Kvantno tuneliranje magnetizacije: magnetske nanočestice i jednomolekulski magneti

Damir Pajić FO@PMF Seminar iz fizike čvrstog stanja Poslijediplomski studij 08.04.2003. "Koji prirodni zakon čini da ovaj kamen privlači željezo k sebi.
Grci su ga nazvali po mjestu gdje je nađen ...
I taj kamen još uvijek začuđuje ljude." Lukrecije, 99.-55. pr.Kr.

Fizika magnetizma

* Međudjelovanje na atomskoj razini

- ♦ Heisenberg, Ising, Fermijeve tekućine, Hubbard
- osnovno stanje, pobuđenja
- ◊ lokalna gustoća spina, saturacija, toplinski kapacitet
- * Magnetska svojstva mezoskopskih magneta (100Å ...)
 - ◊ irelevantna atomska razina
 - slaba međudjelovanja: anizotropija, magnetski dipoli, defekti, nečistoće, ...
- * Makroskopski magneti

Mikromagnetizam

Jednadžba gibanja:

$$\frac{\partial \vec{M}}{\partial t} = -\gamma \vec{M} \times \frac{\delta E}{\delta \vec{M}}$$

* Opis i do dimenzija nekoliko konstanti rešetke

- ◇ ravnotežna konfiguracija
- ◊ gibanje domenskih zidova
- ◊ feromagnetska rezonancija
- ◊ spinski valovi

Makroskopski magnetski moment

Jako međudjelovanje izmjene

 * ukupni magnetski moment 1000 atoma ponaša se kao jedinstvena veličina

$$M_i M_j - M_j M_i = 2i\mu_B \epsilon_{ijk} M_k$$

 \ast makroskopskim mjerenjem moguće je odrediti \vec{M}

Kvantno tuneliranje

Tuneliranje makroskopskog \vec{M} između klasičnih stabilnih konfiguracija

* Razlozi pažnje

kvantna mehanika na makroskopskoj razini?
magnetski instanton

* Prepreka ?

 $\diamond \; e^{-I_{ef}/\hbar}$

 magnetizacija može postati "laki" objekt za tuneliranje Makroskopsko kvantno tuneliranje (MQT):
 Caldeira & Leggett, PRL <u>46</u> (1981) 211

Tuneliranje

WKB: $\Gamma = Ae^{-B}$ $A \approx \omega_a$ $B = 2 |\int_a^b p dx|/\hbar$ $k_B T \ll \hbar \omega_0$

Tuneliranje

Monodomenske čestice

* Heisenbergovo međudjelovanje

 $\diamond \epsilon_{ex} \simeq 1 eV \cdot matr.el.prekl.v.f.$

 \diamond vjerojatnost okretanja $e^{-\epsilon_{ex}/T}$

Monodomenske čestice

* Heisenbergovo međudjelovanje $\diamond \epsilon_{ex} \simeq 1 eV \cdot matr.el.prekl.v.f.$

 \diamond vjerojatnost okretanja $e^{-\epsilon_{ex}/T}$

Monodomenske čestice

- * Heisenbergovo međudjelovanje $\diamond \epsilon_{ex} \simeq 1 eV \cdot matr.el.prekl.v.f.$
 - \diamond vjerojatnost okretanja $e^{-\epsilon_{ex}/T}$
- * Anizotropija \diamond okretanje \vec{M} \diamond simetrija i osi $\diamond \epsilon_{an} \approx (v/c)^2 \cdot \epsilon_{ex}$
- * Potvrđeno eksperimentima

Promjena smjera \vec{M}

$$* e^{-rac{U}{T}}$$

♦ $T > T_B$... superparamagnet
♦ $T < T_B$... blokiranje spina

Promjena smjera \vec{M}

$$* e^{-rac{U}{T}}$$
 $\diamond T > T_B \dots$ sup

 $◇ T > T_B \dots$ superparamagnet $◇ T < T_B \dots$ blokiranje spina

* Tuneliranje

Rješavanje problema

$$\frac{\partial \vec{M}}{\partial t} = -\gamma \vec{M} \times \frac{\delta E}{\delta \vec{M}}$$

$$(M, \theta, \phi): \vec{M} \to (M \sin \theta \sin \phi, M \sin \theta \cos \phi, M \cos \theta)$$

$$\frac{d\phi}{dt} = -\frac{\gamma}{M \sin \theta} \frac{\partial E}{\partial \theta}, \frac{d\theta}{dt} = -\frac{\gamma}{M \sin \theta} \frac{\partial E}{\partial \phi}$$

$$\mathcal{L} = p\dot{x} - E(x, p) = \frac{M}{\gamma} \dot{\phi} \cos \theta - E(\theta, \phi) + \frac{df(\theta, \phi)}{dt}$$

$$\dot{x} = \frac{\partial E}{\partial p}, \dot{p} = -\frac{\partial E}{\partial x}, f = \frac{M}{\gamma} \phi$$

$$I = \int dt \mathcal{L} = \int dt (\frac{M}{\gamma} \dot{\phi} (\cos \theta - 1) - E(\theta, \phi))$$

Izračunavanje eksponenta tuneliranja ...

Modeliranje energije $E(\theta, \phi)$

 Jednoosna anizotropija u Z smjeru u transverzalnom magnetskom polju u X smjeru

 $\diamond E = V(K\sin^2\theta - HM_0\sin\theta\cos\phi)$

- X-Y ravnina lakog magnetiziranja i X os lakog magnetiziranja i primijenjeno magnetsko polje u -X smjeru
 - $\diamond E = k_{\perp} M_z^2 k_{\parallel} M_x^2 + M_x H =$ = $V(K_{\perp} \cos^2 \theta - K_{\parallel} \sin^2 \theta \cos^2 \phi + M_0 H \sin \theta \cos \phi)$

Računamo: $\phi(\tau)$, $\theta(\tau)$, Γ , T_C , ... Chudnovsky & Gunther, PRL <u>60</u> (1988) 661

Jednoosna anizotropija i polje

 $E = -kM_z^2 - M_x H_x - M_z H_z =$ = $-H_a M(\frac{1}{2}\cos^2\theta + h_z\cos\theta + h_x\sin\theta\cos\theta)$ $H_a = 2kM, h_{x,z} = H_{x,z}/H_a$

Rješavanje problema

- * Promatramo: $h = h_c(1 \epsilon)$
- * Uvodimo: $\delta = \theta \theta_0$
- * Djelovanje: $I = -\hbar S \int d\bar{\tau} \bar{\mathcal{L}}_E$
- * Euler-Lagrange jednadžbe (ekstremalne trajektorije) \diamond Instanton: rotacija \vec{M} ispod barijere (*spori* instanton)

* Integracija po putanjama: $\int \mathcal{D}\{\phi(\tau)\} \int \mathcal{D}\{\cos\theta(\tau)\}e^{-\frac{I}{\hbar}}$

Rješenje problema

Ekstremalna putanja: * $\delta(\tau) = \frac{\delta_2}{\operatorname{ch}^2(\omega_0 \tau/2)}$

* Konstanta: $\omega_0 = (6\epsilon)^{1/4} \frac{|\operatorname{ctg}\theta_H|^{1/6}}{1+|\operatorname{ctg}\theta_H|^{2/3}} \omega_a$

* Eksponent tuneliranja: $B = \frac{16\sqrt[4]{6}}{5} S \epsilon^{5/4} |\text{ctg}\theta_H|^{1/6}$

"Kvantna" temperatura

Eksperimentalna perspektiva

* Slobodni parametri: $heta_H$, $\epsilon = 1 - H/H_c$, T

 $*~T_c \propto H_a$, $T_c \propto \epsilon^{1/4}$

* $H_a = 1T$, $\epsilon = 10^{-3}$, $T_c(135^\circ) \approx 30mK$

* $\Gamma \propto 10^{11} s^{-1} \cdot e^{-B}$

- $\diamond~B < 25-30 \Rightarrow$ tuneliranje prebrzo i teško primjetljivo
- $\diamond~B~>~30-35~\Rightarrow$ metastabilno stanje traje znatno dulje od eksperimenta
- $\diamond B \simeq 30$: mjerljivo MQT

* $\epsilon \simeq 10^{-3} \Rightarrow S \simeq 3 \cdot 10^4$ Drugi: $K_{\parallel}, K_{\perp} \simeq 10^6 - 10^8 erg/cm^3$, $S \simeq 10^2 - 10^5$, $T_c \simeq 1K$

Tuneliranje Néelovog vektora $(\downarrow \uparrow \downarrow \uparrow)$ $(\downarrow \uparrow \downarrow \uparrow)$ $(\downarrow \uparrow \downarrow \uparrow)$ $(\downarrow \uparrow \downarrow \uparrow)$

- * Veća anizotropija i izraženije tuneliranje nego kod FM
- * Detekcija nekompenziranih spinova

* $\Gamma \approx |\cos(s\pi)|\omega_0 e^{-\frac{2V}{\hbar\gamma}\sqrt{2\chi_\perp K_\parallel + m^2 \frac{K_\parallel}{K_\perp}}}$ $\omega_0 = 2\gamma \sqrt{\frac{K_\parallel K_\perp}{m^2 + 2\chi_\perp K_\perp}}$

- * $T_c \simeq \mu_B \sqrt{H_{\parallel} H_{ex}}$, (nekoliko K)
- * Tuneliranje $10^3 10^4$ magnetskih atoma

Makroskopska kvantna koherencija (MQC) $\Delta = \hbar\Gamma$ $|0\rangle = \frac{1}{\sqrt{2}}(|\uparrow\rangle + |\downarrow\rangle)$ $|1\rangle = \frac{1}{\sqrt{2}}(|\uparrow\rangle - |\downarrow\rangle)$ $\langle \vec{M}(t) \cdot \vec{M}(0) \rangle = M_0^2 \cos(\Gamma t)$

- * Rezonantna apsorpcija pri AC polju od $\omega=\Gamma$
- * Međudjelovanje \vec{M} i okoline uništava koherentne oscilacije
- * Što veća makroskopnost, to lomljivija koherentnost ($\Gamma \simeq 1 s^{-1}$, međudjelovanje $10^{-15} eV$)
- * Antiferomagnet dobar kandidat za MQC (100 atoma, nisko polje i temperatura)
- Nekoherentno tuneliranje nije tako osjetljivo na međudjelovanje s okolinom

Eksperimentalne činjenice i tuneliranje

* Nanomagneti

◊ jednodomenske magnetske nanočestice

- ◊ jednomolekulski magneti
- * Magnetska svojstva

◇ magnetska histereza
◇ m(T)
◇ relaksacija m(t)

◊ relaksacija m(t)

Magnetska histereza i FC-ZFC razdvajanje

 Fe_3O_4 - 8nm

m ne stigne pratiti H

Uzrok: spora relaksacija magnetizacije

Uzrok: spora relaksacija magnetizacije

Ferritin

 $lpha - {
m Fe}_3 {
m O}_4$ (hematite) iz konjske slezene 3-7.5nm 4500 ${
m Fe}^{3+}$ iona 15 nekompenziranih AFM

Tejada & Zhang, J.Phys.:Condens.Matter <u>6</u> (1994) 263

ln(t) relaksacija

- * Univerzalnost: sustav u kritičnom stanju
 - ◊ i kod monodomenskih čestica
- Raspad metastabilnih stanja: jedini opis sporih relaksacija
- * Model: nailazak na sve veće barijere

♦ U = U₀(1 -
$$\frac{M}{M_c}$$
), $\frac{dM}{dt} \propto e^{-\frac{U_0}{T}(1 - \frac{M}{M_c})}$
♦ M(t) = M(t_0)(1 - $\frac{T}{U_0} \ln \frac{t}{t_0})$
■ magnetska viskoznost: S = $-\frac{1}{M(t_0)} \frac{\partial M}{\partial \ln(t)}$

Magnetska viskoznost

Tejada & Zhang, J.Phys.:Condens.Matter <u>6</u> (1994) 263

* $S \propto \frac{T}{U_0}$ prestaje vrijediti

- $\ast~S$ postaje konstanta ispod određene temperature
- * Tuneliranje

Problemi s nanočesticama

Raspodjela po veličinama

 $\diamond U = KV \\ \diamond \tau = \tau_0 e^{\frac{KV}{kT}}$

- * Raspodjela po oblicima
- * Kako uočiti tuneliranje?
- * Izvedba aparature ($T_c(180^\circ)$?)

www.lps.u-psud.fr

sinteza: T.Lis, Acta Crystallogr. B <u>36</u> (1980) 2042 bistabilnost: Sessoli, Gatteschi, Caneschi, Novak, Nature <u>365</u> (1993) 141

- * Tetragonska rešetka ($a = 17, 32\text{\AA}, c = 12, 39\text{\AA}$)
- * Spin molekule: $8 \cdot 2 4 \cdot \frac{3}{2} = 10$ (i do 50K; jako međudjelovanje izmjene)
- * Visoka magnetska anizotropija

Magnetska histereza

2

3

- * ispod 3K blokiran spin
- * iznad 3K superparamagnet

"FC i ZFC krivulje"

"FC i ZFC krivulje"

Relaksacija magnetizacije * Ansambl

Т	20K	10K	7K	5K	4K	3,5K	3K	2K	1K
au	4,4 μ s	0,093ms	1,23ms	0,042s	0,88s	7,8s	140s	43d	2Tg

Kvantna histereza

- * Relaksacija brža pri nekim poljima
- * Rezonantno tuneliranje?
- * Friedman, Sarachik, Tejada, Ziolo: PRL 76 (1996) 3830

Proces magnetiziranja

$\mathbf{Hamiltonijan} \\ * \mathcal{H} = -DS_z^2 - g\mu_B H_z S_z$

Hamiltonijan

* $\mathcal{H} = -DS_z^2 - g\mu_B H_z S_z - g\mu_B H_x S_x - C((S^+)^4 + (S^-)^4)$

- * D/k = 0,61K, C/k = 0.03mK
- * Svojstvene energije: $E = -DS_z^2 g\mu_B H_z S_z$
- Nedijagonalno međudjelovanje
 - ◊ dipolna polja (100G)
 - nuklearna polja (500G): nasumična (usrednjenje 100-200G)
 - anizotropija
 - ◊ spin-fonon

Rezonantno tuneliranje

Hernández et al, PRB 55 (1997) 5858

Rezonantno tuneliranje monotono i nemonotono

- * H_z mijenja barijeru
- * H_z ostvaruje rezonanciju

Rezonantno tuneliranje

 $H_0 \frac{1}{\cos \theta}$

Landau-Zener pristup

* Tuneliranje S_z iz m u n-m

*
$$P_{m,n} = 1 - e^{-\frac{\pi\Delta^2}{2g\mu_B(2m-n)\frac{\mathrm{d}H}{\mathrm{d}t}}}$$

Mehanizam prijelaza

* Transverzalno polje utječe na tuneliranje

*
$$\Delta \epsilon_{mm'} = \frac{2D}{[(m'-m-1)!]^2} \cdot \sqrt{\frac{(S+m')!(S-m)!}{(S-m')!(S+m)!}} \cdot (\frac{H_x}{2D})^{m'-m}$$

 \diamond Garanin i Chudnovsky: PRB 56 (1997) 11102
 $\diamond \Delta \epsilon_{mm'} = 2V_{m,m+1} \frac{1}{\epsilon_{m+1}-\epsilon_m} V_{m+1,m+2} \frac{1}{\epsilon_{m+2}-\epsilon_{m+1}} \dots V_{m'-1,m'}$
 $\diamond V_{m,m+1} = \langle m | H_x S_x | m+1 \rangle = \frac{1}{2} H_x \sqrt{S(S+1)} - m(m+1)$

-m,m'	10	9	8	7	6	5	4	3	2	1
Г	2,1E-45	1,1E-37	1,7E-30	1,2E-23	3,7E-17	4,7E-11	2,3E-5	3,5E0	1,1E5	3,2E8

Termički potpomognuto tuneliranje

Arrhenius + rezonancija naseljenost + brzina tuneliranja

Termički potpomognuto tuneliranje

Nešto tu nedostaje ...

- * Problemi
 - $\diamond H_x$ preslabo
 - \diamond odstupanje od $M \propto e^{-t/\tau}$
 - ◊ "smjesa dvaju uzoraka" ?

Dislokacije

- * Glavni razlog tuneliranja: dugodosežna izobličenja
- * Lokalno zakretanje osi anizotropije
- * Longitud. polje ima lokalnu transverz. komponentu

Magneto-elastično vezanje

$$* \mathcal{H} = -DS_z^2 - g\mu_B H_z S_z + \mathcal{H}_{m-e}$$

* Garanin & Chudnovsky, PRB 65 (2002) 094423

*
$$\mathcal{H}_{m-e} = g_1 D(\epsilon_{xx} - \epsilon_{yy})(S_x^2 - S_y^2) + g_2 D\epsilon_{xy}\{S_x, S_y\} + D((g_3\epsilon_{xz} + g_4\omega_{xz})\{S_x, S_z\} + (g_3\epsilon_{yz} + g_4\omega_{yz})\{S_y, S_z\})$$

- * ("rubna"+"vijčana")x("transverz."+"longitud.")
- * $\mathcal{H} = \mathcal{H}_0(z, \operatorname{ili} z') + E(S_{x'}^2 S_{y'}^2) H_{x'}S_{x'} H_{y'}S_{y'}$

*
$$E = 2D \frac{g(\phi)}{r}$$
 i $H_{\perp} = H_z \frac{g_H(\phi)}{r}$

Rezultat magneto-elastičnog vezanja * Dobivena su "bolja" transverzalna polja

 * Objašnjeno postojanje raspodjela rezonantnih polja i visina barijera

Drugi jednomolekulski magneti

- * "Fe₈"
- * Mn_{12} -formijat
- * Prstenovi LiFe $_6$, Fe $_{10}$, Fe $_{18}$ u kompleksnoj strukturi
- * Kompleksi Cr uokvireni u CN

Eksperimentalne tehnike

- * MPMS5 magnetometar *: (1.8K-300K, 5T)
- * AC susceptibilnost
- * EPR
- * NMR
- * Mössbauer
- * Toplinski kapacitet

Zaključak

- Bogatstvo instantonskih rješenja za tuneliranje magnetizacije
- Predviđanje eksperimentalnih mogućnosti, ali ne i kako ih izvesti
- * Uočavanje prelaska na kvantni režim relaksacije magnetizacije kod magnetskih nanočestica
- * Tuneliranje magnetizacije kod jednomolekulskih magneta vidljivo na makroskopskoj skali
- * Dislokacije u objašnjavanju magnetske relaksacije

Da, i?

- * Kvantni superparamagnetizam?
- * Makroskopska kvantna koherencija?
- * Opis relaksacije magnetizacije pri rezonanciji?
- * Kvantitativna veza između dislokacija i magnetskih svojstava?
- * Utjecaj kristalne vode i octene kiseline na neuređenost?
- * Ograničenost magnetskih mjerenja?
- * Suradnja eksperimentalnih i teorijskih tehnika?
- * Kvantno računalo? \smile