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Abstract – Noisy signals in many real-world systems display long-range autocorrelations and
long-range cross-correlations. Due to periodic trends, these correlations are difficult to quantify.
We demonstrate that one can accurately quantify power-law cross-correlations between different
simultaneously recorded time series in the presence of highly non-stationary sinusoidal and
polynomial overlying trends by using the new technique of detrended cross-correlation analysis
with varying order ℓ of the polynomial. To demonstrate the utility of this new method —which
we call DCCA-ℓ(n), where n denotes the scale— we apply it to meteorological data.

Copyright c© EPLA, 2011

Data on many real-world systems, ranging from
geophysics to physiology, exhibit two important proper-
ties, correlations and periodicity. Depending on whether
we are studying correlations in a single signal or between
a pair of signals, we can use autocorrelation functions
or cross-correlation functions to gain insight into the
correlation dynamics. But like many other techniques,
these methods were devised to identify correlations in
data that are stationary and linear. For example, the
power spectrum S(f) assumes stationarity in data and is
defined as a positive real function of a frequency variable
f that describes how the energy of a signal is distributed
with frequency. In the case of power-law correlations,
using the Fourier transform the Khinchin-Kolmogorov
theorem [1] relates the power spectral density S(f)∼ f−β

of a wide-sense-stationary random process to the corre-
sponding autocorrelation function C(n)∼ n−γ , where
the exponents are related as β = 1− γ. Despite their
widespread popularity and applicability, power spectral
density and correlation analysis have limitations when
applied to the real-world data associated with physi-
cal, biological, hydrological, and social systems. These
are commonly non-stationary and they often exhibit
periodicity [2,3].
When a time series is non-stationary, the limitations

of methods that assume stationarity are clear. Suppose

(a)E-mail: davorh@phy.hr

a time series Xt has a large upward trend. Then a large
value of Xt is more likely to be followed by a large value
of Xt+1 implying strong autocorrelations, not because
autocorrelations are actually present, but because the
autocorrelation function is being used for a non-stationary
time series —which is inappropriate. Similarly, a US
market index time series may strongly cross-correlate with
the population of, say, Pakistan, simply because each time
series has a characteristic strong upward trend.
Thus, detrending is essential to properly analyze many

time series for at least two reasons: i) detrending prevents
a time series from being correlated if correlations are
not present, and ii) if correlations do exist, detrending
reveals a genuine correlation functional dependence—in
case of power-law correlations, for example, we expect
to obtain a genuine correlation exponent. Most methods
using detrending start with the assumption that the
functional form of a trend is predetermined [4].
The application of detrending to original data can be

either local or global. When done locally, detrended fluc-
tuation analysis (DFA) [4–8] quantifies not periodicity
but a single scaling parameter that represents the long-
range autocorrelation properties of a signal. DFA has been
used in fields ranging from cardiac dynamics [9], bioinfor-
matics [4], and economics [10,11] to meteorology [12,13].
In physiology, the DFA method can be used diagnosti-
cally —it can help identify different states of the same
system according to their different scaling behaviors,
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e.g., the scaling exponent for heart interbeat intervals
in healthy individuals differs from that of unhealthy
individuals [9,14]. In its original proposed form [4], the
DFA method is based on local linear detrending— for
a given box (window) size that is a subset of the entire
signal, the method locally subtracts linear polynomials
from the original signal in order to obtain locally station-
ary signals. However, many noisy signals in real-world
systems exhibit highly nonlinear trends accompanied by
periodic trends [2,3], and the scaling results obtained from
the detrending method which locally subtract polynomi-
als of small order from the original signal are clearly
not suitable for large box sizes. Reference [5] offers a
systematic study of the limitations of the DFA method
when data exhibit any of three types of trends: linear,
periodic, and power-law. In order to overcome the limita-
tions of DFA in the presence of highly nonlinear trends,
different extensions of DFA have been proposed which
locally subtract higher-order polynomials from the original
signal, called DFA-2, DFA-3, together with the detrended
moving average (DMA) method [8,15,16], and multifrac-
tal DFA [17,18]. However, detrending procedures based on
local subtractions of polynomials of small order are not
suitable when quantifying long-range autocorrelations in
the presence of periodicity.
The signal outputs of many physical and social systems

are often characterized by variables that are not only auto-
correlated, but also are cross-correlated [19–27]. However,
in contrast to autocorrelations, which are only applicable
to a single series, cross-correlations can be determined
either between two time series [27–29] or among a large
number of time series as in the random matrix theory
(RMT) approach where cross-correlations are considered
a collective phenomenon [21]. Based on time-lag RMT,
ref. [30] reported the magnitudes of power-law cross-
correlations in a wide range of phenomena from finance
and physiology to genomics. In analogy to DFA, which
was proposed for a single time series, detrended cross-
correlation fluctuation analysis (DCCA) [28,29] was
proposed in order to provide a single scaling parameter
representing the long-range cross-correlation proper-
ties between two non-stationary signals. Reference [31]
proposed a multifractal DCCA in order to quantify power-
law cross-correlations in the presence of multifractality.
Motivated by DFA, the DCCA method in its original
version is based on local detrending —in each of two
signals the method locally subtracts a linear polynomial
from the original signal in order to obtain a locally
stationary signal— therefore, the DCCA method suffers
from the same problems as DFA when applied to data
that are nonlinear and characterized by periodicity [32].
Hence, both DFA and DCCA methods in their original

versions with linear polynomial fits could not subtract
every type of non-stationarity, and sinusoidal trends in
particular —a linear fit is able to mimic trends for small
box sizes, but not for large box sizes [5,32]. However, if
detrending is performed with a polynomial of a higher
order, all trends can be subtracted. Cross-correlations in

the presence of periodicity present more of a challenge
than do autocorrelations in the presence of periodicity
because in cross-correlations we have two signals, each of
which may have a different period. Here we demonstrate
that a detrended cross-correlation analysis with varying
polynomial order ℓ, and scale n, DCCA-ℓ(n), based
on detrended covariance, is capable of investigating
power-law cross-correlations between different simulta-
neously recorded time series in the presence of highly
non-stationary sinusoidal signals. Our detrending concept
with varying ℓ can be successfully applied not only to
covariances but also to variances. We demonstrate how
DFA and DCCA with varying ℓ are closely related.
A variety of methods for detrending data have been

proposed, e.g., using polynomials [4] and the moving aver-
age approach [8,15]. The empirical mode decomposition
(EMD) approach has the advantage that it does not
require that the trend has any predetermined functional
dependence [33,34]. An important concern when apply-
ing any detrending method is determining whether the
method affects the correlation properties. We can test for
this by generating a signal characterized by a known corre-
lation exponent and periodicity. If a detrending method
calculates trends but also affects the correlation proper-
ties of the signal, it obviously cannot be used to quantify
the correlation properties. We now show that the DFA
method does not affect correlation properties even when
the polynomial order values are very large.
We first generate a fractionally autoregressive inte-

grated moving average (ARFIMA) process [28,35–37] with
ρ= 0.2,

yi =

[
∞∑

n=1

an(ρ)yi−n

]
+ ηi, (1)

where 0< ρ< 0.5 is a free parameter, aj(ρ) are

weights defined by aj(ρ)≡
Γ(j−ρ)

Γ(−ρ)Γ(1+j) aj(ρ)≡

Γ(j− ρ)Γ(−ρ)Γ(1+ j), where Γ(j) denotes the Gamma-
function and ηi denotes an independent and identically
distributed Gaussian variable. The parameter ρ is related
to the Hurst exponent, H = 0.5+ ρ [35]. Next we employ
the DFA method for five different values of polynomial
order ℓ. In fig. 1(a) for each of five ℓ value we present
the DFA-ℓ square root of detrended variance. We exclude
all scales for which n>N/4, where N denotes the series
length. We show that each DFA-ℓ plot can be presented
as FDFA-ℓ(n) =Ann

H . Thus the DFA slope does not
depend on ℓ, i.e., the slope is the same no matter which
DFA-ℓ we apply. However, different DFA-ℓ curves have
different DFA intercepts with corresponding values (see
fig. 1(b)). We show also different DFA intercepts for
varying ρ, which we later use for our detrending approach
with varying polynomial order ℓ, both variance and
co-variance. As expected, the DFA intercept decreases
with increasing ℓ because polynomials with large values
of ℓ can better explain data than polynomials with small
values of ℓ. Hence polynomials with large ℓ have smaller
residuals and thus a smaller variance of residuals than
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Fig. 1: (Colour on-line) DFA with polynomial of fixed order
ℓ. (a) DFA with polynomial of fixed ℓ yields a DFA curve,
where the DFA slope does not depend on ℓ. However, the DFA
intercept An depends on ℓ. (b) An vs. polynomial order. Shown
are values obtained for different values of ρ (DFA α, where
α= 0.4+ ρ). These values will be used in a definition for both
detrended variance of eq. (3) and covariance of eq. (5).

polynomials with smaller ℓ —so polynomials with larger
ℓ are below polynomials with lower ℓ in fig. 1(b). Clearly,
for a given choice of polynomial order ℓ, the fitting
procedure is possible only for lags larger or equal to ℓ+1,
and thus, the smallest lag used in DFA-ℓ in fig. 1(b) is
different for different values of ℓ.
When oscillatory signals are highly non-stationary, we

can accurately quantify the correlations for large scales
only if large values of ℓ are employed in the detrending
procedure. If large values of ℓ are required for large scales,
and small values of ℓ are needed for small scales, can we
generate a detrending plot for both large and small scales
in one unique curve, and not with different curves (cf.
fig. 1(a))?
To this end, we introduce a detrending technique to

use when a varying polynomial order ℓ (which increases
with box size) can be employed for both variance and
covariance. First we demonstrate that DFA with varying
polynomial order ℓ based on detrended variance, where
polynomial order ℓ is changing with scale, is capable of
investigating power-law autocorrelations in the presence of
highly non-stationary sinusoidal signals. This we accom-
plish in one unique plot, with scales ranging from smallest
to largest.

We briefly introduce the method: Consider a long-
range autocorrelated time series {yi} and compute the

integrated signal Rk ≡
∑k
i=1 yi. Divide the entire time

series into N −n overlapping boxes, each containing n+1
values. In each box (that starts at i and ends at i+n)
calculate the “local trend” using a given polynomial of
order ℓ. Note that the order of polynomial is increasing
with scale size n. We define the “detrended walk” to be the
difference between the original walk and the local trend:
ǫk ≡Rk − R̃k,i where the variance of the residuals in each
box is calculated as

f2DFA(n, i)≡ 1/(n− 1)

i+n∑

k=i

ǫ2k. (2)

The detrended variance with varying polynomial order,
DFA-ℓ(n) is defined by summing over all overlapping
N −n boxes of size n,

FDFA(n)
2 ≡
A2
An

N−n∑

i=1

f2DFA(n, i), (3)

where the DFA intercept An depends on n and is calcu-
lated from fig. 1(b)1. Note that the values An in fig. 1
are obtained for the DFA method using a fixed order of
polynomial for each box of size n. In contrast, in eq. (3)
for different box sizes we use polynomials with a varying
order. A2 is the intercept corresponding to the smallest
scale size, in our case assumed to be n= 2. Thus the DFA
method based on varying polynomial order differs from the
common DFA method based on fixed polynomial order in
two ways. In the approach illustrated in eq. (3) i) the poly-
nomial order ℓ is not fixed but is increasing with scale size
n, and ii) because of this (and taking into account inter-
cept results shown in fig. 1), the detrended variance must
be normalized using the term A2/An.
In fig. 2(a) we show an oscillatory ARFIMA time series

with 20000 data points where ρ= 0.2 with sinusoidal trend
T = 1000. Employing the DFA method based on varying
polynomial order, DFA-ℓ(n) (eq. (3)), in fig. 2(b) we obtain
the expected slope H = 0.7± 0.002≈ 0.5+ ρ. Notice that
the crossover in the DFA curve around the scale equal to
T expected for DFA-1 has disappeared [5]. In fig. 2(b) the
DFA-ℓ(n) curve is approximately a straight line up to a
scale of approximately four periods. In this example, we
choose ℓ= 16 for the largest polynomial order.
We next demonstrate that a similar detrending

method with a varying polynomial order ℓ employed
for the DCCA, DCCA-ℓ(n), can be used to investigate
power-law cross-correlations between different simulta-
neously recorded time series in the presence of highly
non-stationary sinusoidal signals.
We define DCCA with varying polynomial order ℓ

following the original DCCA method [28]:

1) Consider two long-range cross-correlated time series
{yi} and {y

′

i} of equal length N , compute two inte-

grated signals Rk ≡
∑k
i=1 yi and R

′

k ≡
∑k
i=1 y

′

i, where

1The algorithm can be found on http://www.phy.hr/∼davorh/

dfa.html
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Fig. 2: Detrending with a polynomial of varying order
—autocorrelations with sinusoidal trend. RMS of detrended
variance with varying order of polynomial ℓ, FDFA(n). (a)
The time series is generated using a ARFIMA process {yi}
with ρ= 0.2 with sinusoidal trend with period T = 1000.
(b) FDFA(n), where n is the scale. We show the time lags and
the corresponding orders of polynomials in parentheses: 4 (1), 6
(2) 10 (4), 18 (8). For all other time lags we use ℓ= 16. Despite
strong periodicity, FDFA(n) with varying order of polynomial
follows a straight line up to a scale of four periods.

k= 1, . . . , N . Divide the entire time series into N −n
overlapping boxes, each containing n+1 values.

2) For both time series, xn(i) and yn(i), in each box that
starts at i and ends at i+n, the “local trend.” While
in the original DCCA-1 the “local trend” is defined
to be the ordinate of a linear least-squares fit, in the
DCCA with varying polynomial order ℓ, the linear
polynomial fit is replaced by a polynomial of higher
order ℓ, where ℓ is increasing with box size n. For each
time series, we define then the “detrended walk” as
the difference between the original walk and the local

trend, ǫk ≡Rk− R̃k,i and ǫ
′

k ≡R
′

k − R̃
′

k,i.

3) Calculate the covariance of the residuals in each box

f2DCCA(n, i)≡
1

n− 1

i+n∑

k=i

ǫkǫ
′

k. (4)

4) In order to uncover multifractality commonly
present in real-world data, we define, in analogy

with ref. [31], a multifractal DCCA-ℓ(n), where the
detrended covariance is defined by summing over all
overlapping N −n boxes of size n,

FDCCA(n)≡

√
A2B2
AnBn

{
N−n∑

i=1

[f2DCCA(n, i)]
q/2

}1/q
.

(5)

In analogy with the DFA-ℓ(n), we introduce a new term√
A2B2
AnBn

in order to normalize covariance since polynomial

order ℓ increases with box size n. The difference compared
to DFA with varying ℓ, DFA-ℓ(n), is that for cross-
correlations we have two signals and thus An and Bn
correspond to each of two signals. Note that An =Bn only
if both signals have the same DFA exponent. Otherwise
An �=Bn.
For the moment we set q= 2 in eq. (4). If cross-

correlations decay as a power-law, the corresponding
detrended covariances are either always positive or always
negative, and the square root of the detrended covari-
ance grows with time scale n as FDCCA(n)∝ n

λCC [28].
Here λCC is the cross-correlation exponent. If, however,
the detrended covariance oscillates around zero as a func-
tion of the time scale n, there are no long-range cross-
correlations [28]. When only one random walk is analyzed
(Rk =R

′

k), the detrended covariance F
2
DCCA(n) reduces

to the detrended variance F 2DFA(n) used in the DFA
method [4].
In order to test the applicability of the DCCA method

with varying polynomial order, DFA-ℓ(n), we generate
power-law autocorrelated and cross-correlated time series
for which the scaling properties are known. To inves-
tigate power-law autocorrelations and power-law cross-
correlations and effect of sinusoidal periodicity on cross-
correlations, we first define a periodic two-component
ARFIMA process [35,36],

yi =

[
∞∑

n=1

an(ρ1)xi−n

]
+A1 sin

(
2π

T1
i

)
+ ηi, (6)

y′i =

[
∞∑

n=1

an(ρ2)yi−n

]
+A2 sin

(
2π

T2
i

)
+ ηi. (7)

Here, ηt is shared between yi and y
′

i in order to enable
cross-correlations, T1(T2) is the sinusoidal period, and A1
and A2 are two sinusoidal amplitudes.
We generate for ρ= 0.2 the time series xi (fig. 3(a))

and yi of eq. (6) and eq. (7), each with 20000 data
points. Each time series is power-law autocorrelated,
and the DFA exponent is 0.7 [35]. Each signal is oscil-
latory and thus highly non-stationary where T1 = 1000
and T2 = 1500. We apply the DCCA-ℓ(n) method of
eq. (5) with varying polynomial order. We find, similar to
DFA-ℓ(n), that the crossover expected in DCCA-1 curve
around a scale equal to T [32] now vanishes for the scales
shown. In fig. 3(b) the DCCA curve obtained for the
DCCA-ℓ(n) method of eq. (5) is now a straight line up
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Fig. 3: Detrending with polynomials of varying order
—cross-correlations with sinusoidal trend. RMS of detrended
covariance with varying order of polynomial ℓ, FDCCA(n), for
two time series generated by two ARFIMA processes: (a) {yi}
with ρ= 0.2 and {y′i} with ρ

′ = 0.2 (for simplicity we show
only {yi}). Cross-correlations are generated since we choose
the error term to be equal for both time series. (c) RMS
of detrended covariance with varying order of polynomial ℓ,
FDCCA(n), where n is a scale. We show time lags and corre-
sponding polynomial orders in parentheses: 4 (1), 6 (2) 10 (4),
18 (8). For all other lags we use ℓ= 16.

to a scale of approximately four periods. In this example,
for the largest polynomial order we use ℓ= 16.
Next we analyze the power-law autocorrelated time

series yi and y
′

i of eq. (6) and eq. (7) each with 20000 data
points, where ρ1 = 0.4 and ρ2 = 0.1. Each signal is oscilla-
tory where again T1 = 1000 and T2 = 1500. We apply the
DCCA method with varying polynomial order, DCCA-
ℓ(n), of eq. (5), and in fig. 4 find that the DCCA-ℓ curve is
a straight line up to a scale of approximately four periods.
Note that we use different DFA intercepts of fig. 1(b)
since yi and y

′

i are characterized by different ρ values.
Next we analyze air temperature weather data, obtained

by the Mathematica tool WeatherData, in daily inter-
vals between 1 January 1995 and 31 December 2009. We
study time series of air temperature at two US airports,
LaGuardia Airport (LGA) and John F. Kennedy Inter-
national Airport (JFK), denoted by T1,i and T2,i respec-
tively (fig. 5(a)). Each time series exhibits apparent
periodicity on a yearly basis. In fig. 5(b) we study cross-
correlations and find that for time scales up to ≈ 3 years
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Fig. 4: (Colour on-line) Detrending, with polynomials of
varying order —cross-correlations with sinusoidal trend. RMS
of detrended covariance FDCCA(n), with varying polynomial
ℓ, for two time series generated by two different ARFIMA
processes: (a) {yi} with ρ1 = 0.1 and (b) {y

′

i} with ρ
′ = 0.4.

Cross-correlations are generated since we choose the error term
to be equal for both time series. RMS of detrended covariance
with varying order of polynomial ℓ, FDCCA(n), where n is a
scale. We show time lags and corresponding polynomial orders
in parentheses: 4 (1), 6 (2) 10 (4), 18 (8). For all other time
lags we use ℓ= 16.

the air temperature data are power-law cross-correlated
with exponent ≈ 0.93 (see eq. (5)). Due to the presence
of periodicity, in fig. 5(b) the DCCA-ℓ(n) curve of eq. (5)
exhibits a less pronounced bump for a time scale of ≈ 1 y
than it would be using detrending with a linear polyno-
mial. Clearly, air temperature data exhibit not only annual
periodicity but also exhibit more complex dynamics. Using
the DFA method with a high-order polynomial, DFA-ℓ(n)
of eq. (3), we also show that T1,i and T2,i each exhibits
power-law autocorrelations which is in agreement with a
finding that the changes of air temperature data recorded
daily are power-law anticorrelated [38]. Note again that
DFA with linear polynomial exhibits a more pronounced
bump due to presence of periodicity, bending over at≈ 1 y.
How complex is the dynamics of air temperature changes?
Reference [36] reports that the changes of air temperature
data recorded in 10min intervals can be approximated by
positive power-law autocorrelations. In fig. 5(c) we find
that the magnitudes of air temperature differences are
power-law cross-correlated with exponent 0.61.
In conclusion, we demonstrate that the crossovers

commonly encountered in DCCA and DFA plots —when
the detrending polynomial order is low and periodic
trends are present— can be subtracted using local
detrending with polynomials of large order ℓ. Therefore,
to quantify cross-correlations or autocorrelations properly,
we must eliminate the trend for both DFA and DCCA by
employing detrending with a varying polynomial order ℓ.
The more complex the signal trend within a box —e.g.,
the more periods within a box— the larger is ℓ needed
to subtract the trend. In future work we will to employ
our method to a diverse range of data, especially in
physiology and meteorology where periodicity exists.
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Fig. 5: (Colour on-line) Detrending, with varying polynomial
order, for (a) weather data at Kennedy (JFK) and LaGuardia
(LGA) airports. (b) DCCA-ℓ(n) curve of eq. (5) exhibits a less
pronounced bump for a time scale of ≈ 1 y than it would be
using detrending with a linear polynomial, the DCCA-ℓ. (c)
The magnitudes of air temperature differences are power-law
cross-correlated with DCCA-ℓ(n) exponent 0.61. We show time
lags and corresponding polynomial orders in parentheses: 4 (1),
6 (2) 10 (4), 18 (8). For all other time lags we use ℓ= 16.

Recently, refs. [39,40] proposed that renormalization
of trends —that can be considered to be a kind of
“detrending”— can be a successful strategy for analyzing
financial time series. The authors suggest that the well-
known catastrophic bubbles that occur on large time
scales —such as the most recent financial crisis— are not
outliers but single dramatic representatives caused by the
switching between upward and downward trends on time
scales varying over nine orders of magnitude from very
large (≈ 102 days) down to very small (≈ 10ms) [39]. We
believe it would be very interesting to relate detrending to
trending.
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