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3. The transition temperature: Tc
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Standard picture of the phase diagram and its uncertainties
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physical point?

physical quark masses: important for the nature of the transition
n f =2+1 theory with mq=0 or ∞ gives a first order transition
for intermediate quark masses we have an analytic cross over (no χPT)

F.Karsch et al., Nucl.Phys.Proc. 129 (’04) 614; G.Endrodi et al. PoS Lat’07 182(’07);

de Forcrand, S. Kim, O. Philipsen, Lat’07 178(’07)

continuum limit is important for the order of the transition:
n f =3 case (standard action, Nt=4): critical mps≈300 MeV
with different discretization error (p4 action, Nt=4): critical mps≈70 MeV
the physical pseudoscalar mass is just between these two values
discretization errors change the order of the transition

what happens for physical quark masses, in the continuum, at what Tc?



Partition function

Z =
∫

dUdΨdΨ̄e−SE

SE is the Euclidean action
Parameters:

gauge coupling g

quark masses mi (i = 1..N f )
(Chemical potentials µi )
Volume (V ) and temperature (T )

Finite T ↔ finite temporal lattice extension

T =
1

Nta

Continuum limit: a → 0

Renormalization: keep the physical spectrum constant
at finite T :

continuum limit ⇐⇒ Nt → ∞



The nature of the QCD transition

Y.Aoki, G.Endrodi, Z.Fodor, S.D.Katz, K.K.Szabo, Nature, 443 (2006) 675 [hep-lat/0611014]

Symanzik improved gauge, stout improved n f =2+1 staggered fermions
simulations along the line of constant physics: mπ=135 MeV, mK=500 MeV
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extrapolation from Nt and Nt+2 (standard action) ≈ as good as Nt with p4
Nt=8,10 gives ≈±1%, but a<0.15, 0.12 fm needed to set the scale (±1%)
thermodynamic quantities are obtained "more precisely" than the scale
(p4 independent config. is >10× more CPU ⇒ instead balance: a→0)



• finite size scaling for the chiral susceptibility: χ=(T/V)∂ 2logZ/∂m2

first order transition =⇒ peak width ∝ 1/V, peak height ∝ V
cross-over =⇒ peak width ≈ constant, peak height ≈ constant

eight times larger volumes: volume independent scaling ⇒ cross-over

do we get the same result (cross-over) in the continuum limit?
one might have the unlucky case as we had in n f =3 QCD:
discretization errors changed the nature of the transition for physical mps



• How to get rid of the discretization errors?

a. susceptibility for fixed physical volumes in the continuum
b. finite size analysis of the continuum extrapolated values

renormalize the susceptibility the same way as the free energy

f (T ) ∝ logZ(T 6=0)/V4–logZ(T=0)/V̄4

p(T ) has a continuum limit and we can use mr=Zm·m

χr(T ) = ∂ 2/(∂m2
r ) [logZ(T 6=0)/V4–logZ(T=0)/V̄4]

construct a quantity in continuum: Zm drops out from m2∂ 2/∂m2

=⇒ m2
r ·χr(T ) = m2·[χ(T 6=0)–χ(T=0)]













• finite size scaling analysis with continuum extrapolated m2∆χ

the result is consistent with an approximately constant behavior
for a factor of 5 difference within the volume range

chance probability for 1/V is 10−19 for O(4) is 7 ·10−13

continuum result with physical quark masses in staggered QCD:

the QCD transition at µ=0 is a cross-over



The transition temperature (Nt=4,6,8,10)
Y. Aoki, Z. Fodor, S.D. Katz, K.K. Szabo, Phys. Lett. B. 643 (2006) 46 [hep-lat/0609068]

• a cross-over has no unique Tc: example of water-steam transition

above the critical point cp and dρ/dT give different Tcs.

QCD: chiral & quark number susceptibilities or Polyakov loop
they result in different Tc values ⇒ physical difference

extrapolations from large a: σ ,r0,mρ ,mN,mK∗,mΩ, fπ , fK: different a (in fm)
this lead to different Tc values ⇒ non-physical ambiguity
will be removed in the continuum limit (most precise scale is set by fK)



T = 0:
set the physical scale and locate the physical point
Three quantities are needed (mπ and mK for the quark masses)
Several possibilities for the third quantity

- string tension (not existing in full QCD)
- static quark potential at intermediate distances (r2

0 ·dV /dr=1.65)
- directly measurable quantities (e.g. fK)

Further quantities are predictions (e.g. r0, fπ , mK∗)

T > 0:
cross-over → different definitions give different Tc

Possible choices:
- Chiral susceptibility
- Quark number susceptibility
- Polyakov-loop



T=0 Simulations

• mπ , mK and fK was used to set the quark masses and scale
• mud ≈ 3,5,7,9×mud,phys together with chiral extrapolation
• lattices from 123 ·24 up to 243 ·32

Predictions for mK∗, fπ and consistent with experimental values
r0 is consistent with MILC measurement



Chiral susceptibility:
Renormalization: seen before

Quark number susceptibility:

χs
T 2 = 1

TV
∂ 2 logZ

∂ µ2
s

∣

∣

∣

∣

µs=0

No renormalization necessary

Polyakov loop:

P = 1
N3

s
∑x tr[U4(x,0)U4(x,1) . . .U4(x,Nt −1)]

Related to the static quark free energy:

|〈P〉|2 = exp(−∆Fqq̄(r → ∞)/T )

Renormalization condition for the potential:VR(r0) = 0

|〈PR〉| = |〈P〉|exp(V (r0)/(2T ))



Continuum extrapolations
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Nt=4 is off, Nt=6,8 and 10 show nice scaling for all quantities

Chiral and de-confinement transitions at different locations
25(4) MeV difference

Note: different normalization leads to different Tc
(e.g. ∆χ/T 2 leads to ≈10 MeV higher Tc)

→ Tc(∆χ) consistent with MILC ’2004: Tc = 169(12)(4)
Their analysis used coarser lattices, non-physical quark masses,
smaller aspect ratios and inexact R algorithm
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Chiral susceptibility

Tc=151(3)(3) MeV
∆Tc=28(5)(1) MeV

Quark number susceptibility

Tc=175(2)(4) MeV
∆Tc=42(4)(1) MeV

Polyakov loop

Tc=176(2)(4) MeV
∆Tc=38(5)(1) MeV

Nt=6,8,10 are in the a2 scaling regime, Nt=8,10 are practically the same



• Tc(χψ̄ψ) consistent with MILC ’2004: Tc = 169(12)(4) MeV

• BBCR collaboration: published result [M. Cheng et.al, Phys. Rev. D74 (2006) 054507]

Transition temperature from χψ̄ψ and Polyakov loop, from both quantities
Tc=192(7)(4) MeV, =⇒ for χψ̄ψ contradicts our result (≈40 MeV)

Main differences to our work
normalization changes Tc (multiply a Gaussian by T 2 ⇒ peak shifts)

no renormalization, χ/T 2 is used: explains only ≈ 10 MeV difference
only Nt = 4 & 6 (cutoff: a ≈0.3 fm & 0.2 fm or a−1≈700 MeV & 1 GeV)
scale is set by r0 instead of fK (influences only the overall accuracy)

10 MeV 20 MeV 30 MeV 40 MeV

renormalization scale setting  [10%] overall error

0 MeV
.

.

What is the reason for this discrepancy?
Their last concluding remark: it is desirable to
“obtain a reliable independent scale setting for the transition temperature
from an observable not related to properties of the static potential”.



What if one used the static potential (r0) and fK to set the scale?
compare Nt=4,6 and 4,6,8,10 extrapolations with different scale settings
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Continuum limits from Nt = 4,6 are inconsistent, from Nt = 6,8,10 consistent
not surprising: eg. asqtad at Nt≈10 has ≈10% scale difference between r1 & fK
Lüscher (Dublin) & DelDebbio et al: a=.06fm ≈20% difference between r0 & mK∗

one needs 3 points in the scaling regime (2 points are always on a line)



Link to continuum perturbation theory: equation of state at large T

lattice results for the EoS perturbative series “converges”
extend upto a few times Tc only at asymptotically high T

• the standard technique is the integral method:
p̄=T/V·log(Z), but Z is difficult ⇒ p̄ integral of (∂ log(Z)/∂β ,∂ log(Z)/∂m)
subtract the T=0 term, the pressure is given by: p(T )= p̄(T )-p̄(T = 0)

• back of an envelope estimate:
Tc≈150–200 MeV, mπ=135 MeV and try to reach T=20·Tc for Nt=8 (a=0.0075 fm)
⇒Ns > 4/mπ ≈ 6/Tc = 6·20/T = 6·20·Nt ≈ 1000 ⇒ completely out of reach



a. subtract successively: p(T)= p̄(T)-p̄(T=0)= [p̄(T)-p̄(T/2)]+[p̄(T/2)-p̄(T/4)]+...
=⇒ for subtractions at most twice as large lattices are needed

b. instead of the integral method calculate: p̄(T)-p̄(T/2)=T/(2V)·log[Z2(Nt)/Z(2Nt)]

define Z̄(α)=
∫

DUexp[-αS1b-(1-α)S2b] =⇒ Z2(Nt)=Z̄(0) and Z(2Nt)=Z̄(1)

one gets directly p̄(T)-p̄(T/2)=T/(2V)
∫ 1
0 dlog[Z̄(α)]/dα·dα=T/(2V)

∫ 1
0 〈S1b-S2b〉α·dα
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long awaited link between lattice thermodynamics and pert. theory is there
G.Endrodi, Z.Fodor, S.D.Katz, K.K.Szabo, arXiv:0710.4197



hotQCD collaboration: new results ⇒ differences/problems remained (1)

hotQCD: [0710.1655, 0711.0661, 0804.4148, RBRC workshop 04.08]

Y. Aoki, Z. Fodor, S.D. Katz, K.K. Szabo, Phys. Lett. B. 643 (2006) 46 (magenta points)

chiral susceptibility, rescaled (quark masses are different)

χψ̄ψ = m2
l

∂ 2

∂m2
l

( f (T )− f (T = 0))

chiral condensate

∆l,s =
(

〈l̄l〉−ml/ms〈s̄s〉
)

/
(

〈l̄l〉T=0−ml/ms〈s̄s〉T=0
)



Another difference/problem is related to the width (2)

there is no phase transition, only an analytic cross-over
=⇒ different definitions lead to different temperature scales

our claim:
Polyakov-loop, strange number susceptibility inflection points give
quite higher Tc (175 MeV) than the chiral susceptibility peak (151 MeV)

hotQCD claim:
"no large differences in the transition temperature from observables related
to deconfinement and chiral symmetry restoration, both lie in the range
T=(185-195) MeV" 0711.0661

due to crossover ’Problem 2.’ is less severe as ’Problem 1.’,
even in our case it is possible to define chiral/deconfinement operators
with same transition temperatures e.g. by multiplying by some powers of T



Possible resolutions

Y. Aoki, Z. Fodor, S.D. Katz, K.K. Szabo, Phys. Lett. B. 643 (2006) 46 [hep-lat/0609068]

Nt = 4,6 of ’p4fat3’ are too coarse, no controlled continuum limit
status 2008: fine Nt = 8 somewhat better but still large discrepancy

our simulations:
• scale set by fK, non-Goldstone pions distort chiral extrapolation or con-
tinuum limit
• naive staggered dispersion relation has large artefacts
hotQCD:
• nonphysical quark masses → ∼ 5 MeV Soeldner’s talk at Lattice’08

• scale set by rHPQCD,UKQCD
0 =0.469(7) fm

rETM
0 =0.444(4) fm, rQCDSF

0 =0.467(6) fm, rPACS−CS
0 = 0.492(6)(+7) fm

both:
• universality problem of staggered discretization
• bug in computer code
• . . .
maybe a bit of all
systematic errors are simply underestimated



Improving our previous results

1. improving T = 0 simulations
previously: mπ ≥ 240MeV + chiral extrapolations

now: m = mphys , no need for chiral extrapolations
⇒ more precise scale/renormalization

2. improving T > 0 simulations
previously: Nt = 4,6,8,10 at the physical point
now: Nt = 12 at the physical point
⇒ more control over lattice artefacts



Simulation setup: T>0, machine

nVidia GeForce 8800 Ultra
768 MB video memory
103.7 GB/sec bandwidth
two cards per machine

multishift inverter on 12·363 fits to the video memory and runs with 32 Gflop
gauge force on the video card: 15 Gflop

only single precision arithmetics, HMC-force is not needed more precisely,
for HMC-energy mixed precision inverters (ε = 10−8)

100 GPU-s in dual PC’s in Wuppertal → 3 Tflops ∼ 1 BGP rack
cluster computing: ideal for finite T with many parameter sets



Simulation setup: T=0, machine

zero T lattices are too large for a single video card
→ BG/P supercomputer in Juelich



Simulation setup: T=0, volumes and statistics

simulations directly at the physical point
choose lattice sizes, so that finite volume corrections are below 0.5% for
fπ ,mπ , fK,mK ( cont. formula of Colangelo, Durr, Haefeli ’05 )

β Ncrit
t lattice #traj

3.45 ∼ 4 243×32 1500
3.55 ∼ 6 243×32 3000
3.67 ∼ 8 323×48 1500
3.75 ∼ 10 403×48 1500
3.85 ∼ 13 483×64 1500



T=0 results at the physical point, pseudoscalars

chiral extrapolations (not staggered χPT !) work amazingly well
for all analyzed spacings the extrapolation error for fπ ,mπ , fK,mK is ≤ 1%

Y. Aoki, Z. Fodor, S.D. Katz, K.K. Szabo, Phys. Lett. B. 643 (2006) 46 [hep-lat/0609068]

"2% is the accuracy of our LCP."



T=0 results at the physical point, scale setting

last concluding remark of our competitors: it is desirable to
“obtain a reliable independent scale setting for the transition temperature
from an observable not related to properties of the static potential”.

extend original fK scale setting to mΩ, fπ , mK∗ ⇒ consistent scales
red bands are the experimental values with uncertainties
K∗ decays in the physical point, width is also given (pink)
smaller spacings and r0 are currently under analysis



T>0 results

strange quark number susceptibility

preliminary results, 300-500 trajectories in each point
good agreement with old Nt = 10 data

Y. Aoki, Z. Fodor, S.D. Katz, K.K. Szabo, Phys. Lett. B. 643 (2006) 46 [hep-lat/0609068]

"For the transition temperature in the continuum limit one gets: Tc(χs) =
175(2)(4) MeV"



T>0 results

renormalized chiral susceptibility

nice agreement with old Nt = 8,10 data

Y. Aoki, Z. Fodor, S.D. Katz, K.K. Szabo, Phys. Lett. B. 643 (2006) 46 [hep-lat/0609068]

"the transition temperature based on the chiral susceptibility reads Tc(χψ̄ψ) =

151(3)(3) MeV"



• universality problem in 2+1 flavour staggered QCD

naively discretizing fermions leads to 16 degenerate fermions
staggered fermions on 24 cell leads to 4 degenerate fermions
take the root of the fermion determinant to reach 2+1 flavours

known to be non-local for any non-vanishing lattice spacings

much faster than any other fermion formulation
the largest scale thermodynamics projects are all in staggered QCD

lively discussion: staggered fermions are good, bad or just ugly

new algorithms for Wilson fermions (in the universality class of QCD)

one can already control all systematics
lattice spacings, quark masses, finite volume within really n f =2+1 QCD
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Budapest-Marseille-Wuppertal collaboration

QCD

⇒ use a formulation, which is known to be in the universality class of QCD



Summary

• The nature of the QCD transition was determined
we used physical quark masses and extrapolated to the continuum limit
=⇒ the QCD transition is an analytic cross-over

• The transition temperature is determined (2006)
Chiral susceptibility:

Tc=151(3)(3) MeV, ∆Tc=28(5)(1) MeV
Quark number susceptibility:

Tc=175(2)(4) MeV, ∆Tc=42(4)(1) MeV
Polyakov loop:

Tc=176(2)(4) MeV, ∆Tc=38(5)(1) MeV

• Gap between lattice and perturbative bulk thermodynamics
two new methods to reach (arbitrary) high temperatures
connection to perturbation theory is established



• hotQCD:
they improved their T>0 simulations from Nt=4,6 to Nt=8

• our group:
we improved our T=0 simulations with physical quark masses
we improved our T>0 simulations from Nt=6,8,10 to Nt = 12

our chiral extrapolations were correct on the 1% level
consistent scales obtained by fK, mΩ, fπ and mK∗ (we will give r0 in fm)

preliminary results for chiral susceptibility and strange susceptibility
Nt = 12 are in good agreement with our 2006 results

• discrepancies are not resolved
should we use Nt=16? No, the accumulated data is most probably enough
should hotQCD use other scale settings, too? Probably yes (was their plan)

• n f =2+1 staggered QCD can be influenced by the universality problem
⇒ use a formulation, which is known to be in the universality class of QCD
recent algorithmic developments allow one to use Wilson fermions


