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The sG breather
In the 1+1 dimensional sine-Gordon theory a soliton-antisoliton
dublet solution is present:

Φ(x , t)B = 4 arctg



sin
(

ut√
1+u2

)

u · ch x√
1+u2


 with ω =

u√
1 + u2

.

Figure: The sG breather with u = 0.5
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The idea of quasi-breathers (QBs)

Long living oscillating lumps have been observed numerically.
Such configurations emerge e.g. in soliton-antisoliton
collisions.
QBs are the stationary counterparts of oscillons. QBs are
infinite energy configurations. Oscillons are localized, finite
energy, long-living oscillating lumps. They emerge if we omit
the incoming radiation from a QB.
Small amplitude QBs can be represented by a series expansion
just like the sG breather.
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We introduce ε =
√
1− ω2, which is small close to the mass

threshold. This generates the series:

X := εx S(X ) =

√
2

chX

Φ(x , t)B = ε
[
2
√
2 S · sin(ωt)

]
+

+ ε3
[√

2
4 (4S − S3) · sin(ωt) +

√
2

12 S3 · sin(3ωt)

]
+O(ε5)

An important difference between oscillons and breathers is
whether they decay or not. This property is reflected in the
precedent series expansion; for a breather the series converge,
while for a QB the series proves to be an asymptotic series.
The radiation rate of an oscillon can be calculated from the
asymptotic series using elaborate methods.
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The dsG quasi-breather
The double sine-Gordon potential is:

U(Φ) = − 4
1 + |4η|

[
− cos

(
Φ

2

)
+ η cosΦ

]
.

We examine the QB in the η > −1
4 case in the lower minimum of

the potential (2π), about which the potential is symmetric.
Figure: The dsG potential with η = 1
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We employ rescalings in order to have m2 = 1 and g3 = −1:

x̃ = mx t̃ = mt Φ̃ =

√
m2

|g3|
(Φ− 2π)

U(Φ̃) = − 4
1 + |4η|


cos



√
|g3|
m2

Φ̃

2


+ η cos



√
|g3|
m2 Φ̃






and get the field equation (Φ̃→ Φ):

−∂ttΦ + ∂xx Φ = Φ− Φ3 +
∞∑

k=2
g2k+1Φ2k+1
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We get the QB in the asymptotic series representation with the aid of the
following formulae:

ΦQB =
∞∑

k=1
εkΦk Φ1 =

2√
3

S · cos(ωt)

∂xx S − S + S3 = 0 S =

√
2

chX .

The QB takes the form:

ΦQB = ε
2√
3

S · cos(ωt) + ε3
[

2
3
√
3

(
1
24 +

10g5
9

)] (
−S3 + 4S

)
· cos(ωt)+

+ ε3
1

12
√
3

S3 · cos(3ωt) + . . . .
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Figure: The dsG QB with ε = 0.3
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Understanding the radiation

In a nonlinear field theory a localized lump radiates energy.

Intuition: the theory has a characteristic speed (c) and the lump
has a characteristic length (L), by dimensional analysis we get
T = L

c = 1
ε for the lifetime of the lump.

Quantitatively we could calculate the radiation by the Green
function method. We use a mode expansion of the field equation
and write down the first two modes:

ΦQB =
∞∑

k=0
φ2k+1 cos((2k + 1)ωt)


∂xx + (ω2 − 1)︸ ︷︷ ︸

−ε2


φ1 =

3
4φ

3
1 +

3
4φ

2
1φ3 + · · · =

∞∑

k=0
f (1)2k+1S2k+1

[
∂xx + (9ω2 − 1)

]
φ3 =

1
4φ

3
1 +

3
2φ

2
1φ3 + · · · =

∞∑

k=0
f (3)2k+1S2k+1

f (l)m = εm(a1 + ε2a2 + . . . )
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The first radiating mode turns out to be φ3, as we remain under
the mass threshold. The leading order calculation gives:

Φosc = Φ(1)
osc +O(ε3) = ε

2√
3

S cos(ωt) +O(ε3)


∂xx + (9ω2 − 1)︸ ︷︷ ︸

8


 φ3︸︷︷︸
φrad

= J (1) =
1
4
(
φ

(1)
1

)3
= ε3

2
3
√
3

S3 +O(ε5)

φ3(x) =

∫ ∞

−∞
dξG(x , ξ)J (1)(ξ)

In order to satisfy the outgoing radiation asymptotics we choose
γ± = e±i

√
8x and

G(x , ξ) =





γ−(x) · γ+(ξ)

W (ξ)
if ξ ≤ x ,

γ+(x) · γ−(ξ)

W (ξ)
if x ≤ ξ.
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For x � 1
ε we get:

φrad = e−i
√
8x i
3
√
3

∫ ∞

−∞
dξ ei

√
8ξ ε3

ch3(εξ)
≈

≈ e−i
√
8x i
3
√
3
2π exp

[
−
√
8π
2ε

]
.

However this approximation cannot be ameliorated, as from every ε
order in the source a O(1) correction comes:

∫ ∞

−∞
dξ ei

√
8ξ εn

chn(εξ)
≈
√
8n−1

(n − 1)!

π

2 exp
[
−
√
8π
2ε

]
.

With the coefficients of Sn increasing like (n−1)!
8n/2 these corrections

sum up to give a divergent result for the outgoing radiation.
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Correction beyond all orders

We aim to construct a transcendentally small correction
(∝ exp

[
−
√
8π
2ε

]
) to the asymptotic series.

This correction beyond all ε orders can be made ’big’ by
complexifying the problem. Our small amplitude (O(ε)) QB is
’big’ near the singularity of S; we hope to find the effect in
the vicinity of this singularity.
Kruskal and Segur: The correction can be found by solving
the complexified mode equations in the neighborhood of the
singularity (X = iR = i π2 ) in the complex plane closest to the
real axis.

X = εx = i π2 + εy S(X ) = − i
√
2

εy +
i
√
2εy
6 +O

(
(εy)3

)
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The geometry of the matching region:{|εy | � 1 (εy → 0), |y | � 1 (|y | → ∞), −π ≤ arg(y) ≤ −π
2
}

Figure: The geometry of the matching region

The mode equations on the complex plane:
[
∂xx + (n2ω2 − 1)

]
φn =

1
4

∑

k,l ,m=odd
φkφlφmδn,±k±l±m + . . .
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Equations of the inner problem (leading order in ε):
[
∂yy + (n2 − 1)

]
φn =

1
4

∑

k,l ,m=odd
φkφlφmδn,±k±l±m + . . .

φn =
∞∑

k=(n−1)/2

a(n)2k+1
y2k+1

Matching in the overlap region yields:

φ1 = − i2
√
2√
3

1
y +

i4
√
2

3
√
3

( 1
24 +

10g5
9

) 1
y3 + . . .

φ3 = − i
√
2

6
√
3
1
y3 + . . .

...
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Let φn =: An + iBn. For Im y → −∞ along Re y = 0 the
asymptotic series for each Bn converges, because every term
vanishes. We will find the corrections beyond all orders there, thus
our method makes sense.

Taking the imaginary part of the mode equations on this line gives
us decoupled linear equations, as the Bns are transcendentally small.
The solution of the equations take the form:

B3(y) = ν3 exp
[
−i
√
8 y
]
·
{
1 +O

(
1
y

)}
+O

[
1
y exp

[
−i
√
24 y

]]

We have similar formulae for other Bns; ν3 can be determined
numerically.
We continue the solution back to the real axis and get the radiation
field configuration in φ3 (a similar term comes from the
neighborhood of the lower half plane singularity: X = −i π2 ):

Φrad = 2ν3︸︷︷︸
πK

· exp
[
−
√
8π
2ε

]
· sin

[√
8 x − 3t

]
.
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The background of this unfamiliar idea

The boundary layer problem is the analogy of our method in
fluid mechanics. We have to match the ’inner solution’ in the
boundary layer to the flow, which is the ’outer solution’.

In nonlinear physics the problem of singular perturbations are
often treated this way. E.g. the KdV-soliton’s speed decreases
under the effect of a higher order derivative:

0 = ut + 6uux + u3x

+ δ2u5x

usol (x , t) =
C

2 ch2
[√

C
2 (x − Ct)

]

dC
dt ∝ exp

[
− 2π√

C ε

]
.
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Determination of the amplitude K via Borel summation

Hakim and Pomeau: The radiation amplitude K may be
determined from the leading behaviour of the a(3)2k+1
coefficients (φ3 =

∑∞
k=1

a(3)2k+1
y2k+1 ).

It can be shown that the coupled mode equations in the
vicinity of the singularity are consistent with the following
asymptotics:

a(3)2m+1 = K (−1)m (2m)!

8m

[
1 +O

( 1
m

)]
,

similar formulae hold for a(n)2m+1s, as φ3 proves to be
dominant among the modes and drives the leading behaviour
of the other modes through source terms.
K can be obtained numerically by solving the mode equations up to
some large order of m and matching these numerical values to the
asymptotics.
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Hakim and Pomeau: The radiation amplitude K may be
determined from the leading behaviour of the a(3)2k+1
coefficients (φ3 =

∑∞
k=1

a(3)2k+1
y2k+1 ).

It can be shown that the coupled mode equations in the
vicinity of the singularity are consistent with the following
asymptotics:

a(3)2m+1 = K (−1)m (2m)!

8m

[
1 +O

( 1
m

)]
,

similar formulae hold for a(n)2m+1s, as φ3 proves to be
dominant among the modes and drives the leading behaviour
of the other modes through source terms.
K can be obtained numerically by solving the mode equations up to
some large order of m and matching these numerical values to the
asymptotics.
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The algebraic asymptotic series for φ3 in the domain of the inner
problem is Borel-summable. The Borel-summed series will contain
the radiation field configuration in itself. Taking the Laplace
transform of our result gives the radiation field configuration.

The Borel transform of the divergent series is:

φ3(y) =

∫ ∞

0
dt e−tV (t/y) (1)

V (z) =
∞∑

m=1

a(3)2m+1
(2m + 1)!

z−(2m+1) ∼
∞∑

m=1
K (−1)m

(2m + 1)
z−(2m+1) .

This new converging series has logarithmic singularities at z = ±i ;
the leading order behaviour of coefficients a(3)2m+1 only determine
the series in the neighborhood of these singularities.
To complete the Borel summation procedure we have to compute
the (1) integral: the logarithmic singularity does not contribute,
while integrating on the branch cut we obtain the radiation field
configuration:

Φrad = πK · exp
[
−
√
8π
2ε

]
· sin

[√
8 x − 3t

]
.
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K in the dsG theory

According to the theory of Fourier series we can truncate the infinite
set of mode equations at 2, 3 and 4 modes to get an approximate
solution.

We investigate small amplitude (O(ε)) oscillons, therefore we
truncate the Taylor series expansion of the potential:

−∂ttΦ + ∂xx Φ = Φ− Φ3
︸ ︷︷ ︸

first calculation

+g5Φ5

︸ ︷︷ ︸
second calculation

.

Truncation of the infinite set of mode equations at 2 modes gives
the minimal solvable system. However we need at least 3 mode
equations to approach the real value of K .
The dependence of K on η is weak on a wide interval. K tends to
zero close to the η (g5) value of the sG theory.
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Figure: Dependence of K on η
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Radiation law in non-symmetric potentials

In 1+1 dimensions with non-symmetric potential (e.g. Φ4 theory)
all Fourier modes are involved:

ΦQB =
∞∑

k=0
φk cos(kωt) .

Dominantly the radiation is in the second mode. The radiation
field configuration is:

Φrad = 2ν2︸︷︷︸
πK

· exp
[
−
√
3π
2ε

]
· sin

[√
3 x − 2t

]
.

We not yet understand how K could be calculated via Borel
summation because of φ0.
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Radiation law in arbitrary dimensions

For radially symmetric QBs in arbitrary dimensions we have to
solve the following field equation (ρ = εr):

−∂ttΦ + ∂ρρΦ +
D − 1
ρ

∂ρΦ = Φ− Φ3 +
∞∑

k=2
g2k+1Φ2k+1 .

On the real axis we have the master equation:

∂ρρS +
D − 1
ρ

∂ρS − S + S3 = 0 . (2)

QBs can be represented with series containing the powers of S
and ∂ρS, except in one dimension, where the series only
contains S.
The singularity of (2) may be determined numerically and we
can work near the singularity just as we did in the one
dimensional case.



Localized energy lumps Transcendentally small corrections Radiation law Summary

Radiation law in arbitrary dimensions

For radially symmetric QBs in arbitrary dimensions we have to
solve the following field equation (ρ = εr):

−∂ttΦ + ∂ρρΦ +
D − 1
ρ

∂ρΦ = Φ− Φ3 +
∞∑

k=2
g2k+1Φ2k+1 .

On the real axis we have the master equation:

∂ρρS +
D − 1
ρ

∂ρS − S + S3 = 0 . (2)

QBs can be represented with series containing the powers of S
and ∂ρS, except in one dimension, where the series only
contains S.

The singularity of (2) may be determined numerically and we
can work near the singularity just as we did in the one
dimensional case.



Localized energy lumps Transcendentally small corrections Radiation law Summary

Radiation law in arbitrary dimensions

For radially symmetric QBs in arbitrary dimensions we have to
solve the following field equation (ρ = εr):

−∂ttΦ + ∂ρρΦ +
D − 1
ρ

∂ρΦ = Φ− Φ3 +
∞∑

k=2
g2k+1Φ2k+1 .

On the real axis we have the master equation:

∂ρρS +
D − 1
ρ

∂ρS − S + S3 = 0 . (2)

QBs can be represented with series containing the powers of S
and ∂ρS, except in one dimension, where the series only
contains S.
The singularity of (2) may be determined numerically and we
can work near the singularity just as we did in the one
dimensional case.



Localized energy lumps Transcendentally small corrections Radiation law Summary

The complexified mode equations leading order in ε are the same as
in the one dimensional case (if we have the same potential):

ρ = iR(D) + εy
[
∂yy + ε D−1

iR(D)+εy ∂y + (n2ω2 − 1)
]
φn =

=
[
∂yy + (n2 − 1) + ε D−1

iR(D)∂y +

+ε2
(
− (D−1)y

(iR(D))2
∂y − n2

)
+O(ε3)

]
φn

leading
=======
order in ε

=
[
∂yy + (n2 − 1)

]
φn = 1

4

∑

k,l,m=odd
φkφlφmδn,±k±l±m + . . .

φn =
∞∑

k=(n−1)/2

a(n)2k+1
y2k+1

Thus the value of K and the transcendental correction is the same
in arbitrary dimensions as in one dimension. The only difference is
in the continuation back to the real axis.
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From the correction beyond all orders plane, cylindrical and
spherical waves emerge on the real axis. The radiation field
configuration reads:

Φrad = 2ν3︸︷︷︸
πK

· exp
[
−
√
8R(D)

ε

] [
R(D)

εr

] D−1
2

·sin
[√

8 r − 3t
]

r � 1
ε

These waves transport energy, the radiation power for them is:

W =
1
2A2kω × SD ,

where SD is the surface of the unit sphere.
For the radiation rate of small amplitude oscillons we get:

dE
dt = −3

√
2 π2 · 2π

D/2

Γ
(D
2
) K 2

[
R(D)

ε

]D−1
exp

[
−2
√
8R(D)

ε

]
.
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Discussion of the radiation law

The position of the pole can be determined by Padé’s
approximation:

Figure: The position of the singularity as a function of D
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As D increases the pole approaches the origin and the radiation rate
of the oscillon increases. This result predicts D = 4 to be the critical
dimension, but gives no information about the stability of the
oscillon (i.e. for D = 3 the small amplitude oscillons are unstable).
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For small ε we assume that it is changing adiabatically due to
radiation and that the system evolves through undistorted
oscillon states (the radiation is negligible compared to the
oscillon field).

We compute the energy density to leading order in ε and after
integration we get:

E = ε2−DE0 +O(ε4−D)

E =





4
3ε+O(ε3) if D = 1

E0 + E1ε
2 +O(ε4) if D = 2
E0
ε

+O(ε) if D = 3
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In one and two dimensions the ε parameter decreases in time
adiabatically, the frequency ω =

√
1− ε2 approaches the mass

threshold.

In three dimensions the ε parameter increases and the
frequency moves further from the mass threshold and
approaches ωm, which characterizes the oscillon with minimal
energy.
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Confrontation of theoretical formulae with numerical data
The adiabatical hypothesis is confirmed by numerical simulations. We
have to start from big ε = 0.65 value in order to see ε change. The
semi-empirical radiation law in the dsG theory reads:

dE
dt = −2320.97 exp

[
−11.3646

ε

]

Figure: E (t) and ε(t) according to simulation and theory
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In the dsG theory we ran simulations starting with initial data with smaller
ε = 0.25− 0.4 values. From the numerical results both the position of
the pole and the value of K agree with the theoretical prediction.

Figure: R and K from the simulation

-30

-28

-26

-24

-22

-20

-18

-16

 0.28  0.3  0.32  0.34  0.36  0.38  0.4  0.42  0.44  0.46

ε

ln
[ −

dE dt

]

Theoretical curve
Data points



Localized energy lumps Transcendentally small corrections Radiation law Summary

Summary

We constructed the correction beyond all orders to the
asymptotic series of QBs. We solved the field equation in the
neighborhood of the singularity of S and continued the
solution back to the real axis.

We identified the correction with the oscillating tail of the
QB, which determines the radiation field of an oscillon.
We obtained the radiation amplitude via Borel-summation.
(The pole term was already avalible from other methods.)
From the outgoing radiation we determined the radiation law
for small amplitude oscillons. We explained oscillon evolution
with the aid of the adiabatical hypothesis.
We compared numerical simulations with theoretical formulae
and found satisfactory agreement: the adiabatical hypothesis
was confirmed by simulations starting from oscillons with ’big’
ε values, the position of the pole and the approximate value of
K was determined from oscillons with smaller ε values.
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