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We briefly dicuss the successes and failures of the old cosmological model and the resolvement of those
failures in inflationary models. We prove the cosmological no-hair conjecture for Bianchi-type universes
with a positive cosmological constant in the context of the general theory of relativity.

I. INTRODUCTION

The cosmological no-hair "theorems" are, more pre-
cisely, a class of conjectures dealing with the loss of
information of certain initial conditions during the evo-
lution of a given cosmological model. Conjectures of
this class generally have the following structure: 'For
a geometrically defined class of spacetimes and physically
motivated properties of the energy-momentum tensot, all the
solutions of the gravitational field equation asymptotically
converge to a space of constant curvature’. Our aim is to
prove the conjecture in the context of general relativity
for Bianchi-type universes with a positive cosmological
constant.

First we recap the fundamentals of the (old) stan-
dard cosmology model and list a few key issues of the
model. These issues eventually led to the idea of infla-
tion which we briefly summarise. Then we turn our-
selves to proving the no-hair conjecture in the context of
GR. In the Appendix we derive the Raychaudhuri equa-
tion, a tool needed for proving the conjecture and briefly
explain the energy conditions used in the proof. Finally,
for completeness, we derive the classical Friedmann-
Lemaitre equations.

Il. THE STANDARD COSMOLOGICAL MODEL

The (generalised) Ehlers-Geren-Sachs theorem states
that if, in a given universe, all freely falling observers
measure the cosmic background radiation to be (nearly)
isotropic, then that universe is a (nearly) isotropic and
homogeneous FLRW spacetime (see section V C). In the
electromagnetic spectrum the contribution of the cosmic
microwave background is by far larger than the other
branches and constitutes, roughly speaking, 93% of the
the whole emission. The temperature of CMB is mea-
sured to be highly isotropic - it varies only by a tenth
of thousandth of a Kelvin with the direction of obser-
vations. Making the Copernican assumption that Earth
does not occupy a privileged cosmic position, this consti-
tutes one of the strongest available evidence for our own
universe’s homogeneity and isotropy, and hence for the
foundation of current standard cosmological models.

The FLRW cosmology succesfully predicts the ex-
pansion of the universe, the large scale uniformity of the
universe, the light-element abundances (such as 4He)

and possibly the age of the universe. In view of these
successes the FLRW cosmology became accepted as the
standard cosmological model (SCM). However, there are
serious issues with the model which led to its eventual
modification. In the following subsections, we list and
briefly explain some of those issues and how they may
be resolved.

A. Problems of the SCM

a. The horizon problem For analysis of the causal
structure of cosmological models, we can define two
important quantities; the proper distance of the event
horizon:

tmax (] t/
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and the proper distance of the particle horizon
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The event horizon measures the distance over which we
can admit a causal connection even in the future. The
particle horizon measures instead the size of causally
connected regions at time .

Let us consider a flat Universe with an equation of
state p = (& — 1)p, where 0 < a < 1. For instance, in

dp(t) =

a matter-dominated Universe o = % and in a radiation
dominated Universe we have & = % It follows from the
Friedmann-Lemaitre Eqns. (49) and (51) that a o t* and
so we have 4 > 0 and i < 0, i.e. the Universe expands
in a deccelerating fashion and the Hubble parameter
H= g o t~1, Tt can be shown that in the SCM we have
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ie. in the SCM the event horizon does not exist but the
particle horizon exists and is of order H~!. At the very
early stages of the universe (Planck time), the particle
horizon is then approximately given by (restoring the
units of ¢ for the moment):

dy(ty) = cty = 10~ 3Bcm. 4)
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The Hubble radius is defined as the distance from the ob-
server at which the recession velocity of an object would
equal the speed of light. Current observations (H = 71
km/s/Mpc) place the Hubble radius at around 13.7 bil-
lion ly. In reference [2] it is calculated that the size
of the Hubble radius blueshifted to Planck time would
be of order um. This gives 1087 causally disconnected
regions inside a sphere of radius ~um. A question arises
of how did the universe came to be nearly homogeneous
at early times, if microwaves coming from regions seper-
ated by more than a few degrees of the sky were causally
disconnected by many horizon distances at last scatter-
ing? Therefore the SCM cannot explain the large scale
homogeneity of the universe, but must rather take it as
an assumption.

b. The flatness problem The total energy density in
critical units can be written as

k
Qt(ﬂ) =1+ @ (5)
According to experimental data, at present time we have:
Oy, (a) =1.0240.02 (6)

It can be shown that, for the universe to be flat in the
present, it must have been even flatter in the past, i.e.
we must require enormous fine-tuning at Planck time:

K]

~ 10790, 7)
apHp

Thus the SCM cannot explain the flatness of space, but
must again take it as an assumption. Other problems of
the SCM include the singularity problem, the small-scale
inhomogeneity of the universe, the entropy problem etc.
For more details see [2].

B. Inflationary models

Inflationary models are modifications of the SCM
which attempt to resolve all the issues mentioned above.
The basic idea of inflation is that the early universe un-
derwent a short period during which matter was in a
metastable false vacuum state driving the evolution of
the universe into exponential expansion. During this
period the scale factor increases by a tremendous factor.
A small, subhorizon-sized volume of the Universe can
grow large enough to encompass the entire observable
Universe. The flatness and horizon problems are im-
mediately solved. The tremendous expansion stretches
quantum fluctuations on microscopic scales (< 10723
cm) to astrophysical scales (> Mpc) which solves the
problem of local inhomogeneites. The basic mechanism
that drives inflation is a scalar field ¢ described by the
Lagrangian density

L= —3Vap¥'p—V(p). ®)

2

Its energy-momentum tensor T%) = VoV + gapL
can be written as

1
T\ = 09000 — 580 (0439 +2V(9)) )

where we have taken into account that we are dealing
with a scalar field.

Inflation begins with the scalar field displaced from
the minimum of its potential; as it evolves toward the po-
tential energy minimum the scalar field potential drives
a nearly exponential expansion. In most models, the
time required to evolve to the minimum is many hun-
dreds or thousands of Hubble times, i.e. the potential
must be very flat around the starting point ¢ = 0. As
the scalar field approaches its true-vacuum value, the
energy density falls to zero, H decreases and inflation
ends.

Now we assume that during the inflatory phase
V(¢) = V, where V is a constant, and that ¢ is a con-
stant field across all spacetime. This represents a re-
structuring of the vacuum energy density in the sense
that the vacuum energy density changes by a quantity
proportional to V. In GR this affects the properties of
spacetime in the following way:

Gap = 81Ty
= 87 (TW) 4+ Ty
=8r(T}; — guV) (10)
where T[(ZZI) is the energy-momentum tensor of ordi-

nary matter. This is just the Einstein equation with a
cosmological constant

A = 8nV. 11)

We can view Eq. (10) in vacuum as describing a perfect
fluid with p = —p = —V. This negative pressure has the
effect of making a homogeneous and isotropic universe
expand exponentially. The FLRW metric (44) and the
Friedmann-Lemaitre equations (51) and (52) imply for
the scale factor:

H lcosh Ht, ifk = +1
H-1eHt, ifk=0 3,
H lsinhHt, ifk=—1

a(t) =

where we have set H = 4/ % This solution is referred to

as de Sitter spacetime.

The inflationary models are succesful in resolving
the issues of the SCM. However, it is not obvious that
cosmological models with non-FRW initial conditions
ever enter an inflationary epoch nor is it obvious that, if
inflation occurs, intial inhomogeneities and anisotropies
will be smoothed out eventually. Therefore a question
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arises of the naturalness of the inflationary scenario:
Does the inflationary phase in the evolution of the uni-
verse proceed from very general intial conditions? This
is a question that is answered via the cosmological no-
hair conjectures.

lll. PROOF OF THE COSMOLOGICAL NO-HAIR
CONJECTURE FOR HOMOGENEOUS COSMOLOGIES

In this chapter we prove the cosmological no-hair
conjecture solely in the context of general relativity, i.e.
we attribute the vacuum energy which drives inflation
to a large cosmological constant. As there is no way to
drive the cosmological constant to 0, we have no mech-
anism to finish inflation. We follow Wald to prove that
“all initially expanding Bianchi cosmologies with a positive
cosmological constant A, except type-1X, evolve towards the
de Sitter solution exponentially fast. The behaviour of type-IX
models is similar provided that A is greater than a certain
bound.’

We consider a Bianchi universe of either type (I-
IX), i.e. a spatially homogeneous, but not necessarily
isotropic, spacetime (M, g). Such a spacetime can be fo-
liated by a one-parameter family of spacelike hypersur-
faces s orthogonal to a congruence of timelike geodesics
parametrized with proper time ¢. Let n = % be the unit
tangent vector field to the geodesics. Using Eq. (34) we
can decompose the covariant derivative evaluated on X
as

1
Ky =Vany = gKhub + Oap, (12)

where K = K?; and w,;, = 0 for a hypersurface orthogo-
nal congruence. Since K, is symmetric, we notice that
it can be written in terms of the Lie derivative of the
metric tensor with respect to n:

Lngay = ”Cchab + gcbvanc + gacvbnc

= Vanb + Vbna
= Kgp + Kha
= 2Ky,
(13)
SO we can write:
1
Kab = ELngub
1
= ELn (hab - nanb)
1
= 5 Luhap. (14)

It can be shown that L,n,n, = n,Lyn, + nyLyn, = 0 in
the following way:

Long, =n.Vng +n.Vyn°

= chvaﬂc

= Va(nen®) —nVyn

= —n/Vn°

=0, (15)
where we have used the geodesic equation and the fact
that n,n® = —1. If we use a coordinate system adapted
to n, we can write Eq. (14) as

1 9hyy
== . 1
=5 (16)

In other words, we have obtained a differential equation
for the spatial metric h,;, in terms of K,,. The Raychaud-
huri equation (37) for K is:

aK 1

o= —§1<2 — 0%, — Ryynnb. (17)
We can think of the spacelike hypersurfaces %; as Rie-
mannian 3-manifolds with the induced metric tensor
h,, and scalar curvature ®)R.G)R is nonpositive in all
Bianchi models except type IX and satisfies the Gauss-
Codacci equation:

)R = R+ 2R yn"n” — K* + K, K. (18)

The last term may be further simplified:
KabKab = %thubl’lub + %Khab(fab + O’abO’ab

1
= ng + o0 (19)

where we used h%h,, = 3. It can be shown that /1,0 =
0 by using the geodesic equation and the fact that c®
is traceless by assumption. We now write the Einstein
equations:

Gap + Ngap = 87T pp. (20)
We only need the time-time component:
Gapnn® — A — 8 Tynn® =0 (21)

with the usual definition of the Einstein tensor G, =
Ry — % gapR. We can use this definition and Eq. (21) to
rewrite the last term of the Raychaudhuri equation (17)
as follows:
1
Rypn®n® = Gyynn® — ER
= 871(Typ — Agap)n°n® + 47T — 2A

1
= 871(Typ — 58w T)n"n" — A (22)
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where T = T%,. Using equations (19) and (22) we obtain
from the Gauss-Codacci equation (18):

3

3
K2 =3A - 5 3R + Eaﬂbaﬂb +24nT,nn?,  (23)

and from the Raychaudhuri equation (17):

”;—It( =A— %Kz — 0y, — 871 (T, — %gubT)n“nb. (24)
Our strategy is to use equations (23) and (24) to find the
asymptotic behaviour of K,;,. With that information we
solve Eq. (16) for the spatial metric i, in the asymp-
totic regime. The first step is to show that K tends to a
limit. We assume that the matter stress-energy tensor
satisfies the strong and dominant energy conditions (see
section VB) and that K > 0 for some arbitrary time
to = 0 (initially expanding Universe). First we consider
cosmologies that aren’t Bianchi type-IX. For such space-
times it can be shown that 3)R < 0. In that case all the
terms on the right-hand side of Eq. (23) are positive and
we can infer that:

K > V3A. (25)

Then it follows from the previous inequality that K is a
strictly positive function of . By similar reasoning we
can infer from Eq. (24) that:
K 1
< - 2
K2—-3A~ 3 (26)
Knowing that K> > 3A we can integrate the previous
inequality to obtain the upper limit on K:

V3A <KL 3A

~ tanh(at)’ @7

Thus the upper limit on K exponentially approaches
v/3A on a time scale 1/a = \/g, ie. K converges to
Vv 3A. Now it easily follows from Eq. (23) that:

2A

0< oy < ———,
- b= sinh? (at)

(28)

i.e. the shear o, rapidly approaches zero and the uni-
verse isotropises. From the same equation we find that
the energy density also approaches zero in a few time-
constants o™ *:
Tpn*n® < AT (29)
87T sinh? («t)

Due to the dominant energy condition | Ty, | < Too we
deduce that all components of the energy-momentum
tensor rapidly approach zero, as does the scalar curva-

ture of spacelike hypersurfaces ®)R (also obtained from

4

Eq. 23). Using the fact that K — v/3A as 0, — 0 From
Eqns. (16) and (12) we obtain the asymptotic form of the
spatial metric f1,:

hap () = hgp(to)e2* =101, (30)

In conclusion, for t > a~!, any initially expanding
Bianchi spacetime not of type-IX becomes isotropic
(0 — 0), flat (J)R — 0), devoid of matter and ex-
pands at a constant rate K = \/37\ Now we turn our
attention to type-IX spacetimes. For such a spacetime,
it can be shown that the spatial curvature )R has a
maximum value given by:

(det M)?/3
EVER

(3) 3
- (31)

Rmax =

where I = det(h,;,). From the Jacobi’s formula for the
derivative of a determinant we obtain:

) = 2hK. (32)

Now we assume, as before, that K > 0 at some time
tp = 0, but we also introduce an additional assumption
for the value of the cosmological constant A. We suposse
that initially the following inequality holds:

1
A< 5 (3)Rmax(t0)/ (33)

Given this assumption, /1 is intially positive and remains
so if K > 0, which in turn remains positive for all > ¢,
so long as the previous assumption (33) holds for t > fy.
The assumption may only fail if & becomes smaller, but
i > 0. Therefore K is always positive, and the remainder
of the proof proceeds similarly as for the case of Bianchi
cosmologies not of type IX. So we have shown that the
no-hair conjecture holds for type IX cosmologies, given
an additional assumption for the cosmological constant
A.

IV. CONCLUSION

We have summarised the standard cosmological
model (FLRW universe) and its issues. Then we briefly
showed how inflationary models may correct these is-
sues and motivated the need for the cosmological no-hair
theorem. Finally we proved the cosmological no-hair
conjecture in the context of general relativity for Bianchi
type universes with a positive cosmological constant.
As we have no means to end inflation in pure GR, the
next step would be to research cosmological no-hair
conjectures in the context of inflationary models.



Cosmological No-Hair Theorems
V. APPENDIX
A. The Raychaudhuri equation

Let O be an open region in spacetime. A congruence
in O is a family of curves such that through each point in
O there passes one and only one curve from this family.
In analogy to fluid mechanics, these congruences are
often called flows. The Raychaudhuri equations are a
set of evolution equations for quantities describing the
kinematic characteristics of a flow.

Consider a flow in spacetime (M, g) and let v be
the corresponding normalized tangent vector field, i.e.
v,0" = F1. We define the projection tensor hy, =
Sap £ 040y (the plus sign is for timelike curves whereas
the minus sign is for spacelike curves). Notice that
habvh = h“hvb =0, so h’ can be regarded as the pro-
jection operator onto the subspace of the tangent space
perpendicular to v. The covariant derivative of v is a
second rank tensor and therefore it can be decomposed
into its symmetric and anti-symmetric parts. The sym-
metric part can be further decomposed into its isotropic
part involving the trace of the tensor and the symmetric
traceless part. By performing such a decomposition, we
have:

1
Voo = Oap + Wap + -~ —7hap®, (34)
where n is the dimension of spacetime and O, ¢,;, and
wgp are the trace, the symmetric (traceless) part and

the antisymmetric (traceless) part respectively. They are
defined by:

QO =V,v" (expansion);
1 1
O = 5 (vaa + Vzﬂ’b) — mhub® (shear);
1 .
Wap = 5 (Vqu — Vavb> (rotation).

The expansion, rotation and shear are related to the
geometry of the cross sectional area (enclosing a fixed
number of curves) orthogonal to the flow lines. The
analogy with fluid flow is, usually, a good visual aid for
understanding the change in the geometry of this area. If
v represents the velocity field of a fluid we can interpret
©® as the expansion/contraction of the volume of the
fluid, o, as the distortion in shape without change in
volume and w,;, as the rotation without change in shape.
The Raychaudhuri equations are the evolution equations
for the expansion, shear and rotation along the flow.

Now we consider the special case of a congruence of
timelike geodesics parametrized by proper time t in four-
dimensional spacetime. The corresponding normalised
tangent vector field v satisfies the geodesic equation
v"V,0" = 0. We consider the quantity v°V.V;v". From

the definition of the Riemann curvature tensor we have
VViva = Rugep?® + V3 Vev,. (35)
Using Eq. (35) and the geodesic equation we have
V'V Vva = v°Rugepv® + vV Vv,
= Rgpv“0® 4 V(v°Vv,) — Vo Vevg
= Rugeptv” — (Vo) (Veva) (36)

We obtain the three Raychaudhuri equations from the
trace, the symmetric and the antisymmetric parts of
equation (36):

e 1

T 5@)2 + 0?2 — w? = —Ryv*o’ (37)

do, b 2 1

d: = —§®Uah — Ope — Wae©p + ghab (02 - w2>
1~

+ chadvcvd + ERab

(38)
dw b 2

d: = _§®wab - Zac[bwa]c (39)
where 02 = 0,0, W? = WypW™, Cepaq is the Weyl

tensor and the quantity R, = hgchpgR% — %habhcdRCd.

These evolution equations are essentially geometric
statements, independent of any reference to the Einstein
field equations and, as such, are not equations but, es-
sentially, identities. Once we use the Einstein equations
or any other geometric property (e.g. Einstein space, or
vacuum, etc.) as an extra input, the identities become
equations. Eq. (37) for the expansion © is of interest
to us and is usually refered to as the Raychaudhuri
equation.

B. Energy conditions

The actual form of the energy-momentum tensor of
the Universe is obviously too complicated to write, and
so we confine ourselves to finding physically viable
inequalities that T); should satisfy. The first energy
condition we use is the weak energy condition (WEC):

Tpuu® >0 (40)

for all timelike vectors u. It means that the energy den-
sity as measured by an observer whose 4-velocity is u
is non-negative. Continuing, we write the strong energy
condition (SEC) which states:

1
Tabnﬂnb > _iT (41)
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i.e. for every future-pointing timelike vector field n, the
trace of the tidal tensor measured by the correspond-
ing observers is always non-negative. The final energy
condition we use is the dominant energy condition (DEC)
which stipulates that

Tpuub >0 (42)
ab

and T%u? is non-spacelike for all timelike vectors u. It
implies that |T},,| < Too, where Ty, are the components
of T, in any orthonormal basis with n? as the timelike
element of this basis. For a perfect barotropic fluid
the WEC implies that the energy density of the fluid
is positive semi-definite, i.e. p > 0, the DEC implies
that the enthalpy of the fluid is positive semi-definite
(o4 p > 0) and the SEC demands that p + 3p > 0.

C. Friedmann-Lemaitre equations

The general form of the Friedmann - Lemaitre -
Robertson - Walker (abbreviated as FLRW) metric is
derived from purely geometric considerations. The as-
sumption of homogeneity and isotropy implies that the
geometry of the Universe is invariant under spatial roto-
translations. In four-dimensional spacetime the metric
tensor will have 10 independent components. Using
homogeneity and isotropy the number of independent
components can be reduced from 10 to 4 (having taken
into account the 3 rotational and 3 translational degrees
of freedom). The most general form of a line element
exhibiting spatial spherical symmetry can be written as:

ds? = —e'dt? 4 eMdr? + et (12d6? + rPsin0dp?)

43
— 2e7drdt 43

where v, A and u are functions of r. By exploiting the
freedom of choosing a gauge the metric can be reduced
to its canonical FLRW form:

ds? = gudxtdx’
dr?
1—kr?

= —d2 + () [ + 12 (d6? + sin20d<p2)]

(44)

where g, is the metric tensor of the FLRW geometry,
a(t) is the scale factor and ¢ is the cosmic time coordinate.
The FLRW metric describes a homogeneous, isotropic ex-
panding or contracting universe that is path connected,
but not necessarily simply connected. k = 0 corresponds
to a spatially flat Universe; if k > 1 the Universe is spa-
tially closed and, finally, k < 1 corresponds to a spatially
open Universe. The line element (44) is invariant under

6
the following transformation:
_ T
r—7=—
To
a(t) — a(t) = a(t)rg (45)
k — k= kr?

where r( is a dimensionful constant. In the parametriza-
tion of Eq. (45), k is 0, +1 or —1 depending on the
spatial curvature of the internal space. We employ the
parametrization where the scale factor is dimensionless.

The time evolution of the scale factor a(t) is gov-
erned by the Friedmann-Lemaitre equations which are
just the Einstein equations written in an FLRW metric
and supplemented by the covariant conservation of the
total stress-energy tensor. The explicit form of the stress
energy tensor depends on the physical model of the
matter content of the Universe being used. We consider
a perfect barotropic fluid (i.e. a non-viscous fluid with a
definite relation between pressure and energy density).
Denoting the pressure of such a fluid with p and its
density with p, the stress-energy tensor can be written
in the following general form:

™ = (p + p)u'u" + pg", (46)

where u# is the velocity field of the (total) fluid satisfying
guutu” = —1. By definition of the covariant derivative,
covariant conservation of the stress-energy tensor can be
written as:

0= VuTH =3, TH + TF,, T + T, e TH.  (47)

The Christoffel symbols can be calculated from the met-
ric tensor gy

1
e = ng\ (avga/\ + aagw\ - a/\gwf)- (48)
In the FLRW metric Eqns. (46) and (47) then imply:
p+3H(p+p) =0, (49)

where H = £ is the Hubble parameter and the over-dot
denotes differentiation with respect to the cosmic time
coordinate .

The components of the Ricci tensor and the Ricci
scalar computed from the metric (44) are:

R} = —3(H? + H)
j — 2 j
R = —(H+3H + 5)J] (50)
: k
_ 2
R=6(H+2H + ).
By using Eqns. (50) and (46), the following equations are

obtained from the (00) component and the linear combi-
nation of the (00) component and the (ij) components
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of the Einstein equation respectively:

2_8m  k

H - 3P 612 (51)
. k
H:—4n(p+p)+a—2. (52)

Eqns. (49), (51) and (52) are refered to as the Friedmann-
Lemaitre equations. Applied to a fluid with a given
equation of state f(p, p) = 0, the Friedmann-Lemaitre
equations yield the time evolution and geometry of the
universe as a function of the fluid density.
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