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Progress in RR (renormalizable resummations)
Where can functional approaches be competitive with lattice methods?

e Thermodynamics of electroweak and strong matter
at large baryonic, isotopic and strange densities

e Real time, out of equilibrium quantum processes

e.g. inflation, reheating,
birth and death of extended galactic objects, like cosmic strings

Problems of resummed perturbative series

e Realisation of symmetries (e.g. Ward-Takahashi identities, gapless
approximation in broken phase, gauge fixing parameter dependence of 2P|

applications)

e Simple practical implementation of the renormalisation program




Two approaches to renormalised 2P| equations

Generic SD-equation for the propagator
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By appropriate number of (divergence) substractions find 55G—P(2p) . Solve
or
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Approach |l

Find explicit regularized expressions for the counterterms (e.g. ém?, dx) and

also for all contributions to the regularized . Solve
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0G(p)

om? + orxv? + 2




Counterterm construction for
2-loop 2Pl approximation to the effective potential of real scalar model

Viv,G] = 1m2fu2—|—iv4—i/[lnG Y(p) + D (p )G(p)]

(/a )2“20//@ Gp — k) + Vv, G,

iD~Y(p) = p* — m* — /2

Counterterm functional given by
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Comments:

e No new counterterm relative to Hartree approximation is needed.

¢ Independent counterterms are introduced for each 2PI-piece.




Propagator equation
1 1 1
iG~(p) = p* —m? — dm3 — 5()\ + OXo)v? — §<A + 0X)T[G] — §A2v2f(p, G).

Tadpole (T'|G]) and bubble (I[p, G]) contributions split into divergent and finite
pieces:

TC) = /k G(k) = Ty, + Tr[C,

](p, G) = —i/kG(k)G(k —|—p) = [diV + Ip(p, G)

Parametrisation of the exact propagator:
iG~'(p) = p* — M? —II(p)
Self-energy split into p-independent (1/°) and p-dependent (I1(p)) pieces

M2 =m? £ 202+ 0TRlG), () = 20 Ie(p.G)

lim, . I(p) ~ [In(p?)]*:  Unchanged large-p asymptotics of G~*(p)




Equation of state and renormalisation conditions

Equation of state

1 1 1
v <m2 + dmi + 6(A + 002 + 5()\ + ) T[G] + 6AQS(O, G)) = 0.

with
—@//G G(k +q+p) = Sgiy(p, G) + Sk(p, G).
Renormalisation conditions:

1 1 1 1
2 2 2 92
0 = dmj + 520" + S(A+ 5X0) Ty + 500 TR [G] + AV [y,
— dm?2 1(5)\ 2 1>\ o) T 16)\TG 1>\2S 0.G
0= m0+6 4 +§( + 2) div+§ 2F[ ]+6 div(’ )

Coefficients of vY and v* correspond in this scheme to overall divergences

Vanishing of the divergent coefficient of T»|G] should also be imposed
Independent criterium which cancels a subdivergence

— 1+1=2 extra conditions




Divergence analysis |.

Auxiliary propagator with the same large-p asymptotics as G~(p) has
introduces also normalisation scale M¢:

ZGaux( ) p2 o M(?
Divergent piece of each integral should be expressed through G, .,.:

Bubble integral I (p, G):

Ty = =i | Ghual®)]g, =T Telo) = =i [ (GG +p) = Gaalk)

Tadpole and setting sun integrals analysed with help of an appropriate
representation for the propagator:

G(p) = Gauz(p) + 0G(p),

)\2'02 6
———LW%F@»)%—Gapx Go(p) ~ p~

6G(p) = —iG? 5

aux

) (302 - 253 +

Divergent piece of the tadpole integral 7'[G|:

TIG) = | Gouslh) + (V2 = MT 4 30() [ G2 (W) 0) + TG

k




Divergence analysis |l.

2 0 1
Ty =Ti" + (M2 = MH)T;" + $2%0T;"

(2) (),
T = T[Gaux] = /Gaua: (p) . T = —1 / Gauw CLUCB F( ) :
d . |d|v div

Setting-sun integral S(p = // G(k+q)

Rewritten with the replacement
G(p) = Gauz(p) + 6G(p) on each of the three propagators:

S(p=0,G) = Suus(0) + 3 / G (k) (Lgio + Lnwo.r(k)) + S,
k

3
Saiv(0: G) = Saual(0) +3(TG] =TT, + 3(M? — MG)T; " + 2N T,

I,
Tcg 2): LGiux(k)Igux F( )diV,




Algebraic equations for the non-perturbative counterterms

4 equations ensuring cancellation of overall divergencies
determine dm3, dm3, 2, 0N, with input: 6\,

0 = éms + %()\ + dAo) {Tcgz) + (m? — Mg)} Tcgo),

0 = 0z + %A(A + %) (T4 + XTD) + 2327,

0= o3+ 5 +-63) [T+ (m® = MDT] 4+ 53 m? — 03) (T4 + 74")
+éAQSaux(0),

0= 6\ + gA()\ + 0% + A2100) (T3 +2T3") + gA?’ (75" + xT")

2 equations for cancelling divergent coefficients of T» determine d g

0=\ + %A(A + 620) TV,

and give a relation for d \s:

1 1
0= 0ha + AN+ N)TLY + 50% (T2 + 14" ) + X7

Check: they are mutually consistent




Adding the basket ball: complete O(\?) skeleton truncation

iG7 Y (p) =p®> = 2(p),  B(p) = M?+1y(p) + s (p)

1 1 1
M? =m?+ 5)«02 + iATF 1G], IIy(p) = 5)\2?}21}7(]?)
1
I2(p) = 6)\251?(29), Il = I1,(p) + Moo + 1L,

11, ~ p*(lnp?)?, Il ~ (Inp®)2, I, ~p 2
Divergence cancellation in the propagator
0= 5m§ + %5)\2’02 + %()\+5)\O)Td|v+%5)\OTF [G] +%)\21}2]div—|- %)\2Sdlv(p) —p25Z

Divergence analysis with the auxiliary propagator ZGa,ua: - M§ — I1,(p)

1 .
T[Glgiy = T2 + (M? — MZ)T + ix%ﬂTy) — i /k G2 (k)11 o( ‘ "

6
Sdiv(P) = 33007 = S, giv(0) + 3TONTIG) — TY) + 3(M? — MZ) TV

)\2 2T(I 2) _ 3Z/G2 a F(k H2 O

3
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Equation of T15(p)

) A2
Maolp) =~ [ AWK (p. ) | M2 = 35 + 7
2

Lo, (k +p) + Lo,r(k = p) — 2L, m (k)]

2[a,,F(k) —+ Hgo(k)] with
K(pv k) —

Linear expression in terms of M? — Mg and $A\%v?:

1 1o
Mao(p) = 5(M > — M5)T(p) + ZAQ’UQF(p)
where

~

D(p) = —i / L(p, k)G2(k), T(p) = / (0, F)G2(B) I, 5 (k).

Bethe-Salpeter equation for I'(p, k):

L) = K(p.K) 5 [ G o) 0. ).

Introduce moments of the asymptotic propagator

. 2 F 2
Do = —i / KT . Do= / HOWGIN

D, = _iLGg(k>IaF(k)Fo(k)|div’ D, = —z/kGZ ) Ir (k)T (k) div




Detailed counterterm equations for the propagator
0 = 6m3 + (A + 5Ao) [T@) + (m? = MHT| + 25, 41y (0)
+(m? — M) {4 |(@O2 + T + 1D1| + 1 (A + 92 + X2TE7) Do
A+ o) (T8 + ATED) + 227
{(Tm)) L7 4y (T(O)T(I) + 7 2)) }

+ A[ (A + 020 + A2TL7) (Do + AD1) + X2(Ds + ADy)|

0:5A2+§
3

Coefficent of T':
0= 630+ PAA+00)TE + 32 [T + 1 ()2 + 7))

+1A] (A4 620+ X°T0) Do + XDy .

Comparing with the the coefficient of T in the equation of state:

OAg = 09

Consistency ?




—1
Sho = 0do =% [143 (T8 + 1Dy )| {Té” +4D1 + 2 (189 + 1D,

+522 (T8 1D, ) (T8 + 4o ) — (T80 + 301 ) (T8 + 101 )| }
=20

Remark:

The counterterms of the propagator d g, 6 A2 can be analysed also with the
method of iterative renormalisation (Blaizot, lancu, Reinosa, 2004)
where one looks for the self-energy in form of infinite series:

Sho=3 A sa =30 oAl
and solves the gap equations iteratively. It yields

ONg = 09
Indirect argument for the validity of the consistency relation!

Other two counterterms of the equation of state:

Sm2 =6m2,  As=3(6As + A2TV).




CONCLUSIONS

e Simple and explicit construction of countertems
e Consistency checks on the non-perturbative renormalisation

e Generalisation to O(/N) model (in principle to any global symmetry)

OUTLOOK
Application to models of phenomenological interest

Addressing further conceptual questions:

e construction of gapless approximation beyond Hartree truncation

e renormalisation of NLO large N approximation

e counterterm construction for nPl approximation




