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Abstract

We calculate electron-positron pair yield in a model laser field of
finite duration (t). Within an acceptable range of parameters, the
yield is perturbative, and the critical field is scaled down by a factor
1.47ωl/me,
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1 Introduction

Spontaneous pair (e+e−) creation from vacuum induced by an external static, spa-
tially uniform electric field field, often referred as Schwinger mechanism, remains
among most intriguing phenomena from both, experimental as well as theoreti-
cal point of view. As a highly nonlinear phenomenon, it requires an enormous
field strength of the order Ec = m2

ec
3/eh̄ ≈ 1.3 × 1018V/m. It has been assumed

that such a field may be created in an antinode of the standing wave produced
by a superposition of two coherent laser beams with the frequency ωl. The field
~E(t) = (0, 0, Em cos(ωlt)), ~B(t) = 0 is assumed to be ”static enough”, to en-
able the use of Schwinger method, under the condition that h̄ωl << mec

2. The
dynamical role of ωl was examined in refs. [9, 10] but, under the condition that
low ωl limit schould reproduce Schwingers result, they find it to be irrelevant.
Nevertheless they anticipated some of the peculiarities (e.g. 2.,3.,5.) listed below.

In this paper we study the dynamics of the system under the influence of
the external field ~E(t), assumed to be turned -on and -off by Gaussian envelope
with the average duration of laser pulse given the inverse of the width of Fourier
transform of Gaussian t̄ ≈ σ−1

l . σl a new parameter in a game!
The time evolution of number operator is studied within the finite time out of

equilibrium field theory. Within the model dynamics it is particularly simple, so
that the Dyson-Schwinger equation provides us with a solution in a closed form.

Within the range of parameters defined by inequalities: n0 >> 1, ωl >> n
1/2
0 σl

(h̄ω << mec
2, mec

2σ2
l << h̄ω3

l ), the model exibits a peculiar properties: 1. the
electron yield is dominated by a single term in perturbation expansion. 2. a
critical (dynamical) value of the field Ed = is a few orders lower than Schwinger
value Ed = 1.4Ecωl/me. 3. emission of (e−, e+) is limited to extremely low kinetic
energies (|p0 − me| ≤ n

1/2
0 σl). In fact particles are emited in bands, each band

defined with slightly higher Ed. 4. at low ωl limit; the phase space schrinks to
zero, and Schwinger result need not be reproduced. It emerges from an interplay
of higher order terms, ignored in our calculation, but gaining on importance as
ωl → 0 This limit is in conflict with the condition ωl >> n

1/2
0 σl and, thus, clearly

outside of the upper defined range of laser parameters. 5. the onset of criticality
is sudden owing to the power of (Em/Ed)2n0

In interacting theory we study the time evolution of particle number, which at
t = 0 has to coincide with the noninteracting one.

3



1.1 Matrix Propagators and the Transition to R/A
Basis

The contour propagators are usually expressed by matrix propagators (indexes 1,2
describing whether the time (x0 and y0) corresponds to upper or lower branch of
the contour. The two-point propagators are usually Wigner-transformed (x, y) →
(X = (x+y)/2), s = (x−y)/2, including Fourrier transform of relative coordinate
s → p to (X, p). In the most of problems owing to the translational invariance
propagators are independent of ~X. In the limit X0 →∞ they correspond to usual
propagators and the label X0 is usually ommited. We write for spin-1/2 fields

S11(p, m) = [
i

p2 −m2 + 2iε
− 2πδ(p2 −m2)f(ωp)](γ0p0 − ~γ~p + m),

S12(p, m) = 2πδ(p2 −m2)[Θ(−p0)− 2f(ωp)](γ0p0 − ~γ~p + m),

S21(p, m) = 2πδ(p2 −m2)[Θ(p0)− 2f(ωp)](γ0p0 − ~γ~p + m),

S22(p, m) = S∗11(p, m),

S11(p, m)− S12(p, m)− S21(p, m) + S22(p, m) = 0. (1)

Where we have assumed equal initial distribution functions for particles and
antiparticles.

Matrix propagators are further transformed to R, A, K basis:

SR(p, m) = −S11(p, m) + S21(p, m) =
−i(γ0p0 − ~γ~p + m)
p2 −m2 + 2ip0ε

,

SA(p, m) = −S11(p, m) + S12(p, m) =
−i(γ0p0 − ~γ~p + m)
p2 −m2 − 2ip0ε

,

SK(p, m) = S11(p, m) + S22(p, m)

= 2πδ(p2 −m2)(γ0p0 − ~γ~p + m)[1− 2f(ωp)]. (2)

Now we decompose K-propagator to it‘s retarded and advanced part [36]

SK(p, m) = −SK,R(p, m) + SK,A(p, m)

SK,R(p, m) = i
γ0ωp − (~γ~p−m)p0/ωp

(p2 −m2 + 2ip0ε)
(1− 2nf (ωp)),
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SK,A(p, m) = −i
γ0ωp − (~γ~p−m)p0/ωp

(p2 −m2 − 2ip0ε)
(1− 2nf (ωp)). (3)
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2 Particle Number

Number of particles of momentum ~p found in the element of configuration space
d3xd3p at the time t

< N~p(t) >=
dN

d3xd3p
(2π)3, (4)

is, by definition, obtained from the evolution of the operator a+a which can be
connected to the equal time limit of the propagator SK,t.

< 1− 2N+,~p(t) >=
ωp

2π

∫
dp0Tr[−SK,R,t(p) + SK,A,t(p)]. (5)

The lowest order contribution to the particle number is identical to the initial
distribution

< 1− 2N0
~p (t) >=< 1− 2N~p(0) >= 2[1− 2nf (ωp)], (6)

with factor of 2 arising from the number of polarizations. Particle number is
expressed through propagators SK,R, and SK,A for which we know perturbation
expansion.
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3 Dyson-Schwinger Equation

Dyson-Schwinger equation is defined by (S is lowest order Green function, and S
is resummed Green function):

[S−1 − iΣ] ∗ S = 1, (7)

where

S =
(

SR SK

0 SA

)
, Σ =

(
ΣR ΣK

0 ΣA

)
, S =

(
SR SK

0 SA

)
(8)

or in components

SR = SR + iSR ∗ ΣR ∗ SR

SA = SA + iSA ∗ ΣA ∗ SA

SK = SK + i[SR ∗ ΣK ∗ SA + SK ∗ ΣA ∗ SA + SR ∗ ΣR ∗ SK ] (9)

Formal solution is

SR = [1− iSR ∗ ΣR]−1 ∗ SR = SR ∗ [1− iΣR ∗ SR]−1

SA = [1− iSA ∗ ΣA]−1 ∗ SA = SA ∗ [1− iΣA ∗ SA]−1

SK = iSR ∗ ΣK ∗ SA + SR ∗ S−1
R ∗ SK ∗ S−1

A ∗ SA] (10)

Note here that S−1
R ∗ SK ∗ S−1

A = h(S−1
R − S−1

A ) ∝ ε, but ε 6= 0 until the end of
calculation and the product of SR and SA (if there is a common singularity of
pinching type) may turn it into the δ function .

7



4 classical fields

Now we consider time dependent classical fields turned on at t = 0. In the case of
classical fields the self energy is single-point function and satisfies:

ΣR(t) = ΣA(t) = Σ(t), ΣK = 0. (11)

Its Fourier transform

Σ(ω) =
∫

dtΘ(t)eiωtΣ(t),

Σ(t) =
1
2π

∫
dωe−iωtΣ(ω), (12)

is analytic function of ω above the real axis.
The ∗-product with Σ(t) is simple generalization of the product of two two-

point functions

[S1 ∗ Σ ∗ S2](x, y) = Θ(x0)Θ(y0)
∫ ∞

0
dz0

∫
d3zS1(x, z)Σ(z0)S2(z, y)

=
1
2π

∫
dωΣ(ω)Θ(x0)Θ(y0)e−iωz0

∫ ∞

0
dz0

∫
d3zS1(x, z)S2(z, y) (13)

The Wigner transform of the product is simple:

[S1 ∗ Σ ∗ S2]X0(p0, ~p) =
∫ 2X0

−2X0

ds0d
3sei(p0s0−~p~s)[S1 ∗ Σ ∗ S2](X +

s

2
, X − s

2
)

=
1
2π

∫
dωΣ(ω)

∫
dp0,1dp0,2PX0(p0,

p0,1 + p0,2

2
)

i

2π

e−iX0(p0,1−p0,2+iε)

p0,1 − p0,2 − ω + iε

S1,∞(p0,1, ~p)S2,∞(p0,2, ~p)

=
1
2π

∫
dωΣ(ω)

∫
dp′0PX0(p0, p

′
0 +

ω

2
)e−iX0ωS1,∞(p′0 + ω, ~p)S2,∞(p′0, ~p) (14)

The last expression is obtained by integration over ω, and closing the integration
path from above. One picked the pole at p0,1− p0,2−ω = 0, i.e. the energy at the
vertex is conserved.

Now, one can write Eq. (5):

< 1− 2N+,~p(t) >=
ωp

2π

∫
dp0,1Tr[1− iSR ∗ ΣR]−1 ∗ SK ∗ [1− iΣA ∗ SA]−1
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=
ωp

2π

∫
dp0,1

∞∑
n=0

∞∑
k=0

Πn
r=0[

∫
dωre

−itωr

2π
]Πk

s=0[
∫

dωn+se
−itωn+s

2π
]

TrΠn
r=0[SR(pr)Σ(ωr)][−SK,R(pn+1) + SK,A(pn+1)]Πk

s=0[Σ(ωn+s)SA(pn+s+1)]

p0,r+1 = p0,r − ωr, ~pr+1 = ~p1 r = 1, ..., n + k, (15)

Owing to the spinors the products are ordered in a way such that SR(p1) appears
at the ultimate left, SA(pn+k+1) at the ultimate right, and SK,R(A)(pn+1) between
the two groups.
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5 Pair Production in a ”Model-Laser” Field

A stationary field of two laser beams directed to each other is mimicked by a
field sinusoidal in time and constant in space. The sinusoidal field with Gaussian
envelope is turned on at t = 0, and turned off at t = 2τ .

Σ(t) = −iγ3V0 sinwltΘ(t)Θ(2τ − t)e−
σ2(t−τ)2

2 (16)

Σ(ω, τ, σ) = Σ+(ω, τ, σ) + Σ−(ω, τ, σ)

Σ±(ω, τ, σ) = ±1
2
γ3V0

∫
dtei(ω∓wl)tΘ(t)Θ(2τ − t)e−

σ2(t−τ)2

2

lim
τ→∞

Σ±(ω, τ, σ) = ± π1/2

21/2σ
γ3V0e

i(ω∓wl)τ−
(ω∓wl)

2

2σ2 (17)

We calculate average particle number after turning off the interaction (t > 2τ).
By assumption, there are no particles in the initial state, i.e. f(±ωp) = 0. Thus
nonzero contribution in 1 − 2nf±(ωp) comes from ”1” (i.e. from the Dirac see
before the redefinition of vacuum).

The general structure of the contribution is following:
The first term in(15) is connected to the number of particles at t = 0. As

nf (ω), by assumption, vanishes, Eq. (6) just cancels < 1 > in < 1− 2N >.
In all terms the first R-propagator, and the last A-propagator, and the K-

propagator are on shell: To see it one integrates over ωn+k. Owing to the factor
e−itωn+k (which dominates over the correstponding Σ(ωn+k) behaviour!), one may
close the integration path from below and catch the poles of SA(pn+k+1). There
are two poles at p̄0,n+k+1 = λn+k+1ωp (λn+k+1 = ±1). In the next integration,
one may choose as independent variables pn+k, ω1, ... ωn+k−1 and integrate over
ω1. Owing to the factor e−itω1 , which dominates over the correstponding Σ(ω1)
behaviour!, one may close the integration path from above one catches the poles
of SR(p0,1, ~p1) . There are two poles p̄0,1 = λ1m. Then ω̄n+k = pn+k − λn+k+1ωp.
ω̄1 = (λ1−λn+k+1)ωp−

∑n+k−1
r=2 ωr−pn+k. Finally, in the further integrations one

cannot close the integration path neither from below nor from above. There are
always pole terms and principal value terms. The exception is the −SK,R + SK,A

combination in which principal value term is cancelled. The poles are at p̄n+1 =
λn+1ωp. the combinations of lambdas (i.e.poles) (λn1, λn+1, λn+k+1) are classified
as: 1. (1,1,1) and (-1,-1,-1) terms which have nothing to do with a pair creation
they are probably related to the renormalisation of SK propagator. 2. (1,1,-1),
(1,-1,-1), (-1,1,1), and (-1,-1,1) are terms expected to be small (negligible). 3.
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(1,-1,1) and (-1,1,-1) terms relevant for pair production. As we do not separate
particles from antiparticles we have to add both terms and divide by two. As,
the contributions are almost exactly equal it is enough to choose (1,-1,1) term.
4. further appearance of the poles of SR and/or SA is factorising the segments of
the type (1,1), (1,-1), (-1,1), and (-1,1), where (λj , λk) corresponds to the signs
of poles of SR, SR or SA, SA. These will, as well be ignoredas they just refine the
above (ignored) terms. Relevant term is (1,-1,1) with principal value contributions
for all the remaining integrations.

As Gaussian cutoff makes many terms negligible, we search for contribution
surviving it. For given momentum ~p, define n0 as closest order index |p0−n0ωl| =
minn |po − nωl|. From (15) we choose the term with n = k = n0.

We calculate the lowest order nontrivial contribution. We assume ”fine tuned
laser” with the property ωln0 = 2m >> 1, and n0 odd! The laser line is assumed
to be narrow (σ << wl and even n

1/2
0 σ << wl). Average duration of the pulse,

connected to the shape of gausssian is < (t− τ)2 >= 1/σ2 In that case the leading
term is given by n = n0 = k .

and particles are produced with small momentum (||ωp−m| << ωl or |~p|2 <<
2mωl).

We define δ = 2|ωp −m| = |2ωp − n0ωp| ≈ ~p2/m

< 1− 2N~p(t) >=
m

2π

∫
dp0,1

n0∏
r=1

[
∫

dωr

2π
]

n0∏
s=1

[
∫

dωn0+s

2π
]e−it(p0,1−p0,2n0+1)

Tr
n∏

r=1

[SR(pr)Σ(ωr)][−SK,R(pn0+1) + SK,A(pn0+1)]
n0∏

s=1

[Σ(ωn0+s)SA(pn0+s+1)]

p0,r+1 = p0,r − ωr, ~pr+1 = ~p1 = 0, r = 1, ..., 2n0, (18)

< 1− 2N+,~p(t) >= (2π)2m
n0∏

r=2

[
∫

dωr

2π
]

n0∏
s=2

[
∫

dωn0+s

2π
]

Tr
n∏

r=2

[SR(pr)Σ(ωr)](mγ0 −m)
n0∏

s=2

[Σ(ωn0+s)SA(pn0+s+1)]

p0,r+1 = p0,r − ωr, ~pr+1 = ~p1 = 0, r = 1, ..., 2n0, (19)

To perform the integration over
∏

dωs one has to exploit the narrow distribu-
tion assumption i.e. in the range where Gaussian function changes from zero to
maximum and back to zero the SR(A) is almost constant. Then∫

dωsΣ±(ωs)SR(A)(p0,s − ωs) ≈
∫

dωsΣ±(ωs)SR(A)(p0,s ∓ ωl) (20)
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One finds that in the lowest nontrivial order the Σ+ are on the R side of product
([?]) and all the Σ− are on the A side. Now one can calculate separately the
trace,product of energy denominators and two multiple integrals:

The trace :

p0,1 = p0,2n0+1 = −p0,n0+1 = m,

p0,r+1 = m− 2r

n0
m, r = 1, n0,

p0,n0+r+1 = −m +
2r

n0
m, r = 1, n0,

T r = Tr
n0−1∏
r=0

[(γ0p0,r+1 + m)γ3](−mγ0 + m)
n0∏

s=1

[γ3(γ0pn0+s+1 + m)]

= m2n0+1Tr
n0−1∏
r=0

[(1 + γ0 n0 − 2r

n0
)γ3](1− γ0)

n0∏
s=1

[γ3(1− γ0 n0 − 2s

n0
)] (21)

For n0 even, the above trace contains the factor (γ0 + 1)(γ0 − 1), and therefore
vanishes. This is consistent with the vanishing of the amplitude for zero-kinetic-
energy-pair production by two photons in ordinary S-matrix QED. For odd n0 the
trace is integer

T r = −m2n0+1Tr(1 + γ0)3
n0−1∏
r=1

[1 + γ0(−1)r n0 − 2r

n0
]2

= −16m2n0+122n0−2[(n0 − 2)!!]4

n2n0−2
0

, (22)

The product of energy denominators is

r0∏
r=1

[(1− 2r

n0
)2m2 −m2]4 = m4n0−4[

2n0−1(n0 − 1)!
nn0−1

0

]4 (23)

We calculate multiple integral over gaussians, under the condition that
∑n0

r=1 ωr =
2ωp. The condition is transformed through δ-fuction∫

dω1δ(
n0∑

r=1

ωr − 2ωp)

=
1
2π

∫
dx

∫
dω1e

ix(
∑n0

r=1
ωr−2ωp) (24)
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Now

Σ+(ω1)
n0∏

r=2

∫
dωr

2π
Σ+(ωr)

=
V n0

0

(2π)n0

∫
dxe−2ixωp

n0∏
r=1

∫
dωrΣ+(ωr)eixωr

= −V n0
0

2r0

∫
dxeix(n0ωl−2ωp)−n0σ2(x+τ)2/2

= − π1/2V n0
0

2r0−1/2n
1/2
0 σ

eiτ∆−∆2/(2n0σ2) (25)

Trace, energy denominator and gaussians multiplied, for n0 large we use approxi-
mate expression (n− 1)! ≈ (2π)1/2nn−1/2e−n

[
n0V0e

4m(n0 + 1)
]2n0

23m5e2

πn3
0σ

2
e−~p2/(mn0σ2) (26)

Expression in braces is a new criticality condition. By substituting Em = V0ωl,
with n0/(n0 + 1) ≈ 1 and [n0/(n0 + 1)]2n0 ≈ e−2, we find

Ece

4ωlm
= 1 (27)

that the critical field is lowered by a factor 4ωl/(em)
All the factors put together:

< 1− 2N~p(t) >= 2− πω3
l

2σ2
[
Eme

4ωlm
]2n0e−~p2/(mn0σ2) (28)

One finds that the particles are produced with small momentum (||ωp−m| << ωl

or |~p|2 << 2mωl). One may integrate over momenta to obtain∫
< N~p(t) > d3p = [

Eme

4ωlm
]2n023/2π5/2m3ω

3/2
l σl (29)
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5.1 Contribution of the Next to Leading Order

a) lower order. Lower order is n0 − 2. In this case one defines ∆ = 2|ωp − (n0 −
2)ωp| = ∆± 2ωp. Inserted in Eq. (25) it gives enormous dumping by Gaussian.

b) higher order.
Next order is acchieved by insertion of Σ+(−) into a chain of Σ−(+) at some

position r1. Then there are extra propagators SR(A) and Σ−(+).
The trace factor receives insertion of (γ0p0,r1−1 + m)γ3(γ0p0,r1 + m)γ3

The denomiator is multiplied by m4[(1− 2(r1− 1)/n0)2− 1][(1− 2r1/n0)2− 1]
The integral over Gaussians receives factor (−1) and replacement n0 → n0 +2.
Total contribution is the sum of all posible insertions and apears to be
CORRECTION = LOWEST ORDER× E0/[ωlm]2 ln((n0 + 1)/2)(n0 + 1)
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6 Discussion of the Results

1. We calculate pair production in a model laser field, within the well defined set
of laser parameters.

2. The results support somewhat different mechanism of production, with the
scaling down of critical field by a factor 1.46ωl/m
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