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Where can pion condensation occur in nature?

Quark matter can exist in neutron stars — at very large bariochemical potential
(ILLB ~ 1 GeV)

If the isospin chemical potential is also different from zero — possibility of pion
condensation

In 2 flavoured NJL model (L. He et al Phys. Rev. D74, 036005 (2004)):

e if 140 MeV< u; < 230 MeV — BEC phase

o if uy > 230 MeV — BCS phase

Neutrino emission from pion condensed quark matter — direct Urca processes:

d— u-t+e +v
u+e —d+v

—> |t might will be investigated experimentaly



Interesting feature of pion condensation found in SU(2) PNJL model:

At sufficiently high temperature the condesate evaporates
above a certain ;. (Z. Zhang, V. Liu: hep-ph/0610221v3)

Up to now:

e Investigations in SU(2) NJL and PNJL model (BEC, BCS and CFL phases)
e Investigation in O(4) model in the large N. limit (leading order) (BEC phase)
Possible investigations:

e In different models such as constituent quark model
e In three flavour
e Dependence on other chemical potentials

e Neutrino production



The model and its renormalization

Our starting point is the renormalized O(4) symmetric Lagrangian with explicit
symmetry breaking term
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Y = (u, d)!' —— quark fileds
¢ = (¢po, P1, o, ¢3) = (0,71, ™, m3) ——  sigma and pion scalar fields
h —— symmetry breaking external field

T; = (m0,i1i75) ——  quark—boson coupling matrix
The unknown renormalized parameters of the Lagrangian: mg, A, gr

0z, 0mg, o) are the usual (infinite) counterterms
(Fermions are treated at tree level — no wavefunction renormalization)



The genarating functional:
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where the the Hamiltonian is
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and the renormalized canonical momenta of the scalar fields
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Symmetry breaking:

At small 7"when either h Z0orh=0and mz < 0= (¢g) = (0) =v # 0
At large p; = (¢1) = (m1) = p # 0and (¢;) = (m;) =0fori =2,3
Shifting the corresponding fields
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Making whole squares in the above brakets

For instance the first one becomes
1 . 1 )
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Than performing the II integration — produce the tree-level EoS (linear terms)
and the inverse propagators

E, = v(mi+Av?+p%) —h
E, = w(m§+Av®+p?) —pf(l-62))

Renormalized propagator of the 73 particle in euclidian space:
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Conditions:

e momentum independent part of the inverse propagator must be finite:
(1 =0Z)mZ yee + 0A0? + dmf + E(p? = 0) = finite

o coefficient of p* in the inverse propagator must be one:

1+X(p*=0)(1-62)=1

Note: there is some arbitrariness in choosing the finite parts

With cut-off regularization:
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Iy, Ly — bosonic and fermionic renormalization scales



Bosonic and fermionic propagators

Going into Fourier space and introducing Matsubara frequencies the bosonic
Inverse propagators are:

— 'L'D;; — wi + K> + mi + )\p2
—iD_" =
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where the tree-level bosonic masses
My = mg + )\’02, My = m% + 3\

—> Characteristic equation is of third degree = Propagators would be very
complicated =— Hard to perform the Matsubara sums

Since we would only like to determine T, i1y, g Where p becomes nonzero —-
Perturbative diagonalization in p to O(p?)



After diagonalization and perturbative inversion
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Tilde denotes that these propagators belong to the transformed particles

Important to note — the transformation matrix depends on p, w,,, u

= To perform the Matsubara sums first one should transform the coefficient
matrices and do the sums for coefficients and loops together



The fermion inverse propagator
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Diagonalization must be performed with extreme care — non-commutative
matrix elements
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Fermionic propagators to O(p?):

where
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Optimized perturbation theory and parameterization

8 unknown parameters: couplings mg, A\, gr
condensates «x,p
external fields A
renormalization scales [, 1

Renormalization scales are not fixed — instead physical results as a function of
scales

Problem: m3 can be negative at finite T
Solution: resummation using optimized perturbation theory
Chiku & Hatsuda, PRD58:076001

. 2 2\ 12
change: m3 — m? = Lyass =35m%¢* —5  (m?> —m)e°

Vo
Am?: one-loop counterterm

Effect: One has to change the m3 mass in the propagators to m? —
gap-equation for m?

Note: Zero temperature cunterterms of the original theory still renormalize the
OPT

Parameterization is carried out at 7' = u; = ug = 0, where also p = 0



Equations (5 is needed):

e 1-loop mass equation for o: m?,,tree =+ Za(p2 =0) = mi phys’

m, = 500 — 700 MeV — complicated particle its mass is still uncertain

e 1-loop mass equation for w3 (gap-equation):

2 2 _ ) — 12
My tree T 23 (P” = 0) = M7, jpver  7ry = 138 MeV

e Tree-level PCAC relation for the pion: fr=v, f:=93MeV

o Tree-level constituent quark mass: myf = m,, = myq = 971},

m ¢ = 330 MeV (one third of the proton mass)

e 1-loop EoS for v:
E, =v(md+ ANv? + p?)) — h+ 0> Tad(m;) =0,



Equations at finite temperature

3 equations — gap-equation and two equations of state (for m, v and p)

. _ 2 — m2
e gap-equation for 731 M yee + ZQB(ma v, p) |p2:0 — M. bhys

o 1-loop EoS forv:  E, = v(md + A(v? + p?) + >, Tad?(m, v,p)) =h

e 1-loop Eo0S for p:
Ly, = p(m(Q) T )‘(7]2 T pz) — :U“% +2 Tadf(m, v,p)) =0,

It can be shown that at one-loop level the following Ward-identity is satisfied:

v- G (p =0)=nh

This also guaranties the Goldstone-theorem



Condition for pion condensation

From the second EoS it can be seen that non-zero pion condensation can occur
only if:
2 2 2 2
mg + A(v”° + p°) —,uJIJrZTad?(m,v,p) =0
i

This can be reformulated in the following way:

m72r3,1—|00p — pf + f(m,v) + Ap? + p*g(m,v) = 0

o :u% — m721‘3,1—|00p B f(m, U)
P g(m,v) + A

With increasing 1y pion condensation occurs at:

i — m72r3,1—loop — f(m,v) =0



Because in this limiting case p = 0 = we can solve the remaining two equation
at zero p.

Finally with the help of the Ward identitiy the following two equations will give the
ur, i, T dependence of v and m:

2 _
* UM 1 loop = h

o B, =v(m*+ X v*+ >, Tad” (m,v)) = h

Solving this system of equations one can determine the regions of pion
condensation as a function of T', iy, ug by demanding:

:u% _ m?rg,l—loop(Tv KT, MB) — f(T7 KI5 :uB) =0

— This gives a surface in 3 dimension



Instead of conclusion

To be done:
e Solving the above described system of equations
Can be done:

e Astrophysical applications of pion condensation (neutrino emission)
e Investigation of pion condensation in SU(3) constituent quark model

e Polyakov-loop coupling



