Counterterm resummation for 2PI-approximation in constant background

András Patkós, Institute of Physics, Eötvös Univ. with Gergely Fejős and Zsolt Szép,

Plan of the talk:

- Resummation and renormalisation: towards functional methods competitive with lattice simulations
- Counterterm construction for 2-loop 2PI approximation to the effective action of real scalar field in the broken symmetry phase
- Adding the basket-ball diagram: complete $\mathcal{O}(\lambda^2)$ skeleton analysis
- Summary of present stage and survey of subjects in progress

hep-ph/0711.2933 (Nucl.Phys.A803:115-135,2008) hep-ph/0806.2554 (NPA, in press)

Progress in RR (renormalizable resummations)

Where can functional approaches be competitive with lattice methods?

- Thermodynamics of electroweak and strong matter at large baryonic, isotopic and strange densities
- Real time, out of equilibrium quantum processes
 e.g. inflation, reheating,
 birth and death of extended galactic objects, like cosmic strings

Problems of resummed perturbative series

- Realisation of symmetries (e.g. Ward-Takahashi identities, gapless approximation in broken phase, gauge fixing parameter dependence of 2PI applications)
- Simple practical implementation of the renormalisation program

Two approaches to renormalised 2PI equations

Generic SD-equation for the propagator

$$iG^{-1}(p) = p^2 - m^2 - \kappa v^2 - \delta m^2 - \delta \kappa v^2 - 2\frac{\delta \Gamma_2}{\delta G(p)} \equiv p^2 - m^2 - \kappa v^2 - \Sigma_{ren}$$

Approach I

By appropriate number of (divergence) substractions find $\frac{\delta\Gamma_2}{\delta G(p)_{ren}}$. Solve

$$2\frac{\delta\Gamma_2}{\delta G(p)_{ren}}[\Sigma_{ren}] = \Sigma_{ren}$$

Approach II

Find explicit regularized expressions for the counterterms (e.g. $\delta m^2, \delta \kappa$) and also for all contributions to the regularized $\frac{\delta \Gamma_2}{\delta G(p)_{reg}}$. Solve

$$\delta m^2 + \delta \kappa v^2 + 2 \frac{\delta \Gamma_2}{\delta G(p)_{reg}} [\delta m^2, \delta \kappa, \Sigma_{ren}] = \Sigma_{ren}$$

Counterterm construction for 2-loop 2PI approximation to the effective potential of real scalar model

$$V[v,G] = \frac{1}{2}m^{2}v^{2} + \frac{\lambda}{24}v^{4} - \frac{i}{2}\int_{p} \left[\ln G^{-1}(p) + D^{-1}(p)G(p)\right] + \frac{\lambda}{8}\left(\int_{p} G(p)\right)^{2} - \frac{i\lambda^{2}}{12}v^{2}\int_{k}\int_{p} G(p)G(k)G(p-k) + \frac{V_{ct}[v,G]}{12},$$

$$iD^{-1}(p) = p^2 - m^2 - \lambda v^2 / 2$$

Counterterm functional given by

$$V_{ct}[v, G] = \frac{1}{2}\delta m_0^2 v^2 + \frac{\delta \lambda_4}{24} v^4 + \frac{1}{2} \left(\delta m_2^2 + \frac{\delta \lambda_2}{2} v^2 \right) \int_p G(p) + \frac{\delta \lambda_0}{8} \left(\int_p G(p) \right)^2.$$

Comments:

- No new counterterm relative to Hartree approximation is needed.
- Independent counterterms are introduced for each 2PI-piece.

Propagator equation

$$iG^{-1}(p) = p^2 - m^2 - \delta m_2^2 - \frac{1}{2}(\lambda + \delta \lambda_2)v^2 - \frac{1}{2}(\lambda + \delta \lambda_0)T[G] - \frac{1}{2}\lambda^2 v^2 I(p, G).$$

Tadpole (T[G]) and bubble (I[p,G]) contributions split into divergent and finite pieces:

$$T[G] := \int_k G(k) = T_{\text{div}} + T_F[G],$$

$$I(p,G) := -i \int_k G(k)G(k+p) = I_{\text{div}} + I_F(p,G)$$

Parametrisation of the exact propagator:

$$iG^{-1}(p) = p^2 - M^2 - \Pi(p)$$

Self-energy split into p-independent (M^2) and p-dependent ($\Pi(p)$) pieces

$$M^2 = m^2 + \frac{\lambda}{2}v^2 + \frac{\lambda}{2}T_F[G], \qquad \Pi(p) = \frac{\lambda^2}{2}v^2I_F(p,G)$$

 $\lim_{p\to\infty}\Pi(p)\sim[\ln(p^2)]^{\alpha}$: Unchanged large-p asymptotics of $G^{-1}(p)$

Equation of state and renormalisation conditions

Equation of state

$$v\left(m^{2} + \delta m_{0}^{2} + \frac{1}{6}(\lambda + \delta\lambda_{4})v^{2} + \frac{1}{2}(\lambda + \delta\lambda_{2})T[G] + \frac{1}{6}\lambda^{2}S(0,G)\right) = 0.$$

with

$$S(p,G) := -i \int_k \int_q G(k)G(q)G(k+q+p) = S_{\text{div}}(p,G) + S_F(p,G).$$

Renormalisation conditions:

$$0 = \delta m_2^2 + \frac{1}{2}\delta\lambda_2 v^2 + \frac{1}{2}(\lambda + \delta\lambda_0) T_{\text{div}} + \frac{1}{2}\delta\lambda_0 T_F[G] + \frac{1}{2}\lambda^2 v^2 I_{\text{div}},$$

$$0 = \delta m_0^2 + \frac{1}{6}\delta \lambda_4 v^2 + \frac{1}{2}(\lambda + \delta \lambda_2) T_{\text{div}} + \frac{1}{2}\delta \lambda_2 T_F[G] + \frac{1}{6}\lambda^2 S_{\text{div}}(0, G).$$

Coefficients of v^0 and v^2 correspond in this scheme to overall divergences

Vanishing of the divergent coefficient of $T_F[G]$ should also be imposed Independent criterium which cancels a subdivergence

Divergence analysis I.

Auxiliary propagator with the same large-p asymptotics as $G^{-1}(p)$ has introduces also normalisation scale M_0^2 :

$$iG_{aux}^{-1}(p) = p^2 - M_0^2$$

Divergent piece of each integral should be expressed through G_{aux} :

Bubble integral I(p,G):

$$I_{\text{div}} = -i \int_{k} G_{aux}^{2}(k) \Big|_{\text{div}} =: T_{d}^{(0)}, \qquad I_{F}(p) = -i \int_{k} \left[G(k)G(k+p) - G_{aux}^{2}(k) \right]$$

Tadpole and setting sun integrals analysed with help of an appropriate representation for the propagator:

$$G(p) = G_{aux}(p) + \delta G(p),$$

$$\delta G(p) = -iG_{aux}^2(p) \left(M^2 - M_0^2 + \frac{\lambda^2 v^2}{2} I_{aux,F}(p) \right) + G_r(p), \qquad G_r(p) \sim p^{-6}$$

Divergent piece of the tadpole integral T[G]:

$$T[G] = \int_{k}^{\infty} G_{aux}(k) + (M^{2} - M_{0}^{2})T_{d}^{(0)} + \frac{1}{2}\lambda^{2}v^{2}(-i)\int_{k}^{\infty} G_{aux}^{2}(k)I_{auxF}(k) + T_{F}^{(1)}[G]$$

Divergence analysis II.

$$T_{\text{div}} = T_d^{(2)} + (M^2 - M_0^2)T_d^{(0)} + \frac{1}{2}\lambda^2 v^2 T_d^{(I)}$$

$$T_d^{(2)} := T[G_{aux}] = \int_p G_{aux}(p) \Big|_{\text{div}}, \qquad T_d^{(I)} := -i \int_p G_{aux}^2(p) I_{aux,F}(p) \Big|_{\text{div}}$$

Setting-sun integral
$$S(p=0,G)=-i\int_k\int_qG(k)G(q)G(k+q)$$

Rewritten with the replacement

 $G(p) = G_{aux}(p) + \delta G(p)$ on each of the three propagators:

$$S(p = 0, G) = S_{aux}(0) + 3 \int_{k} \delta G(k) (I_{div} + I_{aux,F}(k)) + S_{F}^{(1)}.$$

$$S_{\text{div}}(0,G) = S_{aux}(0) + 3(T[G] - T_d^{(2)})T_d^{(0)} + 3(M^2 - M_0^2)T_d^{(I)} + \frac{3}{2}\lambda^2 v^2 T_d^{(I,2)}$$

$$T_d^{(I,2)} := -i \int_k G_{aux}^2(k) I_{aux,F}^2(k) \Big|_{\mbox{div}},$$

Algebraic equations for the non-perturbative counterterms

4 equations ensuring cancellation of overall divergencies determine $\delta m_0^2, \delta m_2^2, \delta \lambda_2, \delta \lambda_4$ with input: $\delta \lambda_0$

$$0 = \delta m_2^2 + \frac{1}{2} (\lambda + \delta \lambda_0) \left[T_d^{(2)} + (m^2 - M_0^2) \right] T_d^{(0)},$$

$$0 = \delta \lambda_2 + \frac{1}{2} \lambda (\lambda + \delta \lambda_0) \left(T_d^{(0)} + \lambda T_d^{(I)} \right) + \lambda^2 T_d^{(0)},$$

$$0 = \delta m_0^2 + \frac{1}{2} (\lambda + \delta \lambda_2) \left[T_d^{(2)} + (m^2 - M_0^2) T_d^{(0)} \right] + \frac{1}{2} \lambda^2 (m^2 - M_0^2) \left((T_d^{(0)})^2 + T_d^{(I)} \right) + \frac{1}{6} \lambda^2 S_{aux}(0),$$

$$0 = \frac{\delta \lambda_4}{2} + \frac{3}{2} \lambda (\lambda + \delta \lambda_2 + \lambda^2 T_d^{(0)}) \left(T_d^{(0)} + \lambda T_d^{(I)} \right) + \frac{3}{2} \lambda^3 \left(T_d^{(I)} + \lambda T_d^{(I,2)} \right)$$

2 equations for cancelling divergent coefficients of T_F determine $\delta\lambda_0$

$$0 = \delta \lambda_0 + \frac{1}{2} \lambda (\lambda + \delta \lambda_0) T_d^{(0)},$$

and give a relation for $\delta \lambda_2$:

$$0 = \delta \lambda_2 + \frac{1}{2}\lambda(\lambda + \delta \lambda_2)T_d^{(0)} + \frac{1}{2}\lambda^3 \left((T_d^{(0)})^2 + T_d^{(I)} \right) + \lambda^2 T_d^{(0)}$$

Check: they are mutually consistent

Adding the basket ball: complete $\mathcal{O}(\lambda^2)$ skeleton truncation

$$iG^{-1}(p) = p^{2} - \Sigma(p), \qquad \Sigma(p) = M^{2} + \Pi_{0}(p) + \Pi_{2}(p)$$

$$M^{2} = m^{2} + \frac{1}{2}\lambda v^{2} + \frac{1}{2}\lambda T_{F}[G], \qquad \Pi_{0}(p) = \frac{1}{2}\lambda^{2}v^{2}I_{F}(p)$$

$$\Pi_{2}(p) = \frac{1}{6}\lambda^{2}S_{F}(p), \qquad \Pi_{2} = \Pi_{a}(p) + \Pi_{20} + \Pi_{r},$$

$$\Pi_{a} \approx p^{2}(\ln p^{2})^{c_{1}}, \quad \Pi_{20} \approx (\ln p^{2})^{c_{2}}, \quad \Pi_{r} \approx p^{-2}$$

Divergence cancellation in the propagator

$$0 = \delta m_2^2 + \tfrac{1}{2}\delta\lambda_2 v^2 + \tfrac{1}{2}(\lambda + \delta\lambda_0) T_{\text{div}} + \tfrac{1}{2}\delta\lambda_0 T_F[G] + \tfrac{1}{2}\lambda^2 v^2 I_{\text{div}} + \tfrac{1}{6}\lambda^2 S_{\text{div}}(p) - p^2 \delta Z$$

Divergence analysis with the auxiliary propagator $iG_{aux}^{-1}=p^2-M_0^2-\Pi_a(p)$

$$T[G]_{\mbox{div}} = T_a^{(2)} + (M^2 - M_0^2) T_a^{(0)} + \frac{1}{2} \lambda^2 v^2 T_a^{(I)} - i \int_k G_a^2(k) \Pi_{\mathbf{2},\mathbf{0}}(\mathbf{k}) \bigg|_{\mbox{div}}$$

$$\begin{split} S_{\mbox{div}}(p) - \frac{6}{\lambda^2} p^2 \delta Z &= S_{a,\mbox{div}}(0) + 3 T_a^{(0)} (T[G] - T_a^{(2)}) + 3 \big(M^2 - M_0^2 \big) T_a^{(I)} \\ &+ \frac{3}{2} \lambda^2 v^2 T_a^{(I,2)} - 3 i \int_k G_a^2(k) I_{a,F}(k) \Pi_{2,0}(k) \bigg|_{\mbox{div}} \end{split}$$

Equation of $\Pi_{20}(p)$

$$\Pi_{20}(p) = -\frac{i}{2} \int_k G_a^2(k) K(p,k) \left[M^2 - M_0^2 + \frac{\lambda^2}{2} v^2 I_{a,F}(k) + \Pi_{20}(k) \right] \text{ with }$$

$$K(p,k) = \frac{\lambda^2}{2} \Big[I_{a,F}(k+p) + I_{a,F}(k-p) - 2I_{a,F}(k) \Big]$$

Linear expression in terms of $M^2-M_0^2$ and $\frac{1}{4}\lambda^2v^2$:

$$\Pi_{20}(p) = \frac{1}{2}(M^2 - M_0^2)\Gamma(p) + \frac{1}{4}\lambda^2 v^2 \tilde{\Gamma}(p)$$

where

$$\Gamma(p) = -i \int_{k} \frac{\Gamma(p, k)}{\Gamma(p, k)} G_a^2(k), \quad \tilde{\Gamma}(p) = \int_{k} \frac{\Gamma(p, k)}{\Gamma(p, k)} G_a^2(k) I_{a,F}(k).$$

Bethe-Salpeter equation for $\Gamma(p, k)$:

$$\Gamma(p,k) = K(p,k) - \frac{i}{2} \int_q G^2(q) K(p,q) \Gamma(q,k).$$

Introduce moments of the asymptotic propagator:

$$\begin{split} D_0 &= -i \int_k G_a^2(k) \Gamma(k) \Big|_{\mbox{div}}, \quad \tilde{D}_0 = -i \int_k G_a^2(k) \tilde{\Gamma}(k) \Big|_{\mbox{div}} \\ D_1 &= -i \int_k G_a^2(k) I_{aF}(k) \Gamma_0(k) \Big|_{\mbox{div}}, \quad \tilde{D}_1 = -i \int_k G_a^2(k) I_{aF}(k) \tilde{\Gamma}(k) \Big|_{\mbox{div}} \end{split}$$

Detailed counterterm equations for the propagator

$$\begin{split} 0 &= \delta m_2^2 + \tfrac{1}{2} (\lambda + \delta \lambda_0) \left[T_a^{(2)} + (m^2 - M_0^2) T_a^{(0)} \right] + \tfrac{\lambda^2}{6} S_{a, \text{div}}(0) \\ &+ (m^2 - M_0^2) \left\{ \tfrac{\lambda^2}{2} \left[(T_a^{(0)})^2 + T_a^{(I)} + \tfrac{1}{2} \tilde{D}_1 \right] + \tfrac{1}{4} \left(\lambda + \delta \lambda_0 + \lambda^2 T_a^{(0)} \right) D_0 \right\}, \end{split}$$

$$0 = \delta\lambda_{2} + \frac{1}{2}\lambda(\lambda + \delta\lambda_{0}) \left(T_{a}^{(0)} + \lambda T_{a}^{(I)} \right) + \lambda^{2} T_{a}^{(0)}$$

$$+ \frac{1}{2}\lambda^{3} \left[(T_{a}^{(0)})^{2} + T_{a}^{(I)} + \lambda \left(T_{a}^{(0)} T_{a}^{(I)} + T_{a}^{(I,2)} \right) \right]$$

$$+ \frac{1}{4}\lambda \left[\left(\lambda + \delta\lambda_{0} + \lambda^{2} T_{a}^{(0)} \right) (D_{0} + \lambda D_{1}) + \lambda^{2} (\tilde{D}_{1} + \lambda D_{2}) \right]$$

Coefficent of T_F :

$$0 = \delta \lambda_0 + \frac{1}{2} \lambda (\lambda + \delta \lambda_0) T_a^{(0)} + \lambda^2 \left[T_a^{(0)} + \frac{1}{2} \lambda \left((T_a^{(0)})^2 + T_a^{(I)} \right) \right] + \frac{1}{4} \lambda \left[\left(\lambda + \delta \lambda_0 + \lambda^2 T_a^{(0)} \right) D_0 + \lambda^2 \tilde{D}_1 \right].$$

Comparing with the the coefficient of T_F in the equation of state:

$$\delta\lambda_0 = \delta\lambda_2$$

Consistency?

$$\delta\lambda_{0} - \delta\lambda_{2} = \frac{\lambda^{3}}{2} \left[1 + \frac{\lambda}{2} \left(T_{a}^{(0)} + \frac{1}{2} D_{0} \right) \right]^{-1} \left\{ T_{a}^{(I)} + \frac{1}{2} D_{1} + \lambda \left(T_{a}^{(I,2)} + \frac{1}{2} D_{2} \right) + \frac{1}{2} \lambda^{2} \left[\left(T_{a}^{(I,2)} + \frac{1}{2} D_{2} \right) \left(T_{a}^{(0)} + \frac{1}{2} D_{0} \right) - \left(T_{a}^{(I)} + \frac{1}{2} D_{1} \right) \left(T_{a}^{(I)} + \frac{1}{2} \tilde{D}_{1} \right) \right] \right\}$$

$$= ? 0$$

Remark:

The counterterms of the propagator $\delta\lambda_0$, $\delta\lambda_2$ can be analysed also with the method of iterative renormalisation (Blaizot, Iancu, Reinosa, 2004) where one looks for the self-energy in form of infinite series:

$$\delta \lambda_0 = \sum_n \delta \lambda_0^{(n)}, \qquad \delta \lambda_2 = \sum_n \delta \lambda_2^{(n)}$$

and solves the gap equations iteratively. It yields

$$\delta\lambda_0 = \delta\lambda_2$$

Indirect argument for the validity of the consistency relation!

Other two counterterms of the equation of state:

$$\delta m_2^2 = \delta m_0^2, \qquad \delta \lambda_4 = 3(\delta \lambda_2 + \lambda^2 T_a^{(0)}).$$

CONCLUSIONS

- Simple and explicit construction of countertems
- Consistency checks on the non-perturbative renormalisation
- Generalisation to O(N) model (in principle to any global symmetry)

OUTLOOK

Application to models of phenomenological interest

Addressing further conceptual questions:

- construction of gapless approximation beyond Hartree truncation
- renormalisation of NLO large N approximation
- counterterm construction for nPI approximation