H(v) is fixed as we integrate over H(v)
surface so differentiation with respect to v can be pulled
out. The black hole is stationary both before and after
the perturbation. This implies θ(v = ±∞) = 0 therefore
the first terms vanish.

Substituting equation (64) gives us:

δM − ΩHδJ =
κ

8π

∫
dv

∮
H(v)

(
1

δS

d

dv
δS

)
dS (67)

On each hypersurface we have coordinate system denoted
with ya = (v, θA) where v is parameter along the curves,
θA parameter across the curves (these are coordinates
define by (106)). The area across the congruence, i.e.
cross sectional area depicted in Figure 3, is here given by

Figure 3. Congruence cross section changing as geodesics
within the congruence diverge/converge. Note that the cross
sectional area on this picture is denoted with Σ, which was our
notation for 3D hypersurface, but in the context of this dis-
cussion we are considering S surface, 2D hypersurface (which
is boundary of Σ) 1

δS =
√
σd2θ. Notice that since the coordinates are co-

moving, d2θ does not change as the cross section evolves.
With this in mind, going back to (67) we have:

δM − ΩHδJ =
κ

8π

∫
dv

∮
H(v)

(
1√
σ

d

dv

√
σ

)
dS

=
κ

8π

∮
H(v)

dS

∣∣∣∣∣
∞

−∞

=
κ

8π
δA

(68)

VII. FIRST LAW WITH LAMBDA

The previous discussions were made in the light of van-
ishing cosmological constant but experimental observa-
tions suggest that the universe has a small, positive value
of Λ. We consider a solution to Einstein’s equations in
D spacetime dimensions that describes a black hole with
a Killing field and we will focus on the anti de Sitter
black hole case, but methodology applies to de Sitter
black holes as well. It has been shown1920 that in order
to extend the geometrical constructions to the case of
nonvanishing cosmological constant (such as Komar in-
tegral and Smarr formula) there is a need for introducing
quantity such as the Killing potential ωab:

ξb = ∇aωab (69)

where ξb is Killing vector.
This will modify equation 59:

D − 2

8πG

∫
∂Σ

dSab

(
∇aξb +

2

D − 2
Λωab

)
= 0 (70)

VII.1. Scaling analysis

We will consider Euler’s theorem for homogeneous
functions (as this happens to provide a route between
the first law of black hole mechanics and the Smarr for-
mula for stationary black holes in the asymptotically flat
case which). Gravitational action for nonvanishing Λ is
given by:

S =
1

8πG

∫
dDx
√
−g(R− 2Λ) (71)

From this we see that the cosmological constant has
dimension (length) −2. Recall Euler’s theorem for homo-
geneous functions:

f (αpx, αqy, . . . , αrz) = αsf(x, y, . . . , z) (72)

which yields the scaling relation

sf(x, y, . . . , z) = p

(
∂f

∂x

)
x+ q

(
∂f

∂y

)
y+ · · ·+ r

(
∂f

∂z

)
z
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upon taking the derivative with respect to α. From this
we get:

rf(x, y) = p

(
∂f

∂x

)
x+ q

(
∂f

∂y

)
y (73)

The mass M of a static AdS black hole can be regarded
as a function of the horizon area A and the cosmological
constant Λ. These quantities scale as M ∝ lD−3, A ∝
lD−2 and Λ ∝ l−2 under a change in the length scale
which combined with the Euler’s theorem then implies
that the mass of a static AdS black hole satisfies the
(Smarr) formula

(D − 3)M = (D − 2)

(
∂M

∂A

)
A− 2

(
∂M

∂Λ

)
Λ (74)

Setting Λ = 0 and ∂M/∂A = κ/8πG, from the first law
of black hole mechanics, gives the well-known (Smarr)
formula for static, asymptotically flat black holes. The
partial derivative ∂M/∂Λ in can be found by consider-
ing an extended version of the first law for AdS black
holes that includes the effect of varying the cosmological
constant

dM =
κ

8πG
dA+

(
∂M

∂Λ

)
dΛ (75)

VII.2. Derivation

As usual, we consider a family of spacelike surfaces
Σ with unit timelike normal field na so that we have
(nan

a = −1). Let gab be the spacetime metric and hab
the induced metric on Σ:

gab = hab − nanb (76)

We also have habn
b = 0 by orthogonality. Foliating

spacetime by a family of such hypersurfaces, the system
can be taken to evolve along the vector field

ξa = Nna +Na (77)

where N = −ξana is lapse function and Na shift func-
tion. We will consider Σ such that it extends from the
horizon out to spatial infinity so that the boundary of
Σ then has two components, an inner boundary at the
horizon and an outer boundary at infinity. Recall equa-
tion 47, the full gravitational Hamiltonian is given by
H = NH +NaHa, where

H ≡ −2Gabn
anb = −R(d−1) + 1

|h|

(
π2

d−2 − π
abπab

)
Hb ≡ −2Gacn

ahcb = −2Da

(
|h|− 1

2πab
)

where Da is the covariant derivative operator with re-
spect to hab on Σ, and R(d−1) its scalar curvature. Set-
ting 8πT ab = −Λgab in equations above yields

H = −2Λ, Hb = 0 (78)

Those represent the constraint equations (recall the Note
from chapter IV.2).

Given s
(0)
ab and πab(0) a solution to the Einstein equations

with cosmological constant Λ(0) and with a Killing vec-
tor ξa, Hamiltonian evolution with respect to the Killing

vector ξa implies that −π̇ab(0) = 0, ṡ
(0)
ab = 0. Consider now

perturbations from the background spacetime:

sab = s
(0)
ab + hab

πab = πab(0) + pab

Λ = Λ(0) + δΛ

(79)

to the spatial metric, the momentum and the cosmologi-
cal constant respectively. It follow from the pertubation
that the Hamilton’s equation combines to form a deriva-
tive operator on Σ:

DaB
a = NδH +NaδHa = −2NδΛ (80)

where we inserted also constrants. We can rewrite this
as:

Da

(
Ba − 2δΛωabnb

)
= 0 (81)

which can be recognize as a form of Gauss Law. We
can rewrite the term involving cosmological constant by
once again making use of the Killing potential ωab such
that N = −naξa = −Dc (naω

ca). Substituting this and
integrating we get:∫

∂Σ

dac
(
Bc + 2ωcdndδΛ

)
= 0 (82)

Since we have chosen such Σ so that we have two
boundary surface, we can write this in terms of the inner
and outer boundaries of enclosed volume V:∫

∂V̂out

dSrc
(
Bc − 2δΛωcbnb

)
=

∫
∂V̂in

dSrc
(
Bc − 2δΛωcbnb

) (83)

where rc is the unit normal respectively pointing into
and out of the inner and outer boundaries. Notice that
Killing potential is not unique, it is only defined up to
a divergence-less term: if ωab solves ξb = ∇aωab, then
so does ωab = ωab + ηab where eta is divergenceless
∇aηab = 0. We can use ωabAdS the Killing potential of the
background AdS spacetime (as we already stated, deriva-
tion is given for anti de Sitter black holes) to rewrite:

ωcb = ωcb − ωcbAdS + ωcbAdS (84)

for the ∂V̂out so that the integral yields∫
∂V̂out

dSrc
(
Bc − 2δΛωcbAdSnb

)
=

∫
∂V̂out

dSrc
(
2δΛ

(
ωcb − ωcbAdS

)
nb
)

+

∫
∂V̂in

dSrc
(
Bc − 2δΛωcbnb

)
(85)



11

The possibility of adding a divergenceless term to the
Killing potential implies that the integrals of ωab over
the horizon and infinity are tied together and cannot
be given separate interpretations (only their difference
is meaningful).
Recall that we have picked an inner boundary at the
horizon and an outer boundary at spatial infinity. In that
context the respective variations in the total mass M and
angular momentum J of the spacetime can be yield by
respectively setting ξa(t) = (∂t)

a
(time translations) and

ξa(φ) = (∂ϕ)
a

(rotations):

16πδM = −
∫
∞

dSrc
(
Bc [∂t]− 2δΛωcbAdSnb

)
16πδJ =

∫
∞

dSrcBc [∂ϕ]

(86)

The ωcbAdS term ensures δM is finite.
Recall from section V that the generators of the

event horizon are given by the Killing vector ξa =

(∂t + ΩH∂ϕ)
a

and κ =
√
− 1

2∇aξb∇aξb
∣∣∣
r=r+

its surface

gravity. With respect to this Killing field we yield third
relation:

2κδA = −
∫
H

dSrcBc [∂t + Ω∂ϕ] (87)

where A is area of the event horizon on which norm of ξ
vanishes. Note that δΛ is spacetime-independent. This
enables us to define

V =

∫
∞

dSrcnb
(
ωcb − ωcbAdS

)
−
∫
H

dSrcnbωcb (88)

and interpret the remaining terms in as V δP . Again
ωcbAdS term ensures us that V is finite. So we have recov-
ered

δM =
κ

8πG
δA+

Θ

8πG
δΛ (89)

where

Θ = −
[∫

∂Σ∞

dSab
(
ωab − ωabAdS

)
−
∫
∂Σh

dSabω
ab

]
(90)

Θ is determined by the difference between the integral
of the renormalized Killing potential at infinity and the
integral of the Killing potential on the horizon.

VIII. INTERPRETATION AND CONCLUSION

In light of black hole thermodynamics it would be
preferable if we would be able to establish sensible con-
nection between Θ and some thermdynamical variable -
volume being the simplest guess, in the context of other
laws of thermodynamics. To shed some light on this idea,

let us firs reexpress these boundary integrals appearing
in 90 as volume integrals. Let us suppose that the hy-
persurface Σ is orthogonal to the static Killing vector ξa

so that ξa = Nna. As a generalisation of (27), we can
express the full spacetime volume element√

−g(D) = N
√
g(D−1) (91)

in terms of the intrinsic volume element
√
g(D−1) on Σ.

The integral of ωab over the boundary ∂Σ can then be
rewritten as:∫

∂Σ

dSabω
ab =

∫
Σ

dD−1x
√
g(D−1)nbξ

b

= −
∫

Σ

dD−1x
√
−g(D)

(92)

Notice that this corresponds to the volume between
the black hole horizon and infinity:

VBH ≡
∫

Σ

dD−1x
√
−g(D) (93)

Similarly, the integral of ωabAdS over the boundary at in-
finity can be written as:

VAdS ≡
∫
∂Σ∞

dSab
(
ωabAdS

)
(94)

Going back to 90 we have:

Θ = VBH − VAdS (95)

If we associate the volume with V = −Θ, this obvi-
ously gives us a measure of the volume excluded from
the spacetime by the black hole horizon. If Θ is associ-
ated with the notion of volume, to yield equivalence with
the 1. law of black hole thermodynamics (using the usual
identification T = κ/2π and S = A/4G for the black hole
temperature and entropy):

δM = TδS + V δP (96)

we interpret the term Λ/8πG as pressure. Notice that
the variation of an AdS black hole mass isn’t identified
with the variation of total energy, as this would be in
Λ = 0 case, rather the variation of enthapy H = E+PV .
Does this makes sense? We cite article by David Kastor,
Sourya Ray and Jennie Traschen: ’The identification of
the AdS black hole mass as an enthalpy makes good phys-
ical sense. The mass of an AdS black hole is defined via
an integral at infinity. However, between the black hole
horizon and infinity is an infinite amount of energy den-
sity that needs to be subtracted off in some manner to
get a finite result. Since the energy density in the cos-
mological constant is ρ = +Λ/8πG adding a PV term
naturally cancels out a ρV contribution to the energy.’11
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IX. APPENDIX

IX.1. Hypersurface

A hypersurface Σ = Σ(n) is an n -dimensional sub-
space (submanifold) Σ of a D = n+ 1 dimensional space
(spacetime manifold) M = M(n+1),Σ ⊂M .

We describe the hypersurface in terms od embeddings:

Ψ : Σ = Σ(n) ↪→M = M(n+1) (97)

of Σ into M, specified by the map Ψ. Embedded hy-
persurface is a subspace of M :

Σ = Σ(n) ⊂M = M(n+1) (98)

specified e.g. by

Σ = {xα ∈M : Φ(xα) = 0} (99)

for some real-valued function Φ(x) on M .

In terms of the embedding Ψ this can be phrased as
the statement that the embedding Ψ can be used to pull
back the function f on M to a function Ψ∗f on Σ defined
by

Ψ∗f :Σ→ R
(Ψ∗f) (y) = f(Ψ(y))

When we’re dealing with hypersurfaces we can put any
coordinate system on them and it may or may not be
simply related to the spacetime coordinates we use else-
where. We will denote with xα coordinates for spacetime
as a whole (i.e. our manifold M) and by ya intrinsic co-
ordinates on Σ. In that description embedding f is given
by parametric equations

f : xα = xα (ya) (100)

which gives description of the curves contained in Σ.
If the hypersurface is not null, a unit normal nα can

be introduced by:

nαnα = ε ≡
{
−1 if Σ is spacelike
+1 if Σ is timelike

and we demand that nα point in the direction of increas-
ing Φ : nα∂αΦ > 0. The vector ∂αΦ is normal to the
hypersurface, because the value of Φ changes only in the
direction orthogonal to Σ. Including the normalisation
we get that nα is given by

nα =
ε∂αΦ

|gµν∂µΦ∂vΦ|1/2

if the hypersurface is either spacelike or timelike.

In the null case we have gµν∂µΦ∂νΦ equal to zero so
above definition of the normal vector doesn’t work. In
the null case we let

kα = −∂αΦ

be the normal vector with the sign chosen so that kα

is future directed when Φ increases toward the future.
Note that kα is both orthogonal and tangent to the
hypersurface since it is orthogonal to itself (kαkα = 0).
In fact it can be shown that kα is tangent to the null
generators in Σ.

The coordinate system on the hypersurface can be
specified in terms of normal vectors and tangent vectors
to the hypersurface. Tangent vectors will be those which
give displacements within the hypersurface:

eαa =
∂xα

∂ya
(101)

Note that we have eαanα = 0 in the non-null case, and
eαakα = 0 in the null case. The metric intrinsic to the
hypersurface Σ is obtained by restricting the line element
to displacements confined to the hypersurface:

ds2
Σ = gαβdxαdxβ

= gαβ

(
∂xα

∂ya
dya
)(

∂xβ

∂yb
dyb
)

= habdy
adyb

(102)

where

hab = gαβe
α
ae
β
b (103)

is the induced metric of the hypersurface inherited from
the spacetime metric (pullback of the metric on Σ).
Notice that it is a scalar with respect to transformations
xα → xα

′
of the spacetime coordinates, but it behaves

as a tensor under transformations ya → ya
′

of the
hypersurface coordinates.

We can also decompose the spacetime metric in terms
of the basis (nα, e

α
a ):

gαβ = εnαnβ + hαβ (104)

where hαβ = habe
a
αe
b
β .

For the null case first we have to notice one subtile
thing. In the spacelike (timelike) case we had one nor-
mal vector and three tangent. Recall that the kα is or-
thogonal to itself. Therefore it will not be a good normal
vector since one of the tangent vectors will coincide with
it. So we have to construct good normal vector to the
null hypersurface. We will denote it with Nα and define
it with:

NαNα = 0
Nαkα = −1
Nαeaα = 0

(105)
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where the first relation is null property, second is
normalisation and third is orthogonality to tangent
vectors. Our null basis now consists of two spacelike
vectors eaα and two null vectors kα and Nα where Nα

is orthogonal vector and others are tangent to the null Σ.

Now we will pick the intrinsic coordinate system on the
hypersurface. We will choose it so that it is adapted to
the network of null curves lying on our null hypersurface.
On each curve we have parameter λ running along the
curve and parameter θA being its constant label. Note
that parameter θA will be a parameter running across
curves and we will have two of those since Σ is here 3D.
Our intrinsic coordinate system is then:

ya =
(
λ, θA

)
(106)

Going back to equation (101), our tangent vectors are
now specified:

kα =

(
∂xα

∂λ

)
θA
, eαA =

(
∂xα

∂θA

)
λ

(107)

where kαeαA = 0. Since one of the tangent vectors is
now null, the induced metric is now 2D:

σAB = gαβe
α
Ae

β
B (108)

We have the decomposition of the spacetime metric:

gαβ = −kαNβ −Nαkβ + σABe
A
αe

B
β (109)

IX.2. Integration on the hypersurface

Since integration means adding up and since we cannot
add vectors defined in defferent points in the context of
curved spacetime, we know that integration will have to
be defined on scalars. We start by introducing a notion
of directed surface element (such that it has a sensible
null limit):

dΣµ = εµαβγe
α
1 e
β
2 e
γ
3d3y (110)

where εµαβγ =
√
−g[µαβγ] is the Levi-Civita tensor.

Permutation symbol is defined by:

[αβγδ] =


+1 if αβγδ is an even permutation of 0123

−1 if αβγδ is an odd permutation of 0123

0 if any two indices are equal

For timelike and spacelike case:

dΣα = εnαdΣ

thus, apart from a factor ε = ±1,dΣα is a directed sur-
face element on Σ as we would construct it for Euclidean
case. But for the null case we get:

dΣµ = kvdSµνdλ (111)

where d3y = dλd2θ, and

dSµv = εµvβγe
β
2 e
γ
3d2θ (112)

an element of 2D surface in the transverse subspace which
can also be expressed as:

dSαβ = 2k[αNβ]

√
σd2θ (113)

where Nα is the auxiliary null vector field, relation (86)
and σ 2D induced metric defined by (108). To recap
what we’ve done here notice that we started from a
null hypersurface described in terms of ya = (λ, θA)
i.e. λ (parameter along the null generators) and θA
parameters. Then for λ = const. we get 2D surface in
the transverse subspace. We know that σAB is metric in
that transverse subspace and

√
σd2θ a surface element

in it. Since this is 2D subspace embedded in 4D we have
to have to use two vectors to give that surface element
direction, and that is exactly the purpose of k[αNβ] in
the above equation.

If we go back with this into relation (111) we get:

dΣα = −kα
√
σd2θdλ (114)

Apart from a minus sign, the surface element is
directed along kα, the normal to the null hypersurface,√
σd2θ is an element of 2D surface area with the direc-

tion transverse to the generators and dλ is infinitesimal
element for the integration along the generators.

Now we can state the Gauss’s theorem in 4D:∫
V

∇αAα
√
−gd4x =

∮
∂V

AαdΣα (115)

and Stokes’s theorem:∫
V

∇βBαβdΣα =
1

2

∮
Bαβ

dSαβ (116)

Notice that Stokes’s theorem works only for Bαβ anti-
symmetric because dSαβ is antisymmetric (meaning it
would give us zero for any symmetric Bαβ).

IX.3. Killing vectors and Lie derivatives

Lie derivative is useful tool which allows us to do
the differentiation without introducing the connection.
The other feature of Lie derivative is it’s power to en-
codes the information that the certain tensor is invari-
ant under the flow of diffeomorphism. By flow of diffeo-
morphism we mean: shift the point at which a tensor
is evaluated by pushing it forward and then transform
(pull back) the coordinates so that the shifted point has
the same coordinate labels as the old point, meaning:
T (P0) 7→ T̄ (P ) ≡ φλT (P0) such that the coordinate val-
ues are unchanged: x̄µ(P ) = xµ(P0). Since a diffeomor-
phism maps a manifold back to itself, under a diffeomor-
phism a rank (m, n) tensor is mapped to another rank
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(m, n) tensor. We can apply it to the components of one
form:

V̄µ (P0) ≡ Vα(P )
∂xα

∂x̄µ
(P ), where x̄µ(P ) = xµ (P0)

Starting with Vα at point P0 with coordinates xµ (P0) ,
we push the coordinates forward to point P, we evaluate
Vα there, and then we transform the basis back to the
coordinate basis at P with new coordinates x̄µ(P ).

Now, recall that any vector field has a unique set of in-

tegral curves whose tangent vector is ξµ = ∂ξµ

∂λ . Using the
integral curves of a vector field we can shift a curve xµ(τ)
to a new curve yµ(τ). The shift is called pushforward but
when it defines a continuous one to one mapping of the
space back to itself then we call it diffeomorphism.

Thus, a general diffeomorphism may be obtained from
the infinitesimal diffeomorphism with pushforward yµ =
xµ+ξµdλ. The corresponding coordinate transformation
is (to first order in dλ )

x̄µ = xµ − ξµdλ

so that x̄µ(P ) = xµ (P0) . This yields (in the xµ coor-
dinate system)

V̄µ(x) ≡ Vα(x+ ξdλ)
∂xα

∂x̄µ

= Vµ(x) + [ξα∂αVµ(x) + Vα(x)∂µξ
α] dλ+O(dλ)2

Here we can expand the inverted Jacobian

∂x̄µ

∂xα
= δµα −

∂αxi
µ

dλ

to first order in dλ,

∂x̄µ

∂xα
= δαµ + ∂µξ

αdλ+O(dλ)2.

In a similar manner, the infinitesimal diffeomorphism of
the metric gives

ḡµν(x) ≡ gαβ(x+ ξdλ)
∂xα

∂x̄µ
∂xβ

∂x̄ν

= gµν(x) + [ξα∂αgµν(x) + gαν(x)∂µξ
α + gµα(x)∂νξ

α] dλ

+O(dλ)2

Lie derivative is rate of change with respect to the in-
finitesimal diffeomorphism T ≡ φ∆λT:

LξT ≡ lim
∆λ→0

φ∆λT(x)− T(x)

∆λ

with x̄µ(P ) = xµ (P0) = xµ(P )− ξµ∆λ+O(∆λ)2

(117)
This discussion was highly referring to16.

It is straightforward to check that the Lie derivatives
of Vµ(x) and gµν(x) are:

LξVµ(x) = ξα∂αVµ + Vα∂µξ
α, (118)

Lξgµν(x) = ξα∂αgµν + gαν∂µξ
α + gµα∂νξ

α (119)

Here the first term ξα∂α corresponds to the pushfor-
ward - shifting a tensor to another point in the manifold.
The remaining terms arise from the coordinate transfor-
mation back to the original coordinate values.
One can check that Lie derivative is actually a tensor (de-
spite that suspicious appearance of partial derivatives).
We can actually write equation (34) in terms of covari-
ant derivatives, though it obscures than the point that
connections are not needed here.
Lie derivative is well defined for any tensor field and it
tensor of the same rank. So generally:

LXT
a1...ak
b1...b`

= Xc∇cT a1...akb1...b`
+

+
∑̀
i=1

T a1...akb1...c...b`
∇biXc

−
k∑
j=1

T a1...c...akb1 . . . b`∇cXaj

(120)

The Lie derivative of a vector field is an antisymmetric
object known also as the commutator or Lie bracket:

(LXY )
a

= [X,Y ]a = Xb∇bY a − Y b∇bXa (121)

Vector field is said to be Killing vector field if it satisfies
the relation:

Lξgab = ∇aξb −∇bξa = 0 (122)

This equation is known as Killing’s equation.

Theorem If the Lagrangian is invariant under the
diffeomorphism generated by a vector field ξµ, then

p̃(~ξ) = pµξ
µ is conserved along curves that extremize

the action, i.e. for trajectories obeying the equations of
motion.

If the spacetime has a Killing vector ξµ, then pµξ
µ

is conserved along any geodesic. The existence of a
Killing vector represents a symmetry. Spacetimes with
Killing vectors have a conserved 4-vector energy current:
jν = ξµT

µν . Local stress-energy conservation∇νTµν = 0
implies:

∇µjµ = 0 (123)

which can be integrated over a volume to give the usual
form of an integral conservation law:∫

Σ1

jαdΣα +

∫
Σ2

jαdΣα = 0 (124)

for any closed hypersurface Σ. Here we supposed that
Σ1 and Σ2 are two spacelike hypersurfaces extended to
infinity where integration is performed (and where jα =
0).
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IX.4. Black hole

We define a black hole as part of spacetime from which
no future directed timelike or null line can escape to ar-
bitrarily large distance into the outer asymptotic region
(which will in the case of asymptotically flat spacetimes
be null infinity and timelike infinity for asymptotically
anti-de Sitter spacetimes). If we denote by Ξ+ the future
asymptotic region of a spacetime (M, gµν) the black hole
region B is defined as

B ≡M− I−
(
Ξ+
)

where I− denotes the chronological past. The region
I− (Ξ+) is the set of points for which it is possible to
construct a future directed timelike line, it is usually re-
ferred to as the domain of outer communication.

We define the event horizon H of a black hole as the
boundary δB. Let us denote J−(U) the causal past
of a set of points U ⊂ M and J̄−(U) = (J−(U) ∪
its accumulation points) - meaning J̄−(U) ≡ topological
closure of J−(U). We have I−(U) ⊂ J−(U). The event
horizon ofM is then defined as the boundary of the clo-
sure of the causal past of the future asymptotic region of
spacetime Ξ+

H ≡ J̄−
(
Ξ+
)
− J−

(
Ξ+
)

The event horizon is a concept defined with respect to
the entire causal structure ofM, in the physical context,
the event horizons are null hypersurfaces (with some
interesting properties).

IX.5. Short overview of differential geometry

In this section we provide short overview of, for
the discussion useful, differential geometry notions.
The reader should look at it as a catalogue of useful
definitions which, if not familiar, should be looked up
in more detail (see the references785910 and one being
on croatian2) in order to fully understand the above
discussion.

Let us review the process of adding mathematical
structures to form mathematical context of general
relativity. Almost every mathematical story starts
from the notion of a set, which is object with no
structure. In this case we then proceed by introducing
the concept of open sets of our set - meaning, we intro-
duce a topology and promote the set to a topological
space to enable us to have a good notion of conti-
nuity (the inverse image of any open set is open) and
a notion of homeomorphisms between topological spaces.

Definition(Topological space)
Let X be a set. A topology on X is a collection T of
subsets of X, called open subsets, satisfying:

(1) X and ∅ are open.
(2) The union of any family of open subsets is open.
(3) The intersection of any finite family of open subsets
is open.

A pair (X, T ) consisting of a set X together with a
topology T on X is called a topological space.

In this context there is no notion of differentiability
or differentiation so we proceed to introduce a concept
of a manifold by demanding that each open set look
like a region of Rn making it topological space that
locally looks like Euclidean space. A smooth manifold
is a manifold M for which this resemblance is sharp
enough to permit the establishment of partial differentia-
tion along with all the essential features of calculus on M.

Definition(Manifold)
Suppose M is a topological space. We say that M is
a topological manifold of dimension n or a topological
n-manifold if it has the following properties:
(1) M is a Hausdorff space: for every pair of dis-
tinct points p, q ∈ M , there are disjoint open subsets
U, V ⊆ M such that p ∈ U and q ∈ V . (2) M is second-
countable: there exists a countable basis for the topology
of M . (3) M is locally Euclidean of dimension n: each
point of M has a neighborhood that is homeomorphic to
an open subset of Rn

A manifold is very flexible and powerful structure,
and comes equipped naturally with a tangent bundle,
tensor bundles, the ability to take exterior derivatives,
and so forth. We will not go into all of the details here
as we assume that this is just recap of already familiar
notions.

Often we will refer to 4D spacetime as being our
manifold. It is useful to also introduce the concept of
submanifold, as we will often work with just a subset of
spacetime manifold:

Definition(Submanifold)
Let M be a smooth manifold of dimension n. A subset
N ⊂ M is called a k -dimensional submanifold of M
if for each x ∈ N, there is a chart (U, u) for M with
x ∈ U such that u(U ∩ N) = u(U) ∩ Rk. We view
Rk ⊂ Rn as the subspace of points for which the last
n− k coordinates are zero.

To get a good relationship between our submanifold
and whole spacetime we will also have to define the
notion of smooth mapping between manifolds

Definition(Smooth mapping between mani-
folds) Let Mm and Nn be manifolds. A mapping
φ : M → N is smooth provided that for every coordinate
system ξ in M and η in N the coordinate expression
η ◦ φ ◦ ξ−1 is Euclidean smooth (and defined on an open
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set of Rm ).
Explicitly, if U and V are the domains of ξ and η, then
for all p ∈ φ−1(V ) ∩U the coordinates yj(φp), 1 ≤ j ≤ n,
depend smoothly on the coordinates x1(p), . . . , xm(p)

Some mapping are special because they are structure
preserving. Generally we call those maps isomorphisms
but in the context of smooth manifold we refer to those
as diffeomorphisms.

Definition(Diffeomorphism) A diffeomorphism
φ : M → N is a smooth mapping that has an inverse
mapping which is also smooth.

Now we want to introduce the notion of coordinate sys-
tem. In curved spacetime it is not possible to construct
good coordinate system to cover the whole manifold. We
will have to introduce instead entire collection of coordi-
nate systems to cover M and we will demand that their
covering is compatible with the condition of smoothness.
Notion of a charts allows us the introduction of local co-
ordinates on an open set U ⊂ M such that a point p ∈
U corresponds to in a point φ(p) ∈ Rn. A topological
manifold topological possesses a covering by open sets
Ua with charts Ca = (Ua, φa).

Definition(Chart and Atlas) Let M be a set.
A chart (ψ, V ) of M is a bijective map ψ of V ⊆ M
onto an open subset U of Rn, ψ : V → U. Two
charts (ψ1, V1) , (ψ2, V2) are called (C∞−) compatible if
ψ1 (V1 ∩ V2) and ψ2 (V1 ∩ V2) are open in Rn and the
change of charts ψ2 ◦ ψ−1

1 : ψ1 (V1 ∩ V2) → ψ2 (V1 ∩ V2)
is a C∞ -diffeomorphism (note that this condition is
symmetric in ψ1, ψ2 ).
A C∞ -atlas of M is a family A = {(ψα, Vα) | α ∈ A}
of pairwise compatible charts such that M =

⋃
α∈A Vα.

Two atlasses A1,A2 are called equivalent if A1 ∪ A2

itself is an atlas of M, i.e., if all charts of A1 ∪ A2

are compatible. An differentiable manifold is a set M
together with an equivalence class of atlasses. Such an
equivalence structure is called a differentiable ( or C∞ -
) structure on M .

Figure 4. Charts covering open sets V1 and V2 on M 8

If we are to introduce the differentiation we have to
consider also concepts of tangent bundles. The basic
idea of differentiation is to find a linear approximation

of a map in the neighborhood of a point. For the case
of maps between open subsets of Rn and Rm, these ap-
proximations are just linear maps between these vector
spaces. In the case of submanifolds, one first has to de-
fine appropriate vector spaces on which such linear ap-
proximations can be defined, and usually one will obtain
different spaces for different points. Let us consider the
situation where M ⊂ Rn and where all these spaces can
be realized as linear subspaces of the ambient Rn as de-
picted on IX.5.

Figure 5. Linear subspace of Rn representing tangent space
TM

6

Let us first simply define a tangent vector:

Definition(Tangent vector space) Let p be a point
of a manifold M. A tangent vector to M at p is a real
valued function v : C∞p (M)→ R such that it satisfies:
(1) R -linear: v(af + bg) = av(f) + bv(g), and
(2) Leibnizian: v(fg) = v(f)g(p) + f(p)v(g) for all
a, b ∈ R and f, g ∈ C∞p (M) At each point p ∈ M let
Tp(M) be the set of all tangent vectors to M at p The
usual definitions of functional addition and scalar multi-
plication make Tp(M) a vector space over the real num-
bers R. Explicitly,

(v + w)(f) = v(f) + w(f)

(av)(f) = av(f) for all f ∈ F(M), a ∈ R

and Tp(M) is called the tangent space to M at p. To
define partial differentiation on a manifold, we move the
function f back to Euclidean space using a coordinate
system (chart), and then take the usual partial deriva-
tives.

Now the notion of tangent bundle may be more
comprehensible:

Definition(Tangent bundle and tangent map)
For a smooth submanifold M ⊂ Rn we define the
tangent bundle TM ⊂ Rn × Rn of M as the subset
{(x, v) : x ∈M, v ∈ TxM}. Let M ⊂ Rn and N ⊂ Rm
be submanifolds and let f : M → N be a smooth map.
Then we define the tangent map Tf : TM → TN of f
by Tf(x, v) := (f(x), Txf(v))
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It is interesting to see some properties following from:
Proposition(1) For a smooth submanifold M ⊂ Rn
of dimension k, the tangent bundle TM is a smooth
submanifold of R2n of dimension 2k. The first projection
Rn × Rn → Rn induces a smooth map p : TM → M (2)
For a smooth map f : M → N between submanifolds,
the tangent map Tf : TM → TN is smooth, too, and it
satisfies p ◦ Tf = f ◦ p (3) For smooth maps f : M → N
and g : N → P between submanifolds, we have the chain
rule T (g ◦ f) = Tg ◦ Tf

Proof. (1) Take a point (x, v) ∈ TM . Then we know
that there is an open subset U ⊂ Rn with x ∈ U and
a smooth function F : U → Rn−k such that M ∩ U =
F−1({0})Rn. Now we define Ũ := U × Rn ⊂ R2n and

consider the smooth map F̃ : Ũ → Rn−k × Rn−k by
F̃ (y, w) := (F (y), DF (y)(w)). Now F̃ (y, w) = (0, 0) is
equivalent to y ∈ F−1(0) = U∩M and w ∈ ker(DF (y)) =

TyM and thus to (y, w) ∈ Ũ ∩ TM. Assuming this, we
compute

DF̃ (y, w) (v1, v2) =(
DF (y) (v1) , D2F (y) (w, v1) +DF (y) (v2)

)
This readily implies that DF̃ (y, w) is surjective, which
completes the proof of the first part. The second part
is clear, since the first projection is a global smooth
extension of p.
(2) Let us again take (x, v) ∈ TM. Then by assumption,
there is an open subset U ⊂ Rn and a smooth map

f̃ : U → Rm such that f̃
∣∣∣
U∩M

= f |M∩U . Similarly as

above, we define a smooth map ϕ : U×Rn → Rm×Rm by
ϕ(y, v) := (f̃(y), Df̃(y)(v)). For (y, w) ∈ (U × Rn)∩TM,
we then get ϕ(y, w) = (f(y), Tyf(v)) = Tf(y, w),. Thus
ϕ is a smooth extension of Tf on an open neighborhood
of (x, v) and smoothness follows. The last claim is
obvious from the definition of Tf .
(3) This is an obvious consequence of the chain rule.

(this proof is taken from7)

We then proceeded to put a metric on the manifold.
This will result in a manifold with metric (semi-
Riemannian manifold). Independently of the metric
we could introduce a connection, allowing us to take
covariant derivatives but once we have a metric there is
automatically a unique torsion-free metric-compatible
connection. Likewise we could introduce an independent
volume form, although one is automatically determined
by the metric. In principle there is nothing to stop us
from introducing more than one connection, or volume
form, or metric, on any given manifold. In general
relativity we do have a physical metric, which deter-
mines volumes and the covariant derivative, and the
independence of these notions is not a crucial feature.
Again we note that here we will not introduce all of the
definitions but only definitions for crucial objects which
are explicitly used in our article.

Metric is a special type of bilinear form so recall:

Definition (Bilinear forms). Let V be a finite di-
mensional vector space. A bilinear form on V is an R
-bilinear mapping b : V × V → R. It is called symmetric
if

b(v, w) = b(w, v) for all v, w ∈ V

A symmetric bilinear form is called (i) Positive (neg-
ative) definite, if b(v, v) > 0(< 0) for all 0 6= v ∈ V ,
(ii) Positive (negative) semidefinite, if b(v, v) ≥ 0(≤ 0)
for all v ∈ V , (iii) nondegenerate, if b(v, w) = 0 for all
w ∈ V implies v = 0. Finally we call b (semi) definite
if one of the alternatives in [ (i) (resp. (ii)) hold true.
Otherwise we call b indefinite.

Definition(Metric) A semi-Riemannian metric
tensor gab (or metric, for short) on a smooth manifold M
is a smooth, symmetric and nondegenerate (0, 2)-tensor
field g on M of constant index.
g smoothly assigns to each point p ∈M a symmetric non-
degenerate bilinear form g(p) = gp : TpM × TpM 7→ R
such that the index rp of gp is the same for all p.

Definition (Index) We define the index r of a sym-
metric bilinear form b on V by r := max {dimW |W
subspace of V with b|W negative definite }. By defini-
tion we have 0 ≤ r ≤ dimV and r = 0 iff b is positive
semidefinite.

Integration The main aim is to recover calculus and
other physicists tools for analysing physical situations.
So of course we need integration also. We already men-
tioned the process of taking an integral in GR (??). To
state it clearly, integral over an n-dimensional region
Σ ⊆ M manifold is a map from n-form field to the real
numbers. The main thing to clarify in order to under-
stand this procedure is the notion of the volume form:

Definition(Volume Elements) A volume element
on an n -dimensional semi-Riemannian manifold M is
a smooth n -form ω such that ω (e1, . . . , en) = ±1 for
every frame on M
Intuitively a volume element on an n -dimensional
scalar product space V is a function ω that assigns to n
vectors v1, . . . , vn ∈ V the volume of the parallelepiped
with these vectors as sides. (Thus ω (v1, . . . , vn) = 0
if the vectors are linearly dependent, that is, if the
parallelepiped collapses.)

Volume elements always exist at least locally.
Lemma. On the domain U of a coordinate system ξ
there is a volume element ωξ such that ωξ (∂1, . . . , ∂n) =

|det (gij)|1/2
Proof. For vector fields V1, . . . , Vn on U write Vj =∑
V ij ∂i and define

ωξ (V1, . . . , Vn) = det
(
V ij
)
|det (gij)|1/2

Properties of determinants show that this uniquely de-
fines ωξ as an n -form on U If V1, . . . , Vn is a frame field,



18

Figure 6. Upon parallel transporting along a geodesic tri-
angle on the sphere, starting vector will end up in a different
tangent vector space reflecting the non commutativity of co-
variant derivatives. 9

then

δijεj = 〈Vi, Vj〉 =
〈∑

V ri ∂r,
∑

V sj ∂s

〉
=
∑

V ri grsV
s
j

Taking determinants gives (−1)v =
(
det
(
V ij
))2

det (gij) ,

hence ωξ (V1, . . . , Vn) = det
(
V ij
)
|det (gij)|1/2 = ±1

(this proof is taken from5)
In the notation of differential forms, ωξ =

|g|1/2dx1 ∧ · · · ∧ dxn, where |g| = |det (gij)|

Other notions we have referred to...
We used the notion of a pullback a lot in previous discus-
sion when we talked about the hypersurfaces (3D) and
the induced metric on them. We then said that the met-
ric was ’inherited’ from 4D metric of our spacetime man-
ifold where by ’inherited’ we actually meant that it was
pullback of it. Same notion was used while discussing
embeddings. Pullback isn’t reserved for embeddings, it
works for any two manifolds with a smooth mapping be-
tween them. Here we provide rigorous definition:
Definition(Pullback) Let M,N be manifolds, and F :
M → N smooth. For ω ∈ T 0

k (N), the pullback of ω
under F is defined as F ∗ω(p) := (TpF )

∗
(ω(F (p))). For

X1, . . . , Xk ∈ TpM we therefore have

F ∗ω(p) (X1, . . . Xk) = ω(F (p)) (TpF (X1) , . . . , TpF (Xk))

In particular, F ∗f = f ◦ F for f ∈ C∞(N) = Ω0(N)

We also talked about pushforwards in section IX.3.
This notion generally interests us when we want to move
on the manifold from one tangent space to the other.
Definition(Pushforward)
Let M and N be smooth manifolds and F : M → N
smooth mapping. Then in every point p ∈ M we define

mapping

F∗,p : TpM → TF (p)N
as (

F∗,p

(
X|p

))
(f) ≡ X

∣∣∣
p

(F ∗f) = X|p (f ◦ F )

for every f ∈ C∞F (p)(M).

Curvature The main tool for describing curvature is
Riemannian curvature tensor. To motivate the definition
of the curvature tensor on consider the parallel transport
of a vector along a curve. If we parallel transport a vector
along a closed curve in the plane then upon returning to
the starting point we end up with the same vector as
we have started with, however if we parallel transport
a vector along a closed curve on the sphere we will end
up at a different vector (as depicted on 6). Difference
between the starting vector and the final vector can be
expressed in terms of the non commutativity of covariant
derivatives.

Definition(Riemannian curvature tensor) Rie-
mannian curvature tensor is R : X(M) × X(M) ×
X(M)→ X(M)

R(X,Y, Z) = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

In chapter IV we dealt with the notion of foliation.
Here is the formal definition.

Definition(Foliation)
By a p -dimensional, class Cr foliation of an m -
dimensional manifold M we mean a decomposition of
M into a union of disjoint connected subsets {Lα}α∈A ,
called the leaves of the foliation, with the following prop-
erty: Every point in M has a neighborhood U and a
system of local, class Cr coordinates x =

(
x1, · · · , xm

)
:

U → Rm such that for each leaf Lα, the components of
U ∩ Lα are described by the equations xp+1 = constant
, · · · , xm = constant.

We shall denote such a foliation by F = {Lα}α∈A It
will often be more natural to refer to the codimension
q = m− p of F rather than to its dimension p.

Note that every leaf of F is a p -dimensional, embedded
submanifold of M.

Local coordinates with the property mentioned in def-
inition are said to be distinguished by the foliation. If
x and y are two such coordinate systems defined in an
open set U ⊂M, then the functions giving the change of
coordinates yi = yi

(
x1, · · · , xm

)
must satisfy the equa-

tions

∂yi/∂xj = 0

for 1 5 j 5 p < i 5 m in U . Hence, choosing a covering
of M by distinguished local coordinates gives rise to a G
-structure on M where G ⊂ GL(m,R) is the group of ma-
trices with zeros in the lower left (m−p)×p block. That
is, G is the subgroup of GL(m,R) which preserves the
linear subspace Rp =

{(
x1, · · · , xp, 0, · · · , 0

)}
⊂ Rm.

(this definition and comment are entirely from21)
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Figure 7. Depict of foliation on some manifold M 21
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