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1Where can pion condensation occur in nature?

Quark matter can exist in neutron stars −→ at very large bariochemical potential
(µB ≈ 1 GeV)

If the isospin chemical potential is also different from zero −→ possibility of pion
condensation

In 2 flavoured NJL model (L. He et al Phys. Rev. D74, 036005 (2004)):

• if 140 MeV< µI < 230 MeV→ BEC phase

• if µI > 230 MeV→ BCS phase

Neutrino emission from pion condensed quark matter→ direct Urca processes:

d→ u+ e− + ν̄

u+ e− → d+ ν

=⇒ It might will be investigated experimentaly
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Interesting feature of pion condensation found in SU(2) PNJL model:

At sufficiently high temperature the condesate evaporates
above a certain µI. (Z. Zhang, Y. Liu: hep-ph/0610221v3)

Up to now:

• Investigations in SU(2) NJL and PNJL model (BEC, BCS and CFL phases)

• Investigation in O(4) model in the large Nc limit (leading order) (BEC phase)

Possible investigations:

• In different models such as constituent quark model

• In three flavour

• Dependence on other chemical potentials

• Neutrino production



3The model and its renormalization

Our starting point is the renormalized O(4) symmetric Lagrangian with explicit
symmetry breaking term

L =
1
2
(
∂µφ∂

µφ−m2
0φ

2
)
− λ

4
φ4 + hφ0 + iψ̄γµ∂

µψ − gF
2
ψ̄Tiφiψ

+
1
2
(
δZ∂µφ∂

µφ− δm2
0φ

2
)
− δλ

4
φ4

ψ = (u, d)T −→ quark fileds

φ = (φ0, φ1, φ2, φ3) ≡ (σ, π1, π2, π3) −→ sigma and pion scalar fields

h −→ symmetry breaking external field

Ti = (τ0, iτiγ5) −→ quark–boson coupling matrix

The unknown renormalized parameters of the Lagrangian: m0, λ, gF

δz, δm2
0, δλ are the usual (infinite) counterterms

(Fermions are treated at tree level→ no wavefunction renormalization)
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The genarating functional:

Z =
∫
DφDΠDψ†Dψ e

R β
0 d4x(iΠiφ̇i+iψ

†ψ̇−H+µBQB+µIQI),

where the the Hamiltonian is

H =
1
2
(
Π2
i + (∇φi)2 +m2

0φ
2
i

)
+
λ

4
(φ2
i )

2 − hφ0 − iψ̄γi∂iψ +
g

2
ψ̄Tiφiψ

− 1
2
δZΠ2

i +
1
2
δZ(∇φi)2 +

δλ

4
(φ2
i )

2 +
1
2
δm2

0φ
2
i

and the renormalized canonical momenta of the scalar fields

Πi =
δL
δφ̇i

= (1 + δZ)φ̇i

QB, QI are the conserved barion and isospin charges

QB =
∫

d3x
1
3

(u†u+ d†d)

QI =
∫

d3x

[
(1 + δZ)(π2π̇1 − π1π̇2) +

1
2
(
u†u− d†d

)]
.
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Symmetry breaking:

At small T when either h 6= 0 or h = 0 and m2
0 < 0⇒ 〈φ0〉 ≡ 〈σ〉 ≡ v 6= 0

At large µI ⇒ 〈φ1〉 ≡ 〈π1〉 ≡ ρ 6= 0 and 〈φi〉 ≡ 〈πi〉 = 0 for i = 2, 3

Shifting the corresponding fields

Z =

Z
DφDψ†Dψ

"
exp

 
−
Z β

0

d
4
xE(L̃F + L̃I)

!Z
DΠexp

 Z β

0

d
4
xE(iΠiφ̇i − H̃B)

!#
,

where the Π dependent part of iΠiφ̇i − H̃B:

iΠiφ̇i − H̃B = − 1
2

(1− δZ)
(

Π0Π0 − 2(1 + δZ)iΠ0φ̇0

)
− 1

2
(1− δZ)

(
Π3Π3 − 2(1 + δZ)iΠ3φ̇3

)
− 1

2
(1− δZ)

(
Π1Π1 − 2(1 + δZ)(iΠ1φ̇1 + (1− δZ)µIφ2)

)
− 1

2
(1− δZ)

(
Π2Π2 − 2(1 + δZ)(iΠ2φ̇2 − (1− δZ)µI(φ1 + ρ))

)
.
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Making whole squares in the above brakets

For instance the first one becomes

−Π′20 −
1
2

(1− δZ)(1 + 2δZ)φ̇2
0 = −Π′20 −

1
2

(1 + δZ)φ̇2
0 + 2-loop

Than performing the Π integration→ produce the tree-level EoS (linear terms)
and the inverse propagators

Ev = v(m2
0 + λ(v2 + ρ2))− h

Eρ = v(m2
0 + λ(v2 + ρ2)− µ2

I(1− δZ))

Renormalized propagator of the π3 particle in euclidian space:

Gπ3 =
1 + δZ

p2 +m2
π,tree + δλv2 + δm2

0 + Σ(p2 = 0) + p2Σ′(p2 = 0) + Σ̃(p2)
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Conditions:

• momentum independent part of the inverse propagator must be finite:
(1− δZ)m2

π,tree + δλv2 + δm2
0 + Σ(p2 = 0) = finite

• coefficient of p2 in the inverse propagator must be one:
(1 + Σ′(p2 = 0))(1− δZ) = 1

Note: there is some arbitrariness in choosing the finite parts

With cut-off regularization:

δm2
0 = −6λ(Λ2 −m2

0 ln
Λ2

l2b
)

δλ = 12λ2 ln
Λ2

l2b

δZ = −Nc
g2
F

16π2
ln

Λ2

l2fe
2

lb, lf → bosonic and fermionic renormalization scales



8Bosonic and fermionic propagators

Going into Fourier space and introducing Matsubara frequencies the bosonic
inverse propagators are:

− iD−1
π3

= ω
2
n + k2

+m
2
π + λρ

2

−iD−1
π1,π2,σ

=0@ω2
n + k2 +m2

π − µ
2
I + 3λρ2 −2µIωn 2λvρ

2µIωn ω2
n + k2 +m2

π − µ
2
I + λρ2 0

2λvρ 0 ω2
n + k2 +m2

σ − µ
2
I + λρ2

1A
where the tree-level bosonic masses

mπ = m2
0 + λv2, mσ = m2

0 + 3λv2

=⇒ Characteristic equation is of third degree =⇒ Propagators would be very
complicated =⇒ Hard to perform the Matsubara sums

Since we would only like to determine T, µI, µB where ρ becomes nonzero =⇒
Perturbative diagonalization in ρ to O(ρ2)



9

After diagonalization and perturbative inversion

iD̃1 =
1

(ωn + iµI)2 + k2 +m2
π

− ρ2 λ(2µ2
I + 2λv2 − 4iµIωn)

((ωn + iµI)2 + k2 +m2
π)2(µ2

I + 2λv2 − 2iµIωn)

iD̃2 =
1

(ωn − iµI)2 + k2 +m2
π

− ρ2 λ(2µ2
I + 2λv2 + 4iµIωn)

((ωn − iµI)2 + k2 +m2
π)2(µ2

I + 2λv2 + 2iµIωn)

iD̃σ =
1

ω2
n + k2 +m2

σ

− ρ2 λ(µ2
I + 2λv2)(µ2

I + 6λv2 + 4µ2
Iω

2
n)

(ω2
n + k2 +m2

σ)2((µ2
I + 2λv2)2 + 4µ2

Iω
2
n)

Tilde denotes that these propagators belong to the transformed particles

Important to note −→ the transformation matrix depends on ρ, ωn, µ

⇒ To perform the Matsubara sums first one should transform the coefficient
matrices and do the sums for coefficients and loops together
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The fermion inverse propagator

iD−1
F =

(
(−iωn + µu)γ0 − γiki −mF −igF2 γ5ρ

−igF2 γ5ρ (−iωn + µd)γ0 − γiki −mF

)
where

mF =
gF
2
v

µu =
1
3
µB +

1
2
µI

µd =
1
3
µB −

1
2
µI

Diagonalization must be performed with extreme care→ non-commutative
matrix elements

hermitian diagonalizator OF =

 1 + g2
F

32k2
0
ρ2 −i gF4k0

γ0γ5ρ

−i gF4k0
γ0γ5ρ 1 + g2

F

32k2
0
ρ2


k0 = (−iωn +

1
3
µB)γ0
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Fermionic propagators to O(ρ2):

−iD̃u =
1

/ku −mf
+ ρ2 g

2
F

8k0

1
/ku −mf

γ0
1

/ku −mf

−iD̃d =
1

/kd −mf
+ ρ2 g

2
F

8k0

1
/kd −mf

γ0
1

/kd −mf

where
/ku/d = (−iωn + µu/d)γ0 − γiki



12Optimized perturbation theory and parameterization

8 unknown parameters: couplings m0, λ, gF
condensates x, ρ

external fields h
renormalization scales lf , lb

Renormalization scales are not fixed→ instead physical results as a function of
scales

Problem: m2
0 can be negative at finite T

Solution: resummation using optimized perturbation theory
Chiku & Hatsuda, PRD58:076001

change: m2
0 → m2 ⇒ Lmass = 1

2m
2φ2 − 1

2 (m2 −m2
0)φ2︸ ︷︷ ︸

∆m2: one-loop counterterm

Effect: One has to change the m2
0 mass in the propagators to m2 →

gap-equation for m2

Note: Zero temperature cunterterms of the original theory still renormalize the
OPT

Parameterization is carried out at T = µI = µB = 0, where also ρ = 0



13

Equations (5 is needed):

• 1-loop mass equation for σ: m2
σ,tree + Σσ(p2 = 0) = m2

σ,phys,

mσ = 500− 700 MeV→ complicated particle its mass is still uncertain

• 1-loop mass equation for π3 (gap-equation):

m2
π3,tree + Σπ3(p

2 = 0) = m2
π3,phys, mπ3 = 138 MeV

• Tree-level PCAC relation for the pion: fπ = v, fπ = 93 MeV

• Tree-level constituent quark mass: mf ≡ mu = md = gF
2 v,

mf = 330 MeV (one third of the proton mass)

• 1-loop EoS for v:

Ev = v(m2
0 + λ(v2 + ρ2))− h+ v

∑
i Tad(mi) = 0,



14Equations at finite temperature

3 equations→ gap-equation and two equations of state (for m, v and ρ)

• gap-equation for π3: m2
π3,tree + Σβπ3

(m, v, ρ)
∣∣
p2=0

= m2
π3,phys

• 1-loop EoS for v: Ev = v(m2
0 + λ(v2 + ρ2) +

∑
i Tadβi (m, v, ρ)) = h

• 1-loop EoS for ρ:
Eρ = ρ(m2

0 + λ(v2 + ρ2)− µ2
I +

∑
i Tadβi (m, v, ρ)) = 0,

It can be shown that at one-loop level the following Ward-identity is satisfied:

v ·G−1
π3

(p2 = 0) = h

This also guaranties the Goldstone-theorem



15Condition for pion condensation

From the second EoS it can be seen that non-zero pion condensation can occur
only if:

m2
0 + λ(v2 + ρ2)− µ2

I +
∑
i

Tadβi (m, v, ρ) = 0

This can be reformulated in the following way:

m2
π3,1−loop − µ2

I + f(m, v) + λρ2 + ρ2g(m, v) = 0

=⇒ ρ =

√
µ2
I −m2

π3,1−loop − f(m, v)

g(m, v) + λ

With increasing µI pion condensation occurs at:

µ2
I −m2

π3,1−loop − f(m, v) = 0
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Because in this limiting case ρ = 0 =⇒ we can solve the remaining two equation
at zero ρ.

Finally with the help of the Ward identitiy the following two equations will give the
µI, µB, T dependence of v and m:

• v ·m2
π3,1−loop = h

• Ev = v(m2 + λv2 +
∑
i Tadβi (m, v)) = h

Solving this system of equations one can determine the regions of pion
condensation as a function of T, µI, µB by demanding:

µ2
I −m2

π3,1−loop(T, µI, µB)− f(T, µI, µB) = 0

−→ This gives a surface in 3 dimension



17Instead of conclusion

To be done:

• Solving the above described system of equations

Can be done:

• Astrophysical applications of pion condensation (neutrino emission)

• Investigation of pion condensation in SU(3) constituent quark model

• Polyakov-loop coupling


