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QCD AS THE SIGNAL

Asymptotic freedom: good
agreement between theory
and experiment
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Good evidence that
QCD describes the strong
interaction in the
non-perturbative domain (e.g.

CP-PACS ’07, Nf =2 + 1,

210MeV ≤ Mπ ≤ 730MeV, a ' 0.087 fm,

L . 2.8 fm, MπL ' 2.9)

However, systematic errors
not yet under control
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QCD AS BACKGROUND

At the quark level

∼ Vub −→

As seen in experiment

∼ Vub 〈π−|ūγµb|B̄0〉

|Vub| from experiment⇒ must evaluate non-perturbative strong interaction
corrections

Must be done in QCD to test
quark-flavor mixing and CP violation
and possibly reveal new physics

Must match accuracy of (BaBar, BELLE,

CDF, D0, ALEPH, DELPHI, KLOE, NA48, KTEV, LHC-b,

etc.)

⇒ High-precision Lattice QCD
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WHY THE LIGHT HADRON SPECTRUM?

Goal:
Firmly establish (or invalidate?) QCD as the theory of
strong interaction in the low energy region

Method:
Post-diction of light hadron spectrum

Octet baryons
Decuplet baryons
Vector mesons

Challenge:
Minimize and control all systematics

2+1 dynamical fermion flavors
Physical quark masses
Continuum
Infinite volume (treatment of resonant states)

Ch. Hoelbling (Wuppertal, Budapest) The light hadron spectrum from lattice QCD
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LATTICE QCD

Lattice gauge theory −→ mathematically sound definition of NP QCD:

UV (and IR) cutoffs and a well defined path
integral in Euclidean spacetime:

〈O〉 =

Z
DUDψ̄Dψ e−SG−

R
ψ̄D[M]ψ O[U, ψ, ψ̄]

=

Z
DU e−SG det(D[M]) O[U, ψ, ψ̄]Wick

e−SG det(D[M]) ≥ 0 and finite # of dof’s
→ evaluate numerically using stochastic
methods L

T
Ψ(x)

U
0
(x)

NOT A MODEL: Lattice QCD is QCD when a→ 0, V →∞ and stats→∞

In practice, limitations . . .
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STATISTICAL AND SYSTEMATIC ERROR SOURCES

Limited computer resources→ a, L and mq are compromises and statistics finite

Associated errors:

Statistical: 1/
√

Nconf ; eliminate with Nconf →∞
Discretization: aΛQCD, amq , a|~p|, with a−1 ∼ 2− 4 GeV

1/mb < a < 1/mc ⇒ b quark cannot be simulated directly
→ rely on effective theories (large mQ expansions of QCD)

Eliminate with continuum extrapolation a→ 0: need at least three a’s

Chiral extrapolation: mq → mu, md

Use χPT to give functional form→ chiral logs ∼ M2
π ln(M2

π/Λχ)
Requires a number of Mπ . 500 MeV

Finite volume: for simple quantities ∼ e−MπL and MπL & 4 usually safe
Eliminate with L→∞ (χPT gives functional form)

Renormalization: LQCD gives bare quantities→ must renormalize: can be
done in PT, best done non-perturbatively
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THE BERLIN WALL CA. 2001
Unquenched calculations very demanding: # of d.o.f. ∼ O(109) and large overhead
for computing det(D[M]) (∼ 109 × 109 matrix) as mq → mu,d
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Staggered
 (R-algorithm)

L = 2.5 fm, T = 8.6 fm, a = 0.09 fm

Physical point Staggered and Wilson with traditional
unquenched algorithms (≤ 2004)

cost ∼ NconfV 5/4m−2.5→3
q a−7

(Gottlieb

’02, Ukawa ’02)

Both formulations have a cost wall

Wall appears for lighter quarks w/
staggered

−→ MILC got a head start w/ staggered fermions: Nf = 2 + 1 simulations with
Mπ & 250 MeV

Impressive effort: many quantities studied

Detailed study of chiral/continuum extrapolation with staggered χPT
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fπ

fK

3MΞ −MN

2MBs −MΥ

ψ(1P − 1S)

Υ(1D − 1S)

Υ(2P − 1S)

Υ(3S − 1S)

Υ(1P − 1S)

LQCD/Exp’t (nf = 0)
1.110.9

LQCD/Exp’t (nf = 3)
1.110.9

(Davies et al ’04)

Devil’s advocate! → potential problems:

det(D[M])Nf =1≡ det(D[M]stagg)1/4 to eliminate
spurious “tastes”
⇒ corresponds to non-local theory (Durr, C.H.

2003-2006; Shamir, Bernard, Golterman, Sharpe, 2004-2008)

⇒ more difficult to argue that a→ 0 is QCD

at current a, significant lattice artefacts
⇒ complicated chiral extrapolations w/ SχPT

⇒ it is important that approaches on firmer theoretical ground also be used

Wilson fermions strike back:

Schwarz-preconditioned Hybrid Monte Carlo (SAP) (Lüscher ’03-’04)

HMC algorithm with multiple time-scale integration and mass preconditioning
(Sexton et al ’92, Hasenbusch ’01, Urbach et al ’06)

Crucial insight: seperate scales (even better: also remove UV “junk”)
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Nf =2+1 WILSON FERMIONS À LA BMW

(Dürr et al (BMW Coll.) arXiv:0802.2706)

3 essential components:
Separation of scales in HMC evolution: Mass preconditioning (w/
multiple time scales, mixed precision inverters, Omelyan integrator)
Effective supression of irrelevant UV modes: Stout link smearing
(6-step, ρ = 0.11)

Action improvement: Tree level O(a) improved Wilson fermion action,
tree level O(a2) improved gauge action

Why not go beyond tree level? Keeping it simple
(parameter fine tuning), no real improvement
This is a crucial advantage of our approach

Last two ingredients were shown in the quenched case to lead to excellent
improvement (Capitani, Durr, C.H., 2006)

Better chiral behavior
renormalization constants, improvement coefficients closer to tree level

Ch. Hoelbling (Wuppertal, Budapest) The light hadron spectrum from lattice QCD
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LOCALITY PROPERTIES

smearing

locality in position space:
|D(x , y)| < const e−λ|x−y | with λ=O(a−1) for all couplings.
Our case: D(x , y)=0 as soon as |x−y |>1
(despite 6 smearings).

locality of gauge field coupling:
|δD(x , y)/δA(z)| < const e−λ|(x+y)/2−z| with λ=O(a−1) for
all couplings.

Ch. Hoelbling (Wuppertal, Budapest) The light hadron spectrum from lattice QCD
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GAUGE FIELD COUPLING LOCALITY

0 1 2 3 4 5 6 7

|z|/a

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0
||¶

D
(x

,y
)/
¶U
m(

x
+

z
) ||

a~~0.125 fm
a~~0.085 fm
a~~0.065 fm

Ch. Hoelbling (Wuppertal, Budapest) The light hadron spectrum from lattice QCD



Motivation Setup Simulation details Analysis Treatment of systematic errors Combining all errors Final Result

SCALING OF OUR ACTION

( Dürr et al (BMW Coll.) arXiv:0802.2706)

⇒ scaling study: Nf = 3 w/ action described above, 5 lattice spacings,
MπL > 4 fixed and

Mπ/Mρ =

q
2(Mph

K )2 − (Mph
π )2/Mph

φ ∼ 0.67

i.e. mq ∼ ms
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Excellent scaling up to a ∼ 0.2fm
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FERMIONIC FORCE HISTORY
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trajectory
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gauge field
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INVERSE ITERATION COUNT DISTRIBUTION
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action, residue 10−9

force, residue 5·10−7
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λ−1
min DISTRIBUTION
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“THERMAL CYCLE”
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aMπ

cycle down
cycle up
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TUNING THE STRANGE QUARK MASS

We use a Nf = 3
simulation to set the
strange quark mass

For each beta, search for
the mq where

mps

mv
=

q
2m2

K −m2
π

mΦ

We determined the β
dependency in the range
(β = 2.9...3.8) 2.8 3 3.2 3.4 3.6 3.8

0.04

0.06

0.08

0.1

Note: this is a rough papameter tuning; we will properly interpolate to the
physical strange quark mass point later!
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SIMULATION POINTS

β amud Mπ [GeV] ams L3 × T # traj.

3.3

-0.0960 .55 -0.057 163 × 32 10000
-0.1100 .45 -0.057 163, 323 × 32 1450,1800
-0.1200 .36 -0.057 163 × 64 4500
-0.1233 .32 -0.057 163, 243, 323 × 64 5000,2000,1300
-0.1265 .26 -0.057 243 × 64 2100

3.57

-0.0318 .46,.48 0.0, -0.01 243 × 64 3300
-0.0380 .39,.40 0.0, -0.01 243 × 64 2900
-0.0440 .31,.32 0.0, -0.007 323 × 64 3000
-0.0483 .19,.21 0.0, -0.007 483 × 64 1500

3.7

-0.007 .58 0.0 323 × 96 1100
-0.013 .50 0.0 323 × 96 1450
-0.020 .40 0.0 323 × 96 2050
-0.022 .36 0.0 323 × 96 1350
-0.025 .29 0.0 403 × 96 1450

Ch. Hoelbling (Wuppertal, Budapest) The light hadron spectrum from lattice QCD
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OUR “LANDSCAPE”
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NUCLEON AUTOCORR. (Mπ = 550 MeV, β = 3.3)

0 50 100

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Ch. Hoelbling (Wuppertal, Budapest) The light hadron spectrum from lattice QCD



Motivation Setup Simulation details Analysis Treatment of systematic errors Combining all errors Final Result

PION AUTOCORR. (Mπ = 190 MeV, β = 3.57)

0 50 100

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Ch. Hoelbling (Wuppertal, Budapest) The light hadron spectrum from lattice QCD



Motivation Setup Simulation details Analysis Treatment of systematic errors Combining all errors Final Result

SOURCES
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Gaussian sources r = 0.32 fm
Coulomb gauge
Gauss-Gauss less contaminated by excited states
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EFFECTIVE MASSES AND CORRELATED FITS
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SETTING THE LATTICE SPACING VIA HADRON
MASS

The particle selected should have a mass
1 that is experimentally well known
2 that is independent of light quark mass→ large strange

content
3 that can be simulated with small statistical errors→ octet

better suited than decuplet
All points cannot be fulfilled simultaneously, but

Ξ: largest strange content of the octet, but still dependent
on ud mass
Ω: member of the decuplet, but largest strange content of
particles included in analysis

Ch. Hoelbling (Wuppertal, Budapest) The light hadron spectrum from lattice QCD
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QUARK MASS DEPENDENCE

Goal:
Extra-/Interpolate MX (baryon/vector meson mass) to
physical point (Mπ, MK )

Method:
Use MΞ or MΩ to set the scale
Variables to parametrize M2

π and M2
K dependence of MX :

Use bare masses aMy , y ∈ {X , π,K} and a (bootstrapped)
Use dimensionless ratios ry :=

My
MΞ/Ω

(cancellations)

We use both procedures Ûsystematic error

Ch. Hoelbling (Wuppertal, Budapest) The light hadron spectrum from lattice QCD
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QUARK MASS DEPENDENCE (ctd.)

Method (ctd.):

Parametrization: MX = M(0)
x +αM2

π + βM2
K + higher orders

Leading order sufficinet for M2
K dependence

We include higher order term in M2
π

Next order χPT (around M2
π = 0): ∝ M3

π

Taylor expansion (around M2
π 6= 0): ∝ M4

π

Both procedures fine Ûsystematic error
No sensitivity to any order beyond these

Vector mesons: higher orders not significant
Baryons: higher orders significant

Restrict fit range to further estimate systematics:
full range, Mπ < 550/450MeV

We use all 3 ranges Ûsystematic error

Ch. Hoelbling (Wuppertal, Budapest) The light hadron spectrum from lattice QCD
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CHIRAL FIT
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CHIRAL FIT USING RATIOS

0.05 0.1 0.15

(Mp/MX)
2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

M
/M
X

a~~0.125 fm

a~~0.085 fm

a~~0.065 fm
physical Mp

O

N

Ch. Hoelbling (Wuppertal, Budapest) The light hadron spectrum from lattice QCD



Motivation Setup Simulation details Analysis Treatment of systematic errors Combining all errors Final Result

CONTINUUM EXTRAPOLATION

Goal:
Eliminate discretization effects

Method:
Formally in our action: O(αsa) and O(a2)

Discretization effects are tiny
Not possible to distinguish between O(a) and O(a2)

Ûinclude both in systematic error

Ch. Hoelbling (Wuppertal, Budapest) The light hadron spectrum from lattice QCD
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FINITE VOLUME EFFECTS FROM VIRTUAL PIONS

Goal:
Eliminate virtual pion finite V effects

Method:
Best practice: use large V

We use MπL & 4 (and one point to study finite V )
Effects are tiny and well described by
MX (L)−MX

MX
= cM1/2

π L−3/2eMπL (Colangelo et. al., 2005)
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FINITE VOLUME EFFECTS IN RESONANCES

Goal:
Eliminate spectrum distortions from resonances mixing
with scattering states

Method:
Stay in region where resonance is ground state

Otherwise no sensitivity to resonance mass in ground state
Systematic treatment (Lüscher, 1985-1991)

Conceptually satisfactory basis to study resonances
Coupling as parameter (related to width)

Fit for coupling (assumed constant, related to width)
No sensitivity on width (compatible within large error)
Small but dominant FV correction for light resonances

Ch. Hoelbling (Wuppertal, Budapest) The light hadron spectrum from lattice QCD
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RESONANCES CTD.
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SYSTEMATIC UNCERTAINTIES

Goal:
Accurately estimate total systematic error

Method:
We account for all the above mentioned effects
When there are a number of sensible ways to proceed, we
take them: Complete analysis for each of

18 fit range combinations
ratio/nonratio fits (rX resp. MX )
O(a) and O(a2) discretization terms
NLO χPT M3

π and Taylor M4
π chiral fit

3 χ fit ranges for baryons: Mπ < 650/550/450 MeV

resulting in 432 (144) predictions for each baryon (vector
meson) mass with each 2000 bootstrap samples for each
Ξ and Ω scale setting

Ch. Hoelbling (Wuppertal, Budapest) The light hadron spectrum from lattice QCD
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SYSTEMATIC UNCERTAINTIES II

Method (ctd.):
Weigh each of the 432 (144) central values by fit quality Q

Median of this distribution Ûfinal result
Central 68% Ûsystematic error

Statistical error from bootstrap of the medians
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THE LIGHT HADRON SPECTRUM
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Mass predictions in GeV

Exp. Ξ scale Ω scale
ρ 0.775 0.775(29)(13) 0.778(30)(33)
K ∗ 0.894 0.906(14)(4) 0.907(15)(8)
N 0.939 0.936(25)(22) 0.953(29)(19)
Λ 1.116 1.114(15)(5) 1.103(23)(10)
Σ 1.191 1.169(18)(15) 1.157(25)(15)
Ξ 1.318 1.317(16)(13)
∆ 1.232 1.248(97)(61) 1.234(82)(81)
Σ∗ 1.385 1.427(46)(35) 1.404(38)(27)
Ξ∗ 1.533 1.565(26)(15) 1.561(15)(15)
Ω 1.672 1.676(20)(15)
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