Pion condensation in the $O(4)$ constituent quark model

Péter Kovács

KFKI Research Institute of Particle and Nuclear Physics of HAS, Theoretical Department

Rab, aug. 30 -sept. 4, 2008

- Motivation
- The constituent quark model and its renormalization
- Propagators
- OPT and parametrization
- Equations at finite temperature
- Condition for pion condensation

Where can pion condensation occur in nature?

Quark matter can exist in neutron stars \longrightarrow at very large bariochemical potential ($\mu_{\mathrm{B}} \approx 1 \mathrm{GeV}$)

If the isospin chemical potential is also different from zero \longrightarrow possibility of pion condensation

In 2 flavoured NJL model (L. He et al Phys. Rev. D74, 036005 (2004)):

- if $140 \mathrm{MeV}<\mu_{I}<230 \mathrm{MeV} \rightarrow \mathrm{BEC}$ phase
- if $\mu_{I}>230 \mathrm{MeV} \rightarrow \mathrm{BCS}$ phase

Neutrino emission from pion condensed quark matter \rightarrow direct Urca processes:

$$
\begin{aligned}
& d \rightarrow u+e^{-}+\bar{\nu} \\
& u+e^{-} \rightarrow d+\nu
\end{aligned}
$$

\Longrightarrow It might will be investigated experimentaly

Interesting feature of pion condensation found in $S U(2)$ PNJL model:
At sufficiently high temperature the condesate evaporates above a certain μ_{I}. (Z. Zhang, Y. Liu: hep-ph/0610221v3)

Up to now:

- Investigations in $S U(2)$ NJL and PNJL model (BEC, BCS and CFL phases)
- Investigation in $O(4)$ model in the large N_{c} limit (leading order) (BEC phase)

Possible investigations:

- In different models such as constituent quark model
- In three flavour
- Dependence on other chemical potentials
- Neutrino production

The model and its renormalization

Our starting point is the renormalized $O(4)$ symmetric Lagrangian with explicit symmetry breaking term

$$
\begin{aligned}
\mathcal{L} & =\frac{1}{2}\left(\partial_{\mu} \phi \partial^{\mu} \phi-m_{0}^{2} \phi^{2}\right)-\frac{\lambda}{4} \phi^{4}+h \phi_{0}+i \bar{\psi} \gamma_{\mu} \partial^{\mu} \psi-\frac{g_{F}}{2} \bar{\psi} T_{i} \phi_{i} \psi \\
& +\frac{1}{2}\left(\delta Z \partial_{\mu} \phi \partial^{\mu} \phi-\delta m_{0}^{2} \phi^{2}\right)-\frac{\delta \lambda}{4} \phi^{4}
\end{aligned}
$$

$\psi=(u, d)^{T} \quad \longrightarrow \quad$ quark fileds
$\phi=\left(\phi_{0}, \phi_{1}, \phi_{2}, \phi_{3}\right) \equiv\left(\sigma, \pi_{1}, \pi_{2}, \pi_{3}\right) \quad \longrightarrow \quad$ sigma and pion scalar fields
$h \longrightarrow$ symmetry breaking external field
$T_{i}=\left(\tau_{0}, i \tau_{i} \gamma_{5}\right) \quad \longrightarrow \quad$ quark-boson coupling matrix
The unknown renormalized parameters of the Lagrangian: m_{0}, λ, g_{F}
$\delta z, \delta m_{0}^{2}, \delta \lambda$ are the usual (infinite) counterterms
(Fermions are treated at tree level \rightarrow no wavefunction renormalization)

The genarating functional:

$$
\mathcal{Z}=\int \mathcal{D} \phi \mathcal{D} \Pi \mathcal{D} \psi^{\dagger} \mathcal{D} \psi \mathrm{e}^{\int_{0}^{\beta} d^{4} x\left(i \Pi_{i} \dot{\phi}_{i}+i \psi^{\dagger} \dot{\psi}-\mathcal{H}+\mu_{B} Q_{B}+\mu_{I} Q_{I}\right)}
$$

where the the Hamiltonian is

$$
\begin{aligned}
\mathcal{H} & =\frac{1}{2}\left(\Pi_{i}^{2}+\left(\nabla \phi_{i}\right)^{2}+m_{0}^{2} \phi_{i}^{2}\right)+\frac{\lambda}{4}\left(\phi_{i}^{2}\right)^{2}-h \phi_{0}-i \bar{\psi} \gamma_{i} \partial_{i} \psi+\frac{g}{2} \bar{\psi} T_{i} \phi_{i} \psi \\
& -\frac{1}{2} \delta Z \Pi_{i}^{2}+\frac{1}{2} \delta Z\left(\nabla \phi_{i}\right)^{2}+\frac{\delta \lambda}{4}\left(\phi_{i}^{2}\right)^{2}+\frac{1}{2} \delta m_{0}^{2} \phi_{i}^{2}
\end{aligned}
$$

and the renormalized canonical momenta of the scalar fields

$$
\Pi_{i}=\frac{\delta \mathcal{L}}{\delta \dot{\phi}_{i}}=(1+\delta Z) \dot{\phi}_{i}
$$

Q_{B}, Q_{I} are the conserved barion and isospin charges

$$
\begin{aligned}
Q_{B} & =\int \mathrm{d}^{3} x \frac{1}{3}\left(u^{\dagger} u+d^{\dagger} d\right) \\
Q_{I} & =\int \mathrm{d}^{3} x\left[(1+\delta Z)\left(\pi_{2} \dot{\pi}_{1}-\pi_{1} \dot{\pi}_{2}\right)+\frac{1}{2}\left(u^{\dagger} u-d^{\dagger} d\right)\right] .
\end{aligned}
$$

Symmetry breaking:
At small T when either $h \neq 0$ or $h=0$ and $m_{0}^{2}\left\langle 0 \Rightarrow\left\langle\phi_{0}\right\rangle \equiv\langle\sigma\rangle \equiv v \neq 0\right.$
At large $\mu_{I} \Rightarrow\left\langle\phi_{1}\right\rangle \equiv\left\langle\pi_{1}\right\rangle \equiv \rho \neq 0$ and $\left\langle\phi_{i}\right\rangle \equiv\left\langle\pi_{i}\right\rangle=0$ for $i=2,3$
Shifting the corresponding fields
$\mathcal{Z}=\int \mathcal{D} \phi \mathcal{D} \psi^{\dagger} \mathcal{D} \psi\left[\exp \left(-\int_{0}^{\beta} d^{4} x_{E}\left(\tilde{\mathcal{L}}_{F}+\tilde{\mathcal{L}}_{I}\right)\right) \int \mathcal{D} \Pi \exp \left(\int_{0}^{\beta} d^{4} x_{E}\left(i \Pi_{i} \dot{\phi}_{i}-\tilde{\mathcal{H}}_{B}\right)\right)\right]$,
where the Π dependent part of $i \Pi_{i} \dot{\phi}_{i}-\tilde{\mathcal{H}}_{B}$:

$$
\begin{aligned}
i \Pi_{i} \dot{\phi}_{i}-\tilde{\mathcal{H}}_{B}= & -\frac{1}{2}(1-\delta Z)\left(\Pi_{0} \Pi_{0}-2(1+\delta Z) i \Pi_{0} \dot{\phi}_{0}\right) \\
& -\frac{1}{2}(1-\delta Z)\left(\Pi_{3} \Pi_{3}-2(1+\delta Z) i \Pi_{3} \dot{\phi}_{3}\right) \\
& -\frac{1}{2}(1-\delta Z)\left(\Pi_{1} \Pi_{1}-2(1+\delta Z)\left(i \Pi_{1} \dot{\phi}_{1}+(1-\delta Z) \mu_{I} \phi_{2}\right)\right) \\
& -\frac{1}{2}(1-\delta Z)\left(\Pi_{2} \Pi_{2}-2(1+\delta Z)\left(i \Pi_{2} \dot{\phi}_{2}-(1-\delta Z) \mu_{I}\left(\phi_{1}+\rho\right)\right)\right) .
\end{aligned}
$$

Making whole squares in the above brakets
For instance the first one becomes

$$
-\Pi_{0}^{\prime 2}-\frac{1}{2}(1-\delta Z)(1+2 \delta Z) \dot{\phi}_{0}^{2}=-\Pi_{0}^{\prime 2}-\frac{1}{2}(1+\delta Z) \dot{\phi}_{0}^{2}+\text { 2-loop }
$$

Than performing the Π integration \rightarrow produce the tree-level EoS (linear terms) and the inverse propagators

$$
\begin{aligned}
& E_{v}=v\left(m_{0}^{2}+\lambda\left(v^{2}+\rho^{2}\right)\right)-h \\
& E_{\rho}=v\left(m_{0}^{2}+\lambda\left(v^{2}+\rho^{2}\right)-\mu_{I}^{2}(1-\delta Z)\right)
\end{aligned}
$$

Renormalized propagator of the π_{3} particle in euclidian space:

$$
G_{\pi_{3}}=\frac{1+\delta Z}{p^{2}+m_{\pi, \text { tree }}^{2}+\delta \lambda v^{2}+\delta m_{0}^{2}+\Sigma\left(p^{2}=0\right)+p^{2} \Sigma^{\prime}\left(p^{2}=0\right)+\tilde{\Sigma}\left(p^{2}\right)}
$$

Conditions:

- momentum independent part of the inverse propagator must be finite:

$$
(1-\delta Z) m_{\pi, \text { tree }}^{2}+\delta \lambda v^{2}+\delta m_{0}^{2}+\Sigma\left(p^{2}=0\right)=\text { finite }
$$

- coefficient of p^{2} in the inverse propagator must be one: $\left(1+\Sigma^{\prime}\left(p^{2}=0\right)\right)(1-\delta Z)=1$

Note: there is some arbitrariness in choosing the finite parts With cut-off regularization:

$$
\begin{aligned}
\delta m_{0}^{2} & =-6 \lambda\left(\Lambda^{2}-m_{0}^{2} \ln \frac{\Lambda^{2}}{l_{b}^{2}}\right) \\
\delta \lambda & =12 \lambda^{2} \ln \frac{\Lambda^{2}}{l_{b}^{2}} \\
\delta Z & =-N_{c} \frac{g_{F}^{2}}{16 \pi^{2}} \ln \frac{\Lambda^{2}}{l_{f}^{2} e^{2}}
\end{aligned}
$$

$l_{b}, l_{f} \rightarrow$ bosonic and fermionic renormalization scales

Bosonic and fermionic propagators

Going into Fourier space and introducing Matsubara frequencies the bosonic inverse propagators are:

$$
\begin{array}{lll}
-i D_{\pi_{3}}^{-1} & = & \omega_{n}^{2}+\mathbf{k}^{2}+m_{\pi}^{2}+\lambda \rho^{2} \\
-i D_{\pi_{1}, \pi_{2}, \sigma}^{-1} & = \\
& \left(\begin{array}{ccc}
\omega_{n}^{2}+\mathbf{k}^{2}+m_{\pi}^{2}-\mu_{I}^{2}+3 \lambda \rho^{2} & -2 \mu_{I} \omega_{n} & 2 \lambda v \rho \\
2 \mu_{I} \omega_{n} & \omega_{n}^{2}+\mathbf{k}^{2}+m_{\pi}^{2}-\mu_{I}^{2}+\lambda \rho^{2} & 0 \\
2 \lambda v \rho & 0 & \omega_{n}^{2}+\mathbf{k}^{2}+m_{\sigma}^{2}-\mu_{I}^{2}+\lambda \rho^{2}
\end{array}\right)
\end{array}
$$

where the tree-level bosonic masses

$$
m_{\pi}=m_{0}^{2}+\lambda v^{2}, \quad m_{\sigma}=m_{0}^{2}+3 \lambda v^{2}
$$

\Longrightarrow Characteristic equation is of third degree \Longrightarrow Propagators would be very complicated \Longrightarrow Hard to perform the Matsubara sums

Since we would only like to determine T, μ_{I}, μ_{B} where ρ becomes nonzero \Longrightarrow Perturbative diagonalization in ρ to $\mathcal{O}\left(\rho^{2}\right)$

After diagonalization and perturbative inversion

$$
\begin{aligned}
& i \tilde{D}_{1}=\frac{1}{\left(\omega_{n}+i \mu_{I}\right)^{2}+\mathbf{k}^{2}+m_{\pi}^{2}}-\rho^{2} \frac{\lambda\left(2 \mu_{I}^{2}+2 \lambda v^{2}-4 i \mu_{I} \omega_{n}\right)}{\left(\left(\omega_{n}+i \mu_{I}\right)^{2}+\mathbf{k}^{2}+m_{\pi}^{2}\right)^{2}\left(\mu_{I}^{2}+2 \lambda v^{2}-2 i \mu_{I} \omega_{n}\right)} \\
& i \tilde{D}_{2}=\frac{1}{\left(\omega_{n}-i \mu_{I}\right)^{2}+\mathbf{k}^{2}+m_{\pi}^{2}}-\rho^{2} \frac{\lambda\left(2 \mu_{I}^{2}+2 \lambda v^{2}+4 i \mu_{I} \omega_{n}\right)}{\left(\left(\omega_{n}-i \mu_{I}\right)^{2}+\mathbf{k}^{2}+m_{\pi}^{2}\right)^{2}\left(\mu_{I}^{2}+2 \lambda v^{2}+2 i \mu_{I} \omega_{n}\right)} \\
& i \tilde{D}_{\sigma}=\frac{1}{\omega_{n}^{2}+\mathbf{k}^{2}+m_{\sigma}^{2}}-\rho^{2} \frac{\lambda\left(\mu_{I}^{2}+2 \lambda v^{2}\right)\left(\mu_{I}^{2}+6 \lambda v^{2}+4 \mu_{I}^{2} \omega_{n}^{2}\right)}{\left(\omega_{n}^{2}+\mathbf{k}^{2}+m_{\sigma}^{2}\right)^{2}\left(\left(\mu_{I}^{2}+2 \lambda v^{2}\right)^{2}+4 \mu_{I}^{2} \omega_{n}^{2}\right)}
\end{aligned}
$$

Tilde denotes that these propagators belong to the transformed particles

Important to note \longrightarrow the transformation matrix depends on ρ, ω_{n}, μ
\Rightarrow To perform the Matsubara sums first one should transform the coefficient matrices and do the sums for coefficients and loops together

The fermion inverse propagator

$$
i D_{F}^{-1}=\left(\begin{array}{cc}
\left(-i \omega_{n}+\mu_{u}\right) \gamma_{0}-\gamma_{i} k_{i}-m_{F} & -i \frac{g_{F}}{2} \gamma_{5} \rho \\
-i \frac{g_{F}}{2} \gamma_{5} \rho & \left(-i \omega_{n}+\mu_{d}\right) \gamma_{0}-\gamma_{i} k_{i}-m_{F}
\end{array}\right)
$$

where

$$
\begin{aligned}
m_{F} & =\frac{g_{F}}{2} v \\
\mu_{u} & =\frac{1}{3} \mu_{B}+\frac{1}{2} \mu_{I} \\
\mu_{d} & =\frac{1}{3} \mu_{B}-\frac{1}{2} \mu_{I}
\end{aligned}
$$

Diagonalization must be performed with extreme care \rightarrow non-commutative matrix elements

$$
\begin{gathered}
\text { hermitian diagonalizator } O_{F}=\left(\begin{array}{cc}
1+\frac{g_{F}^{2}}{32 k_{0}^{2}} \rho^{2} & -i \frac{g_{F}}{4 k_{0}} \gamma_{0} \gamma_{5} \rho \\
-i \frac{g_{F}}{4 k_{0}} \gamma_{0} \gamma_{5} \rho & 1+\frac{g_{F}^{2}}{32 k_{0}^{2}} \rho^{2}
\end{array}\right) \\
k_{0}=\left(-i \omega_{n}+\frac{1}{3} \mu_{B}\right) \gamma_{0}
\end{gathered}
$$

Fermionic propagators to $\mathcal{O}\left(\rho^{2}\right)$:

$$
\begin{aligned}
-i \tilde{D}_{u} & =\frac{1}{\not k_{u}-m_{f}}+\rho^{2} \frac{g_{F}^{2}}{8 k_{0}} \frac{1}{\not k_{u}-m_{f}} \gamma_{0} \frac{1}{\not k_{u}-m_{f}} \\
-i \tilde{D}_{d} & =\frac{1}{\not k_{d}-m_{f}}+\rho^{2} \frac{g_{F}^{2}}{8 k_{0}} \frac{1}{\not k_{d}-m_{f}} \gamma_{0} \frac{1}{\not k_{d}-m_{f}}
\end{aligned}
$$

where

$$
\not k_{u / d}=\left(-i \omega_{n}+\mu_{u / d}\right) \gamma_{0}-\gamma_{i} k_{i}
$$

Optimized perturbation theory and parameterization

8 unknown parameters:

couplings	m_{0}, λ, g_{F}
condensates	x, ρ
external fields	h
renormalization scales	l_{f}, l_{b}

Renormalization scales are not fixed \rightarrow instead physical results as a function of scales

Problem: m_{0}^{2} can be negative at finite T
Solution: resummation using optimized perturbation theory
Chiku \& Hatsuda, PRD58:076001
change: $m_{0}^{2} \rightarrow m^{2} \quad \Rightarrow \quad \mathcal{L}_{\text {mass }}=\frac{1}{2} m^{2} \phi^{2}-\frac{1}{2} \underbrace{\left(m^{2}-m_{0}^{2}\right) \phi^{2}}_{\Delta m^{2}: \text { one-loop counterterm }}$
Effect: One has to change the m_{0}^{2} mass in the propagators to $m^{2} \rightarrow$ gap-equation for m^{2}
Note: Zero temperature cunterterms of the original theory still renormalize the OPT

Parameterization is carried out at $T=\mu_{I}=\mu_{B}=0$, where also $\rho=0$

Equations (5 is needed):

- 1-loop mass equation for $\sigma: \quad m_{\sigma, \text { tree }}^{2}+\Sigma_{\sigma}\left(p^{2}=0\right)=m_{\sigma, \text { phys }}^{2}$,
$m_{\sigma}=500-700 \mathrm{MeV} \rightarrow$ complicated particle its mass is still uncertain
- 1-loop mass equation for π_{3} (gap-equation):
$m_{\pi_{3}, \text { tree }}^{2}+\Sigma_{\pi_{3}}\left(p^{2}=0\right)=m_{\pi_{3}, \text { phys }}^{2}, \quad m_{\pi_{3}}=138 \mathrm{MeV}$
- Tree-level PCAC relation for the pion: $f_{\pi}=v, \quad f_{\pi}=93 \mathrm{MeV}$
- Tree-level constituent quark mass: $m_{f} \equiv m_{u}=m_{d}=\frac{g_{F}}{2} v$, $m_{f}=330 \mathrm{MeV}$ (one third of the proton mass)
- 1-loop EoS for v :

$$
E_{v}=v\left(m_{0}^{2}+\lambda\left(v^{2}+\rho^{2}\right)\right)-h+v \sum_{i} \operatorname{Tad}\left(m_{i}\right)=0
$$

Equations at finite temperature

3 equations \rightarrow gap-equation and two equations of state (for m, v and ρ)

- gap-equation for $\pi_{3}: \quad m_{\pi_{3}, \text { tree }}^{2}+\left.\Sigma_{\pi_{3}}^{\beta}(m, v, \rho)\right|_{p^{2}=0}=m_{\pi_{3}, \text { phys }}^{2}$
- 1-loop EoS for $v: \quad E_{v}=v\left(m_{0}^{2}+\lambda\left(v^{2}+\rho^{2}\right)+\sum_{i} \operatorname{Tad}_{i}^{\beta}(m, v, \rho)\right)=h$
- 1-loop EoS for ρ :

$$
E_{\rho}=\rho\left(m_{0}^{2}+\lambda\left(v^{2}+\rho^{2}\right)-\mu_{I}^{2}+\sum_{i} \operatorname{Tad}_{i}^{\beta}(m, v, \rho)\right)=0
$$

It can be shown that at one-loop level the following Ward-identity is satisfied:

$$
v \cdot G_{\pi_{3}}^{-1}\left(p^{2}=0\right)=h
$$

This also guaranties the Goldstone-theorem

Condition for pion condensation

From the second EoS it can be seen that non-zero pion condensation can occur only if:

$$
m_{0}^{2}+\lambda\left(v^{2}+\rho^{2}\right)-\mu_{I}^{2}+\sum_{i} \operatorname{Tad}_{i}^{\beta}(m, v, \rho)=0
$$

This can be reformulated in the following way:

$$
\begin{gathered}
m_{\pi_{3}, 1-\mathrm{loop}}^{2}-\mu_{I}^{2}+f(m, v)+\lambda \rho^{2}+\rho^{2} g(m, v)=0 \\
\Longrightarrow \rho=\sqrt{\frac{\mu_{I}^{2}-m_{\pi_{3}, 1-\mathrm{loop}}^{2}-f(m, v)}{g(m, v)+\lambda}}
\end{gathered}
$$

With increasing μ_{I} pion condensation occurs at:

$$
\mu_{I}^{2}-m_{\pi_{3}, 1-\mathrm{loop}}^{2}-f(m, v)=0
$$

Because in this limiting case $\rho=0 \Longrightarrow$ we can solve the remaining two equation at zero ρ.
Finally with the help of the Ward identitiy the following two equations will give the μ_{I}, μ_{B}, T dependence of v and m :

- $v \cdot m_{\pi_{3}, 1-\mathrm{loop}}^{2}=h$
- $E_{v}=v\left(m^{2}+\lambda v^{2}+\sum_{i} \operatorname{Tad}_{i}^{\beta}(m, v)\right)=h$

Solving this system of equations one can determine the regions of pion condensation as a function of T, μ_{I}, μ_{B} by demanding:

$$
\mu_{I}^{2}-m_{\pi_{3}, 1-\mathrm{loop}}^{2}\left(T, \mu_{I}, \mu_{B}\right)-f\left(T, \mu_{I}, \mu_{B}\right)=0
$$

\longrightarrow This gives a surface in 3 dimension

Instead of conclusion

To be done:

- Solving the above described system of equations

Can be done:

- Astrophysical applications of pion condensation (neutrino emission)
- Investigation of pion condensation in $S U(3)$ constituent quark model
- Polyakov-loop coupling

