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‘ RiskMetrics'—Technical Document

* JP. Morgan and Reuters have teamed up to enhance RiskMetrics{] . Morgan will continue to be
responsible for enhancing the methods outlined in this document, while Reuters will control the
production and distribution of the RiskMetrics[] data sets.

e Expanded sections on methodology outline enhanced analytical solutions for dealing with nonlin-
ear options risks and introduce methods on how to account for non-normal distributions.

e Enclosed diskette contains many examples used in this document. It allows readers to experiment
with our risk measurement techniques.

¢ All publications and daily data sets are available free of charge on J.P. Morgan's Web page on the
Internet at http://www.jpmor gan.com/RiskM anagement/RiskM etrics/RiskM etrics.html. This
page is accessible directly or through third party services such as CompuServell, America
Onlined , or Prodigy(.

This Technical Document provides a detailed description of RiskMetricsO , aset of techniques and data
to measure market risksin portfolios of fixed income instruments, equities, foreign exchange, commod-
ities, and their derivativesissued in over 30 countries. This edition has been expanded significantly from
the previous release issued in May 1995.

We make this methodology and the corresponding RiskMetrics[] data sets available for three reasons:

1. Weareinterested in promoting greater transparency of market risks. Transparency is the key to
effective risk management.

2. Our aim hasbeen to establish abenchmark for market risk measurement. The absence of acommon
point of reference for market risks makes it difficult to compare different approaches to and mea-
sures of market risks. Risks are comparable only when they are measured with the same yardstick.

3. Weintend to provide our clients with sound advice, including advice on managing their market
risks. We describe the RiskMetricsd methodology as an aid to clients in understanding and eval-
uating that advice.

Both J.P. Morgan and Reuters are committed to further the development of RiskMetrics] asafully
transparent set of risk measurement methods. We look forward to continued feedback on how to main-
tain the quality that has made RiskMetrics] the benchmark for measuring market risk.

RiskMetricsd isbased on, but differssignificantly from, the risk measurement methodology devel oped
by J.P. Morgan for the measurement, management, and control of market risksin itstrading, arbitrage,
and own investment account activities. We remind our readersthat no amount of sophisticated an-
alyticswill replace experienceand professional judgment in managing risks. RiskMetricsO isnoth-
ing more than ahigh-quality tool for the professional risk manager involved in the financial markets and
is not a guarantee of specific results.
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This book

Thisisthe reference document for RiskMetrics] . It covers all aspects of RiskMetrics and super-
sedes al previous editions of the Technical Document. It is meant to serve as a reference to the
methodology of statistical estimation of market risk, as well as detailed documentation of the ana-
lytics that generate the data sets that are published daily on our Internet Web sites.

This document reviews

1. The conceptual framework underlying the methodologies for estimating market risks.
2. The statistics of financial market returns.

3. How to model financial instrument exposuresto a variety of market risk factors.

4

The data sets of statistical measures that we estimate and distribute daily over the Internet
and shortly, the Reuters Web.

Measurement and management of market risks continues to be as much a craft asit is a science.

It has evolved rapidly over the last 15 years and has continued to evolve since we launched
RiskMetrics in October 1994. Dozens of professionals at J.P. Morgan have contributed to the
development of this market risk management technology and the latest document contains entries
or contributions from a significant number of our market risk professionals.

We have received numerous constructive comments and criticisms from professionals at Central
Banks and regulatory bodies in many countries, from our competitors at other financial institu-
tions, from alarge number specialistsin academiaand last, but not least, from our clients. Without
their feedback, help, and encouragement to pursue our strategy of open disclosure of methodol ogy
and free access to data, we would not have been as successful in advancing this technology as
much as we have over the last two years.

What is RiskMetrics?

RiskMetricsisaset of toolsthat enable participants in the financial marketsto estimate their expo-
sure to market risk under what has been called the “Value-at-Risk framework” . RiskMetrics has
three basic components;

¢ A set of market risk measurement methodol ogies outlined in this document.
« Datasets of volatility and correlation data used in the computation of market risk.

» Software systems developed by J.PMorgan, subsidiaries of Reuters, and third party vendors
that implement the methodol ogies described herein.

With the help of this document and the associated line of products, users should bein a position
to estimate market risks in portfolios of foreign exchange, fixed income, equity and commodity
products.

J.P. Morgan and Reutersteam up on RiskMetrics

In June 1996, J.P. Morgan signed an agreement with Reuters to cooperate on the building of a new
and more powerful version of RiskMetrics. Since the launch of RiskMetrics in October 1994, we
have received numerous requests to add new products, instruments, and markets to the daily vola-
tility and correlation data sets. We have a so perceived the need in the market for a more flexible
VaR data tool than the standard matrices that are currently distributed over the Internet. The new
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partnership with Reuters, which will be based on the precept that both firms will focus on their
respective strengths, will help us achieve these objectives.

M ethodology

J.P. Morgan will continue to develop the RiskMetrics set of VaR methodologies and publish them
in the quarterly RiskMetrics Monitor and in the annual RiskMetrics—Technical Document.

RiskMetrics data sets

Reuters will take over the responsibility for data sourcing as well as production and delivery of the
risk data sets. The current RiskMetrics data setswill continue to be available on the Internet free of
charge and will be further improved as a benchmark tool designed to broaden the understanding of
the principles of market risk measurement.

When J.P. Morgan first launched RiskMetrics in October 1994, the objective was to go for broad
market coverage initially, and follow up with more granularity in terms of the markets and instru-
ments covered. This over time, would reduce the need for proxies and would provide additional
data to measure more accurately the risk associated with non-linear instruments.

The partnership will address these new markets and products and will also introduce a new cus-
tomizable service, which will be available over the Reuters Web service. The customizable
RiskMetrics approach will give risk managers the ability to scale data to meet the needs of their
individual trading profiles. Its capabilities will range from providing customized covariance matri-
ces needed to run VaR calculations, to supplying data for historical simulation and stress-testing
scenarios.

More details on these plans will be discussed in later editions of the RiskMetrics Monitor.

Systems

Both J.P. Morgan and Reuters, through its Sailfish subsidiary, have developed client-site
RiskMetrics VaR applications. These products, together with the expanding suite of third party
applications will continue to provide RiskMetrics implementations.

What isnew in thisfourth edition?

In terms of content, the Fourth Edition of the Technical Document incorporates the changes and
refinements to the methodol ogy that were initially outlined in the 1995-1996 editions of the
RiskMetrics Monitor:

« Expanded framework: We have worked extensively on refining the analytical framework
for analyzing options risk without having to perform relatively time consuming simulations
and have outlined the basis for an improved methodol ogy which incorporates better informa-
tion on thetails of distributionsrelated to financial asset price returns; we' ve also developed a
data synchronization algorithm to refine our volatility and correlation estimates for products
which do not trade in the same time zone;

* New markets. We expanded the daily data sets to include estimated volatilities and correla-
tions of additional foreign exchange, fixed income and equity markets, particularly in South
East Asiaand Latin America

» Fine-tuned methodology: We have modified the approach in anumber of ways. First, we've
changed our definition of price volatility which is now based on atotal return concept; we've
also revised some of the algorithms used in our mapping routines and are in the process of
redefining the techniques used in estimating equity portfolio risk.

RiskMetrics{] —Technical Document
Fourth Edition
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¢ RiskMetricsproducts: While we have continued to expand thelist of third parties providing
RiskMetrics products and support, thisis no longer included with this document. Given the
rapid pace of change in the availability of risk management software products, readers are
advised to consult our Internet web site for the latest available list of products. This list,
which now includes FourFifteend , J.P. Morgan's own VaR calculator and report generating
software, continues to grow, attesting to the broad acceptance RiskMetrics has achieved.

* New toolsto usethe RiskMetrics data sets: We have published an Excel add-in function
which enables users to import volatilities and correlations directly into a spreadsheet. This
tool is available from our Internet web site.

The structure of the document has changed only slightly. As before, its size warrants the following
note: One need not read and understand the entire document in order to benefit from RiskMetrics.
The document is organized in parts that address subjects of particular interest to many readers.

Part |:

Part 11:

Part 111:

Part IV:

Risk Measurement Framework

This part is for the general practitioner. It provides a practical framework on how to
think about market risks, how to apply that thinking in practice, and how to interpret the
results. It reviews the different approaches to risk estimation, shows how the calcula-
tions work on simple examples and discusses how the results can be used in limit man-
agement, performance evaluation, and capital allocation.

Statistics of Financial Market Returns

This part requires an understanding and interest in statistical analysis. It reviews the
assumptions behind the statistics used to describe financial market returns and how dis-
tributions of future returns can be estimated.

Risk Modeling of Financial Instruments

This part is required reading for implementation of a market risk measurement system.
It reviews how positions in any asset class can be described in a standardized fashion
(foreign exchange, interest rates, equities, and commodities). Special attention is given
to derivatives positions. The purpose is to demystify derivativesin order to show that
their market risks can be measured in the same fashion as their underlying.

RiskMetrics Data Sets

This part should be of interest to users of the RiskMetrics data sets. First it describes the
sources of all daily price and rate data. It then discusses the attributes of each volatility
and correlation series in the RiskMetrics data sets. And last, it provides detailed format
descriptions required to decipher the data sets that can be downloaded from public or
commercial sources.

Appendices

This part reviews some of the more technical issues surrounding methodology and regu-
latory requirements for market risk capital in banks and demonstrates the use of Risk-
Metrics with the example diskette provided with this document. Finally, Appendix H
shows you how to access the RiskMetrics data sets from the Internet.
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RiskMetrics examples diskette

This diskette is located inside the back cover. It contains an Excel workbook that
includes some of the examples shown in this document. Such examples are identified by
the icon shown here.

Future plans

We expect to update this Technical Document annually as we adapt our market risk standards to
further improve the techniques and data to meet the changing needs of our clients.

RiskMetricsis a now an integral part of J.P. Morgan's Risk Management Services group which
provides advisory servicesto awide variety of the firm's clients. We continue to welcome any sug-
gestions to enhance the methodology and adapt it further to the needs of the market. All sugges-
tions, requests and inquiries should be directed to the authors of this publication or to your local
RiskMetrics contacts listed on the back cover.

Acknowledgments
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ing of this document, particularly Chris Finger and ChrisAthaide from J.P. Morgan’s risk manage-
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Data and related statistical issues

This chapter covers the RiskMetrics underlying yields and prices that are used in the volatility and
correlation calculations. It also discusses the relationship between the number of time series and
the amount of historical data available on these series asit relates to the volatility and correlations.

This chapter is organized as follows:

 Section 8.1 explains the basis or construction of the underlying yields and prices for each
instrument type.

« Section 8.2 describes the filling in of missing data points, i.e., expectation maximization.

« Section 8.3 investigates the properties of a generic correlation matrix since these determine
whether a portfolio’s standard deviation is meaningful.

 Section 8.4 provides an agorithm for recomputing the volatilities and correlations when a
portfolio is based in a currency other than USD.

 Section 8.5 presents a methodology to calculate correlations when the yields or prices are
sampled at different times, i.e., data recording is nonsynchronous.

8.1 Constructing RiskMetricsratesand prices

In this section we explain the construction of the underlying rates and prices that are used in the
RiskMetrics calculations. Since the data represent only a subset of the most liquid instruments
availablein the markets, proxies should be used for the others. Recommendations on how to apply
RiskMetrics to specific instruments are outlined in the paragraphs below.

8.1.1 Foreign exchange

RiskMetrics provides estimates of VaR statistics for returns on 31 currencies as measured against
the US dollar (e.g., USD/DEM, USD/FRF) as well as correlations between returns. The datasets
provided are therefore suited for estimating foreign exchange risk from aUS dollar perspective.

The methodology for using the data to measure foreign exchange risk from a currency perspective
other than the US dollar isidentical to the one described (Section 6.1.2) above but requires the
input of revised volatilities and correlations. These modified volatilities and correlations can easily
be derived from the original RiskMetrics datasets as described in Section 8.4. Also refer to the
examples diskette.

Finally, measuring market exposure to currencies currently not included in the RiskMetrics data
set will involve accessing underlying foreign exchange data from other sources or using one of the
31 currencies as a proxy.

8.1.2 Interest rates

In RiskMetrics we describe the fixed income markets in terms of the price dynamics of zero cou-
pon constant maturity instruments. In the interest rate swap market there are quotes for constant
maturities (e.g., 10-year swap rate). In the bond markets, constant maturity rates do not exist there-
fore we must construct them with the aid of a term structure model.
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The current data set provides volatilities and correlations for returns on money market deposits,
swaps, and zero coupon government bonds in 33 markets. These parameters allow direct calcula-
tion of the volatility of cash flows. Correlations are provided between all RiskMetrics vertices and
markets.

8.1.2.1 Money market deposits

The volatilities of price returns on money market deposits are to be used to estimate the market
risk of all short-term cash flows (from one month to one year). Though they only cover one instru-
ment type at the short end of the yield curve, money market price return volatilities can be applied
to measure the market risk of instruments that are highly correlated with money market deposits,
such as Treasury bills or instruments that reprice off of rates such as the prime rate in the US or
commercial paper rates.t

8.1.2.2 Swaps

Thevolatilities of price returns on zero coupon swaps are to be used to estimate the market risk of
interest rate swaps. We construct zero coupon swap prices and rates because they are required for
the cashflow mapping methodology described in Section 6.2. We now explain how RiskMetrics
constructs zero coupon swap prices (rates) from observed swap prices and rates by the method
known as bootstrapping.

Suppose one knows the zero-coupon term structure, i.e., the prices of zero-coupon swaps
P, ...,P,, whereeach P, = 1/ (l+zi)I i=1 ...,nand z isthe zero-coupon rate for the swap
with maturity i. Then it is straightforward to find the price of a coupon swap as

[8.1] P, = P1S, +P,S,+... +P (1+8)

where S, denotes the current swap rate on the n period swap. Now, in practice we observe the
coupon term structure, P, ..., P, maturing at each coupon payment date. Using the coupon
swap prices we can apply Eq. [8.1] to solve for the implied zero coupon term structure, i.e., zero
coupon swap prices and rates. Starting with a 1-period zero coupon swap, P, = P; (1+S;) so
that P, = P,/ (1+S)) orz; = (1+9) /Pcl—l. Proceeding in an iterative manner, given the
discount pricesP,, ...,P,_,,wecansolvefor P, and z, using the formula

P P .S—.-PS
2 P = cn n—-1%n 1%~n

The current RiskMetrics datasets do not allow differentiation between interest rate risks of instru-
ments of different credit quality; all market risk due to credit of equal maturity and currency is
treated the same.

8.1.2.3 Zero coupon government bonds

The volatilities of price returns on zero coupon government bonds are to be used to estimate the
market risk in government bond positions. Zero coupon prices (rates) are used because they are
consistent with the cash flow mapping methodology described in Section 6.2. Zero coupon gov-
ernment bond prices can also be used as proxies for estimating the volatility of other securities
when the appropriate volatility measure does not exist (corporate issues with maturities longer
than 10 years, for example).

1 See the fourth quarter, 1995 RiskMetrics Monitor for details.
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Zero coupon government bond yield curves cannot be directly observed, they can only be implied
from prices of acollection of liquid bonds in the respective market. Consequently, aterm structure
model must be used to estimate a synthetic zero coupon yield curve which best fits the collection
of observed prices. Such amodel generates zero coupon yields for arbitrary points along the yield
curve.

8.1.2.4 EMBI+

The J. P. Morgan Emerging Markets Bond Index Plus tracks total returns for traded external debt
instruments in the emerging markets. It is constructed as a “composite” of its four markets: Brady
bonds, Eurobonds, U.S. dollar local markets, and loans. The EMBI+ provides investors with a def-
inition of the market for emerging markets external -currency debt, alist of the traded instruments,
and a compilation of their terms. U.S dollar issues currently make up more than 95% of the index
and sovereign issues make up 98%. A fuller description of the EMBI+ can be found in the

J. P. Morgan publication Introducing the Emerging Markets Bond Index Plus (EMBI+) dated

July 12, 1995.

8.1.3 Equities

According to the current RiskM etrics methodol ogy, equities are mapped to their domestic market
indices (for example, S& P500 for the US, DAX for Germany, and CACA40 for Canada). That isto
say, individual stock betas, along with volatilities on price returns of local market indices are used
to construct VaR estimates (see Section 6.3.2.2) of individual stocks. The reason for applying the
beta coefficient is that it measures the covariation between the return on the individual stock and

the return on the local market index whose volatility and correlation are provided by RiskMetrics.

8.1.4 Commodities

A commodity futures contract is a standardized agreement to buy or sell acommodity. The priceto
a buyer of acommodity futures contract depends on three factors:

1. thecurrent spot price of the commaodity,

2. thecarrying costs of the commodity. Money tied up by purchasing and carrying a commod-
ity could have been invested in some risk-free, interest bearing instrument. There may be
costs associated with purchasing a product in the spot market (transaction costs) and hold-
ing it until or consuming it at some later date (storage costs), and

3. the expected supply and demand for the commaodity.

The future price of acommodity differsfrom its current spot price in away that is analogousto the
difference between 1-year and overnight interest rates for a particular currency. From this perspec-
tive we establish a term structure of commodity prices similar to that of interest rates.

The most efficient and liquid markets for most commodities are the futures markets. These mar-
kets have the advantage of bringing together not only producers and consumers, but also investors
who view commodities as they do any other asset class. Because of the superior liquidity and the
transparency of the futures markets, we have decided to use futures prices as the foundation for
modeling commodity risk. This appliesto al commodities except bullion, as described bel ow.

8.1.4.1 The need for commodity term structures

Futures contracts represent standard terms and conditions for delivery of a product at future dates.
Recorded over time, their prices represent instruments with decreasing maturities. That isto say, if
the price series of acontract is a sequence of expected values of asingle price at a specific date in
the future, then each consecutive price implies that the instrument is one day close to expiring.
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RiskMetrics constructs constant maturity contracts in the same spirit that it constructs constant
maturity instruments for the fixed income market. Compared to the fixed income markets, how-
ever, commodity markets are significantly less liquid. Thisis particularly true for very short and
very long maturities. Frequently, volatility of the front month contract may decline when the con-
tract is very close to expiration as it becomes uninteresting to trade for a small absolute gain, diffi-
cult to trade (a thin market may exist due to this limited potential gain) and, dangerous to trade
because of physical delivery concerns. At the long end of the curve, trading liquidity is limited.

Whenever possible, we have selected the maturities of commodity contracts with the highest
liquidity as the vertices for volatility and correlation estimates. These maturities are indicated in
Table 9.6 in Section 9.6.

In order to construct constant maturity contracts, we have defined two algorithms to convert
observed prices into prices from constant maturity contracts:

 Rolling nearby: we simply use the price of the futures contract that expires closest to afixed
maturity.

« Linear interpolation: we linearly interpolate between the prices of the two futures contracts
that straddle the fixed maturity.

8.1.4.2 Rolling nearby futures contracts
Rolling nearby contracts are constructed by concatenating contracts that expire, approximately 1,
6, and 12 months (for instance) in the future. An example of this method is shown in Table 8.1.

Table 8.1
Construction of rolling near by futures pricesfor Light Sweet Crude (WTI)
Rolling nearby Actual contracts
1st 6th 12th Mar-94  Apr-94  Aug-94 Sep-94 Feb-95 Mar-95

17-Feb-94 1393 1508 16.17 13.93 14.13 15.08 15.28 16.17 16.3
18-Feb-94 1423 1511 16.17 14.23 14.3 15.11 15.3 16.17 16.3
19-Feb-94 1421 1506 16.13 14.21 14.24 15.06 15.25 16.13 16.27
23-Feb-94 1424 1523 16.33 14.24 14.39 15.23 15.43 16.33 16.47
24-Feb-94 1441 1544 1646 14.41 15.24 15.44 16.32 16.46

Note that the price of the front month contract changes from the price of the March to the April
contract when the March contract expires. (To conserve space certain active contracts were omit-
ted).

The principal problem with the rolling nearby method is that it may create discontinuous price
series when the underlying contract changes: for instance, from February 23 (the March contract)
to February 24 (the April contract) in the example above. This discontinuity usually is the largest
for very short term contracts and when the term structure of pricesis steep.
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8.1.4.3 Interpolated futures prices
To address the issue of discontinuous price series, we use the simple rule of linear interpolation to
define constant maturity futures prices, P from quoted futures prices:

cmf
[83] Pemt = Ong1Prgr T Wng2Pres2
where
P, = constant maturity futures prices

N g = ratioof P, madeup by Pz,

0 = daysto expiration of NB1
A = daysto expiration of constant maturity contract
Pug1 = priceof NB1

Wngz = 1-Wypy
= ratioof P madeup by P,
Pyg2 = priceof NB2

NB1 = nearby contract with a maturity < constant maturity contract
NB2 = first contract with a maturity < constant maturity contract

The following example illustrates this method using the data for the heating oil futures contract.
On April 26, 1994 the 1-month constant maturity equivalent heating oil priceis calculated as
follows:

_ [0 1lday O - 129 days] .
le, April 26 = [Dé—d—d?ya}_@ X PrmeAPrHJ + [Dé'ﬁ'a%—sﬂ X PrlceMay}
(8.4] _ roio (29
= [Bg 4737 + [ Feg3 < 47.38]
= 47.379

Table 8.2 illustrates the cal culation over successive days. Note that the actual results may vary
slightly from the data represented in the table because of humerical rounding.

Table 8.2
Price calculation for 1-month CMF NY Harbor #2 Heating Oil

Contract expiration Daysto expiration Weights (%) Contract prices cmft
Date 1nb* Imcmft 2nb* 1nb* Imcmf 2nb* 1 nb* 2 nb* Apr May Jun
22-Apr-94 29-Apr 23-May 31-May 7 30 39 2333  76.67 4787 4786 4815 47.862
25-Apr-94 29-Apr 25-May 31-May 4 30 36 13.33 86.67 48.23 48.18 48.48 48.187
26-Apr-94 29-Apr 26-May 31-May 3 30 35 10.00 90.00 47.37 47.38 47.78 47.379
28-Apr-94 29-Apr  30-May 31-May 1 30 33 3.33 96.67 4652 4657  47.02 47.005
29-Apr-94 29-Apr 31-May 31-May 0 30 32 0.00 100.00 47.05 47.09 47.49 47.490
2-May-94 31-May  1-dun  30-dun 29 30 59 96.67 3.33 — 4757  47.95 47.583
3-May-94 31-May 2-dun  30-Jdun 28 30 58 93.33 6.67 — 46.89  47.29 46.917
4-May-94 31-May  3-Jun 30-Jun 27 30 57 90.00 10.00 — 46.66 47.03 46.697

* 1nband 2 nbindicate first and second nearby contracts, respectively.

T cmf means constant maturity future.
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Chart 8.1 illustrates the linear interpolation rule graphically.

Chart 8.1
Constant maturity future: price calculation
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8.2 Filling in missing data

The preceding section described the types of rates and prices that RiskMetrics usesin its calcula-
tions. Throughout the presentation it was implicitly assumed that there were no missing prices. In
practice, however, thisis often not the case. Because of market closings in a specific location,
daily prices are occasionally unavailable for individual instruments and countries. Reasons for the
missing data include the occurrence of significant political or social events and technical problems
(e.g., machine down time).

Very often, missing data are simply replaced by the preceding day’s value. Thisis frequently the
case in the data obtained from specialized vendors. Another common practice has simply been to
exclude an entire date from which data were missing from the sample. Thisresultsin valuable data
being discarded. Simply because one market is closed on a given day should not imply that data
from the other countries are not useful. A large number of nonconcurrent missing data points
across markets may reduce the validity of arisk measurement process.

Accurately replacing missing data is paramount in obtaining reasonable estimates of volatility and
correlation. In this section we describe how missing data points are “filled-in"—by a process
known as the EM algorithm—so that we can undertake the analysis set forth in this document. In
brief, RiskMetrics applies the following stepsto fill in missing rates and prices:

« Assume at any point in time that a data set consisting of a cross-section of returns (that may
contain missing data) are multivariate normally distributed with mean pu and covariance
matrix .

« Estimate the mean and covariance matrix of this data set using the available, observed data.

» Replace the missing data points by their respective conditional expectations, i.e., use the
missing data’'s expected values given current estimates of |, = and the observed data.
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8.2.1 Nature of missing data

We assume throughout the analysis that the presence of missing data occur randomly. Suppose that
at aparticular point in time, we have K return series and for each of the serieswe have T historical
observations. Let Z denote the matrix of raw, observed returns. Z has T rows and K columns. Each
row of Z isaKx1 vector of returns, observed at any point in time, spanning all K securities.
Denote the tth row of Z by z for t = 1,2,...T. The matrix Z may have missing data points.

Define acomplete datamatrix R that consists of al the datapoints Z plusthe “filled-in” returnsfor
the missing observations. The tth row of R is denoted ry. Note that if there are no missing observa-
tions then z=r for all t=1,...,T. In the case where we have two assets (K=2) and three historical
observations (T=3) on each asset, R takes the form:

7
SEREY! 1

= = T

851 R=|ry 1y = |i]
Ma1 M3 .

3

where“T” denotes transpose.

8.2.2 Maximum likelihood estimation

For the purpose of filling in missing data it is assumed that at any period t, the return vector r,
(Kx1) follows a multivariate normal distribution with mean vector pL and covariance matrix X .
The probability density function of ris

k k

B6  pr) = (2m 2 Cep[Sr-w = W |

It is assumed that this density function holds for all time periods, t = 1,2,...,T. Next, under the
assumption of statistical independence between time periods, we can write the joint probability
density function of returns given the mean and covariance matrix as follows

p(rli ---rT “‘5 z)

.
|_|p(rt)
t=1

[87] T T T
2m *3 Zexp{—%z (r—w "= (r,—p)
t=1

The joint probability density function p (r, ... rTLu, 2) describes the probability density for the
data given a set of parameter values (i.e., i and Z). Define the total parameter vector 6 = (u,2).
Our task isto estimate 6 given the data matrix that contains missing data. To do so, we must derive
the likelihood function of 6 given the data. The likelihood function [L (Y, Z|r,, ...r;) issimilarin
all respectsto p(ry, ...r4|M, ) except that it considers the parameters as random variables and
takes the data as given. Mathematically, the likelihood function is equivalent to the probability
density function. Intuitively, the likelihood function embodies the entire set of parameter values
for an observed data set.

Now, for arealized sample of, say, exchange rates, we would want to know what set of parameter
values most likely generated the observed data set. The solution to this question lies in maximum
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likelihood estimation. In essence, the maximum likelihood estimates (MLE) 8y, g arethe
parameter valuesthat most likely generated the observed data matrix.

BumLe isfound by maximizing the likelihood function L (W, Z|r,, ...r;) . In practiceit is often eas-
ier to maximize natural logarithm of the likelihood function | (u, X|r,, ...r{) which is given by

.
88  I(wE[R)= —%TKIn(ZT{) —gmm —%Z (r-w = (r, -
t=1

with respect to 8. This translates into finding solutions to the following first order conditions:
8.9 0 (W, Z =0 9 I (Y, Z =0
[ . ] ﬁ (p., \rl,...l’T) -V, 072 (H: ‘rlx--'rT) -

The maximum likelihood estimators for the mean vector, {I and covariance matrix S are

T

[8.10] = [rufynnd

-
|

M>
1l

)
X GR I

t=1

[8.11]

where r; represents the sample mean taken over T time periods.

8.2.3 Estimating the sample mean and covariance matrix for missing data

When some observations of r, are missing, the maximum likelihood estimates 6, g are not avail-
able. Thisisevident from the fact that the likelihood function is not defined (i.e., it has no value)
when it is evaluated at the missing data points. To overcome this problem, we must implement
what is known as the EM algorithm.

Sinceits formal exposition (Dempster, Laird and Rubin, 1977) the expectation maximization or
EM algorithm (hereafter referred to as EM) has been on of the most successful methods of estima-
tion when the data under study are incomplete (e.g., when some of the observations are missing).
Among its extensive applications, the EM algorithm has been used to resolve missing data prob-
lemsinvolving financial time series (Warga, 1992). For a detailed exposition of the EM algorithm
and its application in finance see Kempthorne and Vyas (1994).

Intuitively, EM is an iterative algorithm that operates as follows.

» For agiven set of (initial) parameter values, instead of evaluating the log likelihood function,
(which isimpossible, anyway) EM evaluates the conditional expectation of the latent (under-
lying) log likelihood function. The mathematical conditional expectation of the log-likelihood
istaken over the observed data points.

» The expected log likelihood is maximized to yield parameter estimates GZM . (The superscript
“0" stands for theinitial parameter estimate). This value is then substituted intolthe log likeli-
hood function and expectations are taken again, and new parameter estimates 8;,, are found.
Thisiterative processis continued until the algorithm converges at which timefinal parameter
estimates have been generated. F% %xamql g if theNaI%orithm isiterated N+1 times then the
sequence of parameter estimates Bg,,, 8¢y ---» Oy 1S generated. The algorithm stops
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when adjacent pararneﬁer estimates are sufficiently close to one another, i.e., when 92,\; lis
sufficiently closeto 8¢, .

Thefirst stepin EM isreferred to as the expectation or E-Step. The second step is the maximiza-
tion or M-step. EM iterates between these two steps, updating the E-Step from the parameter esti-
mates generated in the M-Step. For example, at the ith iteration of the algorithm, the following
equations are solved in the M-Step:

T
812 *t= _Tl_z t‘z[ e (the sample mean)
i . O+ 07
[8.12b] $'Tt = 'Tl'z ‘zte “'+l[|] 0 (the sample covariance matrix)
t=1

To evaluatetheexpectationsintheseexprons(E[ ‘z( 9} and E rer ‘zt 9 ), we make use
of standard properties for partitioning a multivariate normal random vector

[8.13] ﬁDMD MR | Zre Z0R
O Ho| [Zro Zm

Here, one can think of O asthe sample data with missing values removed and R as the vector of
the underlying compl ete set of observations. Assuming that returns are distributed multivariate
normal, the distribution of R conditional on O is multivariate normal with mean

[8.14]  E[RIDO]=Hg+Zp Zp (OH )

and covariance matrix

[8.15]  Covariance(R|0) =% pr-2nrZm Zon

Using Eq. [8.14] and Eq. [8.15] we can evaluate the E- and M- steps. The E -Step is given by

E[rt‘zt’e] :ur+zrz zz (Zt P-)
[8.16] E —Step

i|% 6] TE

rtr”zt, 9} =

where

[817]  Covariance, |7, 83 = ,,-%,, 5%

rz=zz="zr

Notice that the expressionsin Eq. [8.17] are easily evaluated since they depend on parameters that
describe the observed and missing data.

Given the values computed in the E-Step, the M-Step yields updates of the mean vector and cova-
riance matrix.
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Oii+1_ 1 i
f =30 ro+ Z E[rz.6']3
Cormpretet Incompletet

0
% ! i+ 10
vl 1 T i AP+ 100+ 2T
BZ = _T_ZE[rtrt‘zt,e}—u W0
[8.18] M-Step t=1
O 0 T 0
0 DD rtrtg-‘- 0
g _ 1[0 compretet 0
O - TU . orT 0 T
o O Z CovariancerT, ‘zt, 65+ E[r,|z, 01 E[r|z,6] O
DIncompetet y

Notice that summing over t implies that we are adding “down” the columns of the data
matrix R. For a practical, detailed example of the EM a gorithm see Johnson and Wichern (1992,
pp. 203-206).

A powerful result of EM is that when a global optimum exists, the parameter estimates from the
EM algorithm converge to the ML estimates. That is, for a sufficiently large number of iterations,
EM convergesto 0, . Thus, the EM algorithm provides away to calculate the ML estimates of
the unknown parameter even if all of the observations are not available.

The assumption that the time series are generated from a multivariate normal distribution isinnoc-
uous. Even if the true underlying distribution is not normal, it follows from the theory of pseudo-
maximum likelihood estimation that the parameter estimates are asymptotically consistent (White,
1982) although not necessarily asymptotically efficient. That is, it has been shown that the pseudo-
MLE obtained by maximizing the unspecified log likelihood as if it were correct produces a con-
sistent estimator despite the misspecification.

8.2.4 Anillustrative example

A typical application of the EM algorithm isfilling in missing values resulting from a holiday in a
given market. We applied the algorithm outlined in the section above to the August 15 Assumption
holiday in the Belgian government bond market. While most European bond markets were open
on that date, including Germany and the Netherlands which show significant correlation with Bel-
gium, no data was available for Belgium.

A missing data point in an underlying time series generates two missing points in the log change
series as shown below (fromt-1tot aswell asfromttot + 1). Even though it would be more
straightforward to calculate the underlying missing value through the EM agorithm and then gen-
erate the two missing log changes, this would be statistically inconsistent with our basic assump-
tions on the distribution of data.

In order to maintain consistency between the underlying rate data and the return series, the adjust-
ment for missing datais performed in three steps.

1. First the EM algorithm generates the first missing percentage change, or —0.419% in the
example below.

2. From that number, we can back out the missing underlying yield from the previous day’s
level, which gives us the 8.445% in the example below.

3. Finaly, the second missing log change can be calculated from the revised underlying yield
series.
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Table 8.3 presents the underlying rates on the Belgian franc 10-year zero coupon bond, the corre-
sponding EM forecast, and the adjusted “filled-in” rates and returns.

Table 8.3
Belgian franc 10-year zero coupon rate
application of the EM algorithm to the 1994 Assumption holiday in Belgium

Observed Adjusted
Collection date 10-year rate Return (%) EM forecast 10-year rate Return (%)
11-Aug-94 8.400 2411 8.410 2411
12-Aug-94 8.481 0.844 8.481 0.844
15-Aug-94 missing missing -0.419 8.445* -0.419"
16-Aug-94 8.424 missing 8.424 -0.254%
17-Aug-94 8.444 0.237 8.444 0.237
18-Aug-94 8.541 1.149 8.541 1.149
* Filled-in rate based on EM forecast.

T From EM.
* Return now available because prior rate (*) has been filled in.

Chart 8.2 presents a time series of the Belgian franc 10-year rate before and after the missing
observation wasfilled in by the EM algorithm.

Chart 8.2
Graphical representation
10-year zero coupon rates; daily % change
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8.2.5 Practical considerations

A magjor part of implementing the EM algorithm is to devise the appropriate input data matrices
for the EM. From both a statistical and practical perspective we do not run EM on our entire time
series data set simultaneously. Instead we must partition the original data seriesinto non-overlap-
ping sub-matrices. Our reasons for doing so are highlighted in the following example.

Consider aTxK data matrix where T is the number of observations and K is the number of price
vectors. Given this data matrix, the EM must estimate K+K(K+1)/2 parameters. Consequently, to
keep the estimation practical K cannot be too large. To get a better understanding of thisissue con-
sider Chart 8.3, which plots the number of parameters estimated by EM (K +K(K+1)/2) against the
number of variables. As shown, the number of estimated parameters grows rapidly with the num-
ber of variables.

Chart 8.3
Number of variablesused in EM and parametersrequired
number of parameters (Y-axis) versus number of variables (X-axis)
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The submatrices must be chosen so that vectors within a particular submatrix are highly correlated
while those vectors between submatrices are not significantly correlated. If we are allowed to
choose the submatrices in this way then EM will perform asif it had the entire original data
matrix. This follows from the fact that the accuracy of parameter estimates are not improved by
adding uncorrelated vectors.

In order to achieve alogical choice of submatrices, we classify returnsinto the following catego-
ries: (1) foreign exchange, (2) money market, (3) swap, (4) government bond, (5) equity, and
(6) commodity.

We further decompose categories 2, 3, 4, and 6 as follows. Each input data matrix correspondsto a
particular country or commodity market. The rows of this matrix correspond to time while the col-
umns identify the maturity of the asset. Foreign exchange, equity indices, and bullion are the
exceptions: all exchange rates, equity indices, and bullion are grouped into three separate
matrices.

8.3 Theproperties of correlation (covariance) matrices and VaR

In Section 6.3.2 it was shown how RiskMetrics applies a correlation matrix to compute the VaR of
an arbitrary portfolio. In particular, the correlation matrix was used to compute the portfolio’s
standard deviation. VaR was then computed as a multiple of that standard deviation. In this section
we investigate the properties of a generic correlation matrix since it is these properties that will
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determine whether the portfolio’s standard deviation forecast is meaningful .2 Specificallyz we will
establish conditions® that guarantee the non-negativity of the portfolio’s variance, i.e., 6= 0.

At first glance it may not seem obvious why it is necessary to understand the conditions under
which the variance is non-negative. However, the potential sign of the variance, and consequently
the VaR number, is directly related to the relationship between (1) the number of individual price
return series (i.e., cashflows) per portfolio and (2) the number of historical observations on each of
these return series. In practice there is often a trade-off between the two since, on the one hand,
large portfolios require the use of many time series, while on the other hand, large amounts of his-
torical data are not available for many time series.

Below, we establish conditions that ensure the non-negativity of a variance that is constructed
from correlation matrices based on equally and exponentially weighted schemes. We begin with
some basic definitions of covariance and correlation matrices.

8.3.1 Covariance and correlation calculations

In this section we briefly review the covariance and correlation cal culations based on equal and
exponential moving averages. We do so in order to establish arelationship between the underlying
return data matrix and the properties of the corresponding covariance (correlation) matrix.

8.3.1.1 Equal weighting scheme
Let X denote a T x K data matrix, i.e., matrix of returns. X has T rows and K columns.

819 e r

Each column of X isareturn series corresponding to a particular price/rate (e.g., USD/DEM FX
return) while each row correspondsto the time (t = 1,...,T) at which the return was recorded. If we
compute standard deviations and covariances around a zero mean, and weigh each observation
with probability 1/T, we can define the covariance matrix simply by

;
_X'X
[820] ==

where X' isthe transpose of X.

Consider an examplewhen T=4and K = 2.

2 By properties, we mean specifically whether the correlation matrix is positive definite, positive semidefinite or
otherwise (these terms will be defined explicitly below)

3 All linear a gebra propositions stated below can be found in Johnston, J. (1984).
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An estimate of the covariance matrix is given by
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Next, we show how to compute the correlation matrix R. Suppose we divide each element of the
matrix X by the standard deviation of the series to which it belongs; i.e., we normalize each series
of X to have a standard deviation of 1. Call this new matrix with the standardized values Y.

The correlation matrix is

! F1k

R o
823 Y=|. .. by

0,

! Mk

o >
where
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_YY
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8.3.1.2 Exponential weighting scheme

We now show how similar results are obtained by using exponential weighting rather than equal
weighting. When computing the covariance and correlation matrices, use, instead of the data
matrix X, the augmented data matrix X shown in Eq. [8.26].

M ik

/\/szl "/XrZI
AN T

T-1 [fT-1
ATrTL v AN TTTK]

Now, we can define the covariance matrix simply as

X
1

[8.26]

T —1

ZAHE %

[827] %=

g |

To see this, consider the examplewhen T=4and K = 2.
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The exponentially weighted correlation matrix is computed just like the simple correlation matrix.
The standardized data matrix and the correlation matrix are given by the following expressions.

=1 J

fu f1k

0, Ok
v FJJ

[8.29] Y= .. = ..
g,

! M1k
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where

;
R [ s

8.30 R=0% A0 Y

[8:30] D_Z 0

which is the exact analogue to Eq. [8.25]. Therefore, al results for the simple correlation matrix
carry over to the exponential weighted matrix.

Having shown how to compute the covariance and correlation matrices, the next step is to show
how the properties of these matrices relate to the VaR calculations.

We begin with the definition of positive definite and positive semidefinite matrices.

[8.31] If ' Cz> (<) Ofor al nonzero vectors z, then C is said to be positive (negative)
definite.

[8.32] If2'Cz > (=) Ofor al nonzero vectors z, then C is said to be positive semidefinite
(nonpositive definite).

Now, referring back to the VaR calculation presented in Section 6.3.2, if we replace the vector z

by the weight vector 9, _, and C by the correlation matrix, Ry, _; , then it should be obvious

why we seek to determine whether the correlation matrix is positive definite or not. Specificaly,
« |f the correlation matrix R is positive definite, then VaR will always be positive.

* If Ris positive semidefinite, then VaR could be zero or positive.

« If R is negative definite,* then VaR will be negative.

8.3.2 Useful linear algebra results as applied to the VaR calculation

In order to define a relationship between the dimensions of the data matrix X (or)~( ) (i.e., the num-
ber of rows and columns of the data matrix) and the potential values of the VaR estimates, we must
define the rank of X.

The rank of amatrix X, denoted r(X), is the maximum number of linearly independent rows (and
columns) of that matrix. The rank of amatrix can be no greater than the minimum number of rows
or columns. Therefore, if X isT x K with T > K (i.e., more rows than columns) then r(X)<K. In
general, for an T x K matrix X, r(X)< min(T,K).

4 Wewill show below that thisis not possible.
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A useful result which equates the ranks of different matricesis:
833  r(X) = roxX'Xd = rexX'g

As applied to the VaR calculation, the rank of the covariance matrix = = X "X is the same as the
rank of X.

We now refer to two linear algebra results which establish a relationship between the rank of the
data matrix and the range of VaR values.

[8.34] If X isTx K withrank K < T, then X "X is positive definite and XX T is positive semidef-
inite.

[8.35] If X isT x K with rank J< min(T,K) then XX and XX is positive semidefinite.
Therefore, whether X is positive definite or not will depend on the rank of the data matrix X.

Based on the previous discussion, we can provide the following results for RiskMetrics VaR calcu-
lations.

» Following from Eq. [8.33], we can deduce the rank of R simply by knowing the rank of Y, the
standardized data matrix.

* Therank of the correlation matrix R can be no greater than the number of historical data
points used to compute the correlation matrix, and

 Following from Eq. [8.34], if the data matrix of returns has more rows than columns and the
columns are independent, then R is positive definite and VaR > 0. If not, then Eq. [8.35]
applies, and R is positive semidefiniteand VaR = 0.

In summary, a covariance matrix, by definition, is at least positive semidefinite. Simply put, posi-
tive semidefinite is the multi-dimensional analogue to the definition, ™= 0.

8.3.3 How to determine if a covariance matrix is positive semi-definite®

Finally, we explain atechnique to determine whether a correlation matrix is positive (semi) defi-
nite. We would like to note at the beginning that due to a variety of technical issues that are beyond
the scope of this document, the suggested approach described below known as the singular value
decomposition (SVD) isto serve as a genera guideline rather than a strict set of rulesfor deter-
mining the “definiteness’ of a correlation matrix.

The singular value decomposition (SVD)

The T x K standardized data matrix Y ( T = K) may be decomposed as® Y = UDV' where
U'U = V'V = I, and D isdiagonal with non-negative diagonal elements (1, 1,,...,1,) ,
called the singular values of Y. All of the singular values are = (0) .

5 This section is based on Belsley (1981), Chapter 3.

6 |n this section we work with the mean centered and standardized matrix Y instead of X sinceY isthe data matrix
on which an SVD should be applied.
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A useful result is that the number of non-zero singular valuesis afunction by the rank of Y. Spe-
cificaly, if Y isfull rank, then all K singular values will be non zero. If the rank of Y is J=K-2,
then there will be J positive singular values and two zero singular values.

In practice, it is difficult to determine the number of zero singular values. Thisis due to that fact
that computers deal with finite, not exact arithmetic. In other words, it is difficult for acomputer to
know when asingular valueisreally zero. To avoid having to determine the number of zero singu-
lar values, it is recommended that practitioners should focus on the condition number of Y which
isthe ratio of the largest to smallest singular values, i.e.,

1
[8.36] v= I—”ﬁi‘ (condition number)

min

Large condition numbers point toward ‘ill-condition’ matrices, i.e., matrices that are nearly not
full rank. In other words, alarge v impliesthat thereis a strong degree of collinearity between the
columns of Y. More elaborate tests of collinearity can be found in Belsley (1981).

We now apply the SV D to two data matrices. The first data matrix consists of time series of price
returns on 10 USD government bonds for the period January 4, 1993—October 14, 1996 (986
observations). The columns of the data matrix correspond to the price returns on the 2yr, 3yr, 4yr,
5yr, 7yr, 9yr, 10yr, 15yr, 20yr, and 30yr USD government bonds. The singular values for this data
matrix are given in Table 8.4.

Table 8.4

Singular values for USD yield curve data matrix
3.045 0.051

0.785 0.043

0.271 0.020
0.131 0.017
0.117 0.006

The condition number, v , is497.4. We conduct asimilar experiment on a data matrix that consists
of 14 equity indices.” The singular values are shown in Table 8.5. The data set consists of atotal
number of 790 observations for the period October 5, 1996 through October 14, 1996.

Table 8.5

Singular values for equity indicesreturns
2.329 0.873 0.696
1.149 0.855 0.639
0.948 0.789 0.553
0.936 0.743 0.554
0.894 0.712

For this data matrix, the condition number, v , is 4.28. Notice how much lower the condition num-
ber isfor equities than it is for the US yield curve. This result should not be surprising since we
expect the returns on different bonds along the yield curve to move in asimilar fashion to one
another relative to equity returns. Alternatively expressed, the relatively large condition number
for the USD yield curveisindicative of the near collinearity that exists among returns on US gov-
ernment bonds.

7 For the countries Austria, Australia, Belgium, Canada, Switzerland, Spain, France, Finland, Great Britain, Hong
Kong, Ireland, Italy, Japan and the Netherlands.
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The purpose of the preceding exercise was to demonstrate how the interrelatedness of individual
time series affects the condition of the resulting correlation matrix. As we have shown with asim-
ple example, highly correlated data (USD yield curve data) leads to high condition numbers rela-
tive to less correlated data (equity indices).

In concluding, due to numerical rounding errorsit is not unlikely for the theoretical properties of a
matrix to differ from its estimated counterpart. For example, covariance matrices are real, sym-
metric and non-positive definite. However, when estimating a covariance matrix we may find that
the positive definite property is violated. More specifically, the matrix may not invert. Singularity
may arise because certain pricesincluded in a covariance matrix form linear combinations of other
prices. Therefore, if covariance matrices fail to invert they should be checked to determine
whether certain prices are linear functions of others. Also, the scale of the matrix elements may be
such that it will not invert. While poor scaling may be a source of problems, it should rarely be the
case.

8.4 Rebasing RiskMetrics volatilities and correlations

A user’s base currency will dictate how RiskMetrics standard deviations and correlations will be
used. For example, a DEM-based investor with US dollar exposure is interested in fluctuationsin
the currency USD/DEM whereas the same investor with an exposure in Belgium francsis inter-
ested in fluctuations in BEF/DEM. Currently, RiskMetrics volatility forecasts are expressed in US
dollars per foreign currency such as USD/DEM for al currencies. To compute volatilities on cross
rates such as BEF/DEM, users must make use of the RiskMetrics provided USD/DEM and USD/
BEF volatilities as well as correlations between the two. We now show how to derive the variance
(standard deviation) of the BEF/DEM position. Let ry ; and r,  represent the time t returns on
USD/DEM and USD/BEF, respectively, i.e.,

_ (USD/DEM), ) (USD/BEF),
(837 1y = '{Wgwj 2= n[(US'TEF)tJ

The cross rate BEF/DEM is defined as

(BEF/DEM),

[8.38] Mg = Ir{—(BEF/DEM)t_j: Fe—"To

The variance of the crossrate rg; is given by
2 2 2 2
[839] 03, =0)+0,;=20,;,

Equation [8.39] holds for any cross rate that can be defined as the arithmetic difference in two
other rates.

We can find the correlation between two cross rates as follows. Suppose we want to find the corre-
lation between the currencies BEF/DEM and FRF/DEM. It follows from Eq. [8.38] that we first
need to define these cross rates in terms of the returns used in RiskMetrics.

sa0d 1, - lr{ (USD/DEM), J = r{ (USD/BEF), J

(USD/DEM),_, (USD/BEF),_,

(BEF/DEM), (USD/FRF),
[8.40b] M3t n{ J:rlt_rzt' My = n{ J

(BEF/DEM),_, (USD/FRF),_,
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and

(FRF/DEM),
[8.40c] e = n{

(FRF/DEM)t_j: 107l

The correlation between BEF/DEM and USD/FRF (r3; and r ;) is the covariance of r3; and r ¢
divided by their respective standard deviations, mathematically,

2
O34 ¢

04,t0

P34t
3.t
[8.41] 2 2 2 . 2
0117 010¢7 014170044

T2 2 2 2 2 2
A/O-l,t+o-4,t_20-14,t A/O-l,t+0-2,t_20-12,t

Analogously, the correlation between USD/DEM and FRF/DEM is

2
O35t
05’ tol, t

P35t =

[8.42] ,
01170144

T2 2 2 2
A/O-l,t+o-4,t_20-14,t NO1t

8.5 Nonsynchronous data collection

Estimating how financial instruments movein relation to each other requires data that are collated,
as much as possible, consistently across markets. The point in time when data are recorded is a
material issue, particularly when estimating correlations. When data are observed (recorded) at
different times they are known to be nonsynchronous.

Table 8.7 (pages 186-187) outlines how the data underlying the time series used by RiskMetrics
are recorded during the day. It shows that most of the data are taken around 16:00 GMT. From the
asset class perspective, we see that potential problems will most likely lie in statistics relating to
the government bond and equity markets.

To demonstrate the effect of nonsynchronous data on correlation forecasts, we estimated the
1-year correlation of daily movements between USD 10-year zero yields collected every day at the
close of businessin N.Y. with two series of 3-month money market rates, one collected by the
British Bankers Association at 11:00 a.m. in London and the other collected by J.P. Morgan at the
close of businessin London (4:00 p.m.). This datais presented in Table 8.6.

Table 8.6
Correlations of daily percentage changes with USD 10-year
August 1993 to June 1994 — 10-year USD rates collated at N.Y. close

Correlation at London time:

LIBOR 11am. 4 p.m.
1-month -0.012 0.153
3-month 0.123 0.396
6-month 0.119 0.386

12-month 0.118 0.622
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None of the data series are synchronous, but the results show that the money market rates collected
at the London close have higher correlation to the USD 10-year rates than those collected in the
morning.

Getting a consistent view of how a particular yield curve behaves depends on addressing the tim-
ing issue correctly. While thisis an important factor in measuring correlations, the effect of timing
diminishes as the time horizon becomes longer. Correlating monthly percentage changes may not
be dependent on the condition that rates be collected at the same time of day. Chart 8.4 shows how
the correlation estimates against USD 10-year zeros evolve for the two money market series men-
tioned above when the horizon moves from daily changes to monthly changes. Once past the 10-
day time interval, the effect of timing differences between the two series becomes negligible.

Chart 8.4
Correlation forecastsvs. return interval
3-month USD LIBOR vs. 10-year USD government bond zero rates

06

3m LIBOR London p.m.
05

04
3m LIBOR London am.
03
02}

01}

Return interval (number of days)

In a perfect world, all rates would be collected simultaneously as all markets would trade at the
same time. One may be able to adapt to nonsynchronously recorded data by adjusting either the
underlying return series or the forecasts that were computed from the nonsynchronous returns. In
this context, data adjustment involves extensive research. The remaining sections of this document
present an algorithm to adjust correlations when the data are nonsynchronous.
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Table 8.7
Schedule of data collection

London time,

am.
Instrument

Country summary 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 | 11:00 | 12:00
Australia FX/Eq/L1/Sw/Gv Eq Gv
Hong Kong FX/Eq/L1/Sw LI Eq Sw
Indonesia FX/Eqg/L1/Sw Eq LI/Sw
Japan FX/Eq/L1/Sw/Gv Gv Eq
Korea FX/Eq Eq
Malaysia FX/Eq/L1/Sw Eq LI/Sw
New Zealand | FX/Eq/LI/Sw/Gv Eq LI/Gv Sw
Philippines FX/Eq Eq
Singapore FX/Eq/L1/Sw/Gv LI/Eq
Taiwan FX/Eq/
Thailand FX/Eq/L1/Sw Eq LI/Sw
Austria FX/Eqg/LI Eq
Belgium FX/Eq/L1/Sw/Gv
Denmark FX/Eq/L1/Sw/Gv
Finland FX/Eq/L1/Sw/Gv
France FX/Eq/L1/Sw/Gv
Germany FX/Eq/L1/SwIGv
Ireland FX/Eq/LI/Sw/Gv
Italy FX/Eqg/L1/Sw/Gv
Netherlands FX/Eq/L1/Sw/Gv
Norway FX/Eq/L1/Sw/Gv
Portugal FX/Eg/L1/SwIGv
South Africa FX/Eq/LI/IGV
Spain FX/Eq/LI/Sw/Gv
Sweden FX/Eqg/L1/Sw/Gv
Switzerland FX/Eq/L1/Sw/Gv
UK. FX/Eg/L1/Sw/Gv
ECU X/ ILI/Sw/Gv
Argentina FX/Eq
Canada FX/Eq/L1/Sw/Gv
Mexico FX/Eg/LI
us. FX/Eg/L1/Sw/Gv

FX = Foreign Exchange, Eq = Equity Index, LI = LIBOR, Sw = Swap, Gv = Government

RiskMetricsdd —Technical Document

Fourth Edition




Sec. 8.5 Nonsynchronous data collection 187
Table 8.7 (continued)
Schedule of data collection
London time,
p.m.
Instrument
1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 | 10:00 | 11:00 | 12:00 |summary Country
FX/L1/Sw FX/Eg/LI/Sw/Gv  |Australia
FX FX/Eq/LI/Sw Hong Kong
FX FX/Eq/LI/Sw Indonesia
FX/LI/Sw FX/Eg/LI/SW/Gv | Japan
FX FX/Eq Korea
FX FX/Eg/LI/Sw Malaysia
FX FX/Eg/LI/SW/Gv  |New Zeaand
FX FX/Eq Philippines
FX FX/Eq/LI/Sw/Gv Singapore
FX FX/Eq Taiwan
FX FX/Eq/LI/Sw Thailand
FX/LI FX/Eq/LI Austria
Eq FX/LI/SwIGv FX/Eq/LI/Sw/Gv Belgium
Eq Gv FX/L1/Sw FX/Eq/LI/Sw/Gv Denmark
Eq FX/LI FX/Eg/LI/Sw/Gv Finland
Gv FX/LI/Sw/Eq FX/Eg/LI/Sw/Gv France
FX/LI/Sw/Gv/Eq FX/Eg/LI/SW/Gv  |Germany
FX/L1/SwIGv Eq FX/Eq/LI/Sw/Gv Ireland
FX/L1/Sw/Gv/Eq FX/Eq/LI/Sw/Gv Italy
FX/L1/Sw/Gv/IEq FX/Eq/LI/Sw/Gv Netherlands
Eq FX/LI FX/Eg/LI/Sw/Gv Norway
FX/LI/Eq FX/Eg/LI/Sw/Gv Portugal
Eq Gv FX/LI FX/Eq/LI/IGv South Africa
FX/LI/Sw | GviEq FX/Eg/LI/Sw/Gv  |Spain
Gv FX/L1/Sw/Eq FX/Eq/LI/Sw/Gv Sweden
FX/L1/Sw/Eq FX/Eq/LI/Sw/Gv Switzerland
FX/LI/Sw/Eq Gv FX/Eg/LI/Sw/Gv UK.
FX/LI/Sw Gv FX/ ILI/Sw/Gv ECU
FX Eq FX/Eq Argentina
FX/L1/Sw Gv Eq FX/Eq/LI/Sw/Gv Canada
FXI/LI Eq FX/Eq/LI Mexico
FX/LI/Sw Gv Eq FX/Eg/LI/Sw/Gv Us.

FX = Foreign Exchange, Eq = Equity Index, LI = LIBOR, Sw = Swap, Gv = Government

Part IV: RiskMetrics Data Sets




188

Chapter 8. Data and related statistical issues

8.5.1 Estimating correlations when the data are nonsynchronous

The expansion of the RiskMetrics data set has increased the amount of underlying prices and rates
collected in different time zones. The fundamental problem with nonsynchronous data collection
isthat correlation estimates based on these prices will be underestimated. And estimating correla-
tions accurately is an important part of the RiskMetrics VaR cal culation because standard devia-
tion forecasts used in the VaR calculation depends on correlation estimates.

Internationally diversified portfolios are often composed of assets that trade in different calendar
timesin different markets. Consider a simple example of atwo stock portfolio. Stock 1 trades only
on the New York Stock Exchange (NY SE 9:30 am to 4:00 pm EST) while stock 2 trades exclu-
sively on the Tokyo stock exchange (TSE 7:00 pm to 1:00 am EST). Because these two markets
are never open at the same time, stocks 1 and 2 cannot trade concurrently. Consequently, their
respective daily closing prices are recorded at different times and the return series for assets 1 and
2, which are calculated from daily close-to-close prices, are also nonsynchronous.8

Chart 8.5 illustrates the nonsynchronous trading hours of the NY SE and TSE.

Chart 8.5
Timechart
NY and Tokyo stock markets
NY open
9:30 am
8.5 hrs
NY close
4:00 pm
3 hrs
TKO open
TKO close 7:00 pm
1:00 am
6 hrs
Day t-1 [{ Day t
8.5 hours 6.5 3 6 85 6.5
3 1 0 | 3
TSE NY SE NYSE TSE TSE NYSE NY SE
close open close open close open close

TSE close-to-close

Information overlap 30% NY SE close-to-close

8 This terminology began in the nonsynchronous trading literature. See, Fisher, L. (1966) and Sholes, M. and Will-
iams (1977). Nonsynchronous trading is often associated with the situation when some assets trade more fre-
quently than others [see, Perry, P. (1985)]. Lo and MacKinlay (1990) note that “the nonsynchronicity problem
results from the assumption that multiple time series are sampled simultaneously when in fact the sampling is non-
synchronous.” For arecent discussion of the nonsynchronous trading issue see Boudoukh, et. al (1994).
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We see that the Tokyo exchange opens three hours after the New York close and the New York
exchange reopens 81/2 hours after the Tokyo close. Because a new calendar day arrives in Tokyo
before New York, the Tokyo timeis said to precede New York time by 14 hours (EST).

RiskMetrics computes returns from New York and Tokyo stock markets using daily close-to-close
prices. The black orbsin Chart 8.5 mark times when these prices are recorded. Note that the orbs
would line up with each other if returns in both markets were recorded at the same time.

The following sections will:

1. Identify the problem and verify whether RiskMetrics really does underestimate certain cor-
relations.

2. Present an agorithm to adjust the correlation estimates.
3. Test theresults against actual data.

8.5.1.1 Identifying the problem: correlation and nonsynchronous returns

Whether different return series are recorded at the same time or not becomes an issue when these
data are used to estimate correlations because the absolute magnitude of correlation (covariance)
estimates may be underestimated when calculated from nonsynchronous rather than synchronous
data. Therefore, when computing correlations using nonsynchronous data, we would expect the
value of observed correlation to be below the true correlation estimate. In the following analysis
we first establish the effect that nonsynchronous returns have on correlation estimates and then
offer amethod for adjusting correlation estimates to account for the nonsynchronicity problem.

Thefirst step in checking for downward bias is estimating what the “true” correlation should be.
Thisis not trivial since these assets do not trade in the same time zone and it is often not possible
to obtain synchronous data. For certain instruments, however, it is possible to find limited datasets
which can provide a glimpse of the true level of correlation; this data would then become the
benchmark against which the methodology for adjusting nonsynchronous returns would be tested.

One of these instruments is the US Treasury which has the advantage of being traded 24 hours a
day. While we generally use nonsynchronous close-to-close prices to estimate RiskMetrics corre-
lations, we obtained price data for both the US and Australian markets quoted in the Asian time
zone (August 1994 to June 1995). We compared the correlation based on synchronous data with
correlation estimates that are produced under the standard RiskMetrics data (using the nonsyn-
chronous US and Australian market close). Plots of the two correlation series are shown in

Chart 8.6.
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Chart 8.6
10-year Australia/US government bond zero correlation
based on daily RiskMetrics close/close data and 0:00 GMT data
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While the changesin correlation estimates follow similar patterns over time (already an interesting
result in itself), the correlation estimates obtained from price data taken at the opening of the mar-
ketsin Asia are substantially higher. One thing worth noting however, is that while the synchro-
nous estimate appears to be a better representation of the “true” level of correlation, it isnot
necessarily equal to the true correlation. While we have adjusted for the timing issue, we may have
introduced other problems in the process, such as the fact that while US Treasuries trade in the
Asian time zone, the market is not as liquid as during North American trading hours and the prices
may therefore be less representative of “normal trading” volumes. Market segmentation may also
affect the results. Most investors, even those based in Asia put on positions in the US market dur-
ing North American trading hours. U.S. Treasury trading in Asiais often the result of hedging.

Nevertheless, from arisk management perspective, thisisan important result. Market participants
holding positionsin various marketsincluding Australia (and possibly other Asian markets) would
be distorting their risk estimates by using correlation estimates generated from close of business
prices.

8.5.1.2 An algorithm for adjusting correlations

Correlation is simply the covariance divided by the product of two standard errors. Since the stan-
dard deviations are unaffected by nonsynchronous data, correlation is adversely affected by non-
synchronous data through its covariance. This fact simplifies the analysis because under the
current RiskMetrics assumptions, long horizon covariance forecasts are simply the 1-day covari-
ance forecasts multiplied by the forecast horizon.

Let us now investigate the effect that nonsynchronous trading has on correlation estimates for his-
torical rate series from the United States (USD), Australian (AUD) and Canadian (CAD) govern-
ment bond markets. In particular, we focus on 10-year government bond zero rates. Table 8.8
presents the time that RiskM etrics records these rates (closing prices).
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Table 8.8
RiskMetrics closing prices
10-year zero bonds

Country EST London

usD 3:30 p.m. 8:00 p.m.
CAD 3:30 p.m. 8:00 p.m.
AUD 2:00 am. 7:00 am.

Note that the USD and CAD rates are synchronous while the USD and AUD, and CAD and AUD
rates are nonsynchronous. We chose to analyze rates in these three markets to gain insight as to
how covariances (correlations) computed from synchronous and nonsynchronous rgturn series
compare with each other. For example, at L any timet, the observed return series, r gy  and
'aup,¢ arenonsynchronous, whereas r ;g  and rCAD . aresynchronous. We are interested in
measUring the covariance and autocovariance of these return series.

Table 8.9 provides summary statistics on 1-day covariance and autocovariance forecasts for the
period May 1993 to May 1995. The numbersin the table are interpreted as follows: over the sam-
ple period, the averalge covariance between USD and AUD 10-year zero returns,

covry UbgD v Faup, {0 150.16335whilethe average covariance between current USD 10-year zero
returns and lagged CAD 10-year zero returns (autocovariance) is —0.0039.

Table 8.9
Sample statistics on RiskMetrics daily covariance forecasts
10-year zero rates; May 1993 — May 1995

Daily forecasts Mean Median Std. dev. M ax Min
v, L T 01633 00995 01973 08194  -0339
COVE S AT 05685 04635 0359 17053 01065
covr S 0= 00085  -0.0014 01806 05667  -0.6056

] obs obs [

covr s L1 06082 04912 03764 19534  0.356
v L A 00424 00259 01474 09768  -0.2374
v IO 0 00039 -00003 01814 03333  -0.7290

* All numbers are multiplied by 10,000.

The results show that when returns are recorded nonsynchronously, the covariation between
lagged 1-day USD returns and current AUD returns (0.5685) is larger, on average, than the covari-
ance (0.1633) that would typically be reported. Conversely, for the USD and CAD returns, the
autocovariance estimates are negligible relative to the covariance estimates. This evidence points
to atypical finding: first order autocovariances of returns for assets that trade at different times are
larger than autocovariances for returns on assets that trade synchronously.®

One possible explanation for the large autocovariances has to do with information flows between markets. The lit-
erature on information flows between markets include studies analyzing Japanese and US equity markets (Jaffe
and Westerfield (1985), Becker, et.al, (1992), Lau and Diltz, (1994)). Papers that focus on many markets include
Eun and Shim, (1989).
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As acheck of the results above and to understand how RiskMetrics correlation forecasts are
affected by nonsynchronous returns, we now focus on covariance forecasts for a specific day. We
continue to use USD, CAD and AUD 10-year zero rates. Consider the 1-day forecast period

May 12 to May 13, 1995. In RiskMetrics, these 1-day forecasts are available at 10 am. EST on
May 12. The most recent USD (CAD) return is calculated over the period 3:30 pm EST on 5/10 to
3:30 pm EST on 5/11 whereas the most recent AUD return is calculated over the period 1:00 am
EST on 5/10 to 1:00 am EST on 5/11. Table 8.10 presents covariance forecasts for May 12 along
with their standard errors.

Table 8.10
RiskMetrics daily covariance forecasts
10-year zero rates; May 12, 1995

Return series Covariance T-statistic
rtlb;D, 5/12erSD, 5/12 0.305 -
rfJb;D, 5/ 11r2bjD, 5/12 0.629 (0.074)* 8.5
fﬁbéo, 5/12r2bSD, 5/11 0.440 (0.074) 5.9
fﬁbéo, 5/ 11rgbASD, 5/12 0.530 -
fﬁbgo, 5/ 12rgb:D, 5/12 0.106 (0.058) 18
v, 5/ 12" oD, /11 0.126 (0.059) 213

* Asymptotic standard errors are reported in parentheses.
T For adiscussion on the use of the t-statistic for the autocovariances see Shanken (1987).

In agreement wigh previous results, we find that whilgthere is strong covariation between lagged
USD returns rfJSSD’ 5,11 and current AUD returns rfJSSD’ 5,12 (@S shown by large t-statistics), the
covariation between lagged USD and CAD returnsis not nearly as strong. The results also show
evidence of covariation between lagged AUD returns and current USD returns.

The preceding analysis describes a situation where the standard covariances calculated from non-
synchronous data do not capture all the covariation between returns. By estimating autocovari-
ances, it is possible to measure the 1-day lead and lag effects across return series. With
nonsynchronous data, these lead and |ag effects appear quite large. In other words, current and
past information in one return series is correlated with current and past information in another
series. If we represent information by returns, then following Cohen, Hawawini, Maier, Schwartz
and Whitcomb, (CHMSW 1983) we can write observed returns as a function of weighted unob-
served current and lag true returns. The weights simply represent how much information in a spe-
cific true return appearsin the return that is observed. Given this, we can write observed
(nonsynchronous) returns for the USD and AUD 10-year zero returns as follows:

obs _
[8.43] uso,t = Ousp,tRusp,t + Qusp, t-1Tusp,t-1
obs -9 R +0
Faub,t = Yaup,t™usp,t Yaup, t-1"auD, t-1
The 6. , _; 'sarerandom variables that represent the proportion of the true return of asset j gener-

ated in penodt i that is actually incorporated in observed returnsin period t. In other words, the
0. it 'sare weightsthat capture how the true return generated in one period impacts on the observed
returnsin the same period and the next. It is also assumed that:
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Bup, ¢ @d 6yp  areindependent for all t and 7

Bup, ¢ @d 6 gp ; aeindependent of R,  and Ryp ¢
E(Oayp 1) =E(Bygp o) foraltand

E(e“+e ) = 1forj=AUD,USD andforaltand t

[8.44]

jt-1

Table 8.11 shows, for the example given in the preceding section, the relationship between the
date when the true return is calculated and the weight assigned to the true return.

Table 8.11
Relationship between lagged returns and applied weights
observed USD and AUD returns for May 12, 1995

Date 5/9-510  5/9-510  510-511  5/10-5/11
Weight 0 8 8 8

AUD,t-1 USD,t-1 AUD, t USD, t

. . 0 obs obs [
Earlier we computed the covariance based on observed returns, Cov o M aup. ] However,

we can use Eq. [8.43] to compute the covariance of the true returns cov (1 qp ¢ Maup 1) 1 1-€-

_ 0 obs obs 0
cov (Fygp v Faup, ) = COVIysp, v FauD, t—10

+ [J obs obs [ + [ obs obs [
COVIT ysp, v Faup, 0T COVT ysp, t—10 Faup, {0

[8.45]

We refer to this estimator as the “ adjusted” covariance. Having established the form of the
adjusted covariance estimator, the adjusted correlation estimator for any two return seriesj
and kis:

[Jobs obs [ + [ obs _obd] + [ obs obd]

[8.46] _ ooV o Ny a0t GOV oo Ny (DT COVIT 1 Ny 1O
: Pikt = Tobd]_ 0 obd]
stdry; ostd iy (O

Table 8.12 shows the original and adjusted correlation estimates for USD-AUD and USD-CAD
10-year zero rate returns.

Table 8.12
Original and adjusted correlation forecasts
USD-AUD 10-year zero rates; May 12, 1995

Daily forecasts Original Adjusted % change
oV (' ysp. 5,12 F AUD, 5/12) 0.305 0.560 84%
coV (fysp 5,12 Fcap, 5/12) 0.530 0.573 8%

Note that the USD-AUD adjusted covariance increases the original covariance estimate by 84%.
Earlier (see Table 8.10) we found the lead-lag covariation for the USD-AUD series to be statisti-
cally significant. Applying the adjusted covariance estimator to the synchronous series USD-CAD,
we find only an 8% increase over the original covariance estimate. However, the evidence from
Table 8.10 would suggest that thisincrease is negligible.
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8.5.1.3 Checking the results

How does the adjustment algorithm perform in practice? Chart 8.7 compares three daily correla-
tion estimates for 10-year zero coupon rates in Australia and the United States: (1) Standard
RiskM etrics using nonsynchronous data, (2) estimate correlation using synchronous data collected
in Asian trading hours and, (3) RiskMetrics Adjusted using the estimator in Eg. [8.46].

Chart 8.7

Adjusting 10-year USD/AUD bond zero correlation
using daily RiskMetrics close/close data and 0:00 GMT data

1.0 - **RiskMetrics™ Adjusted**

Synchronous

RiskMetrics™

The results show that the adjustment factor captures the effects of the timing differences that affect
the standard RiskM etrics estimates which use nonsynchronous data. A potential drawback of using
this estimator, however, is that the adjusted series displays more volatility than either the unad-
justed or the synchronous series. This means that in practice, choices may have to be made as to
when to apply the methodology. In the Australian/US casg, it is clear that the benefits of the adjust-
ment in terms of increasing the correlation to a level consistent with the one obtained when using
synchronous data outweighs the increased volatility. The choice, however, may not always be that
clear cut as shown by Chart 8.8 which compares adjusted and unadjusted correlations for the US
and Japanese 10-year zero rates. |n periods when the underlying correlation between the two mar-
ketsis significant (Jan-Feb 1995, the algorithm correctly adjusts the estimate). In periods of lower
correlation, the algorithm only increases the volatility of the estimate.
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Chart 8.8
10-year Japan/US government bond zero correlation
using daily RiskMetrics close/close data and 0:00 GMT data

Correlation
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Also, in practice, estimation of the adjusted correlation is not necessarily straightforward because
we must take into account the chance of getting adjusted correlation estimates above 1. This
potential problem arises because the numerator in Eq. [8.46] is being adjusted without due consid-
eration of the denominator. An algorithm that allows us to estimate the adjusted correlation with-
out obtaining correlations greater than 1 in absolute value is given in Section 8.5.2.

Table 8.13 on page 196 reports sample statistics for 1-day correlation forecasts estimated over var-

ious sample periods for both the original RiskMetrics and adjusted correlation estimators. Correla-
tions between United States and Asia-Pacific are based on non-synchronous data.

8.5.2 Using the algorithm in a multivariate framework
Finally, we explain how to compute the adjusted correlation matrix.

1. Calculate the unadjusted (standard) RiskMetrics covariance matrix, . (X isan N x N, posi-
tive semi-definite matrix).

2. Compute the nonsynchronous data adjustment matrix K where the elements of K are

(8.47] K - Bcov(rk’t, r“_l) +cov(rk’t_l,rj,t) for k# j
Do fork = j

3. Theadjusted covariance matrix M, isgivenby M = ¥+ fK where 0< f < 1. The param-
eter f that isused in practice is the largest possible f such that M is positive semi-definite.
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Table 8.13

Correlations between US and foreign instruments

Correlations between USD 10-year zero rates and JPY, AUD, and NZD 10-year zerorates.*

Sample period: May 1991-May 1995.

Original Adjusted

JPY AUD NZD JPY AUD NzZD
mean 0.026 0.166 0.047 0.193 0.458 0.319
median 0.040 0.155 0.036 0.221 0.469 0.367
std dev 0.151 0.151 0.171 0.308 0.221 0.241
max 0.517 0.526 0.613 0.987 0.937 0.921
min -0491 -0.172 -0.389 -0.762 -0.164  —0.405
Correlations between USD 2-year swap ratesand JPY, AUD, NZD, HKD 2-year swap rates.*
Sample period: May 1993-May 1995.

Origina Adjusted

JPY AUD NzZD HKD JPY AUD NzD HKD
mean 0.018 0.233 0.042 0.139 0.054 0.493 0.249 0.572
median 0.025 0.200 0.020 0.103 0.065 0.502 0.247 0.598
std dev 0.147 0.183 0.179 0.217 0.196 0.181 0.203 0.233
max 0.319 0.647 0.559 0.696 0.558 0.920 0.745 0.945
min -0.358 -0.148 -0.350 -0.504 -0456 -0.096 -0.356 -0.411
Correlations between USD equity index and JPY, AUD, NZD, HKD, SGD equity indices.*
Sample period: May 1993-May 1995.

Original Adjusted

JPY AUD NzZD HKD SGD JPY AUD NzZD HKD SGD
mean 0.051 0.099 -0.023 0.006 0.038 0.124 0330 -0.055 -0.013 0.014
median 0.067 0.119 -0.021 -0.001 0.028 0.140 0.348  -0.053 0.056 -0.024
std dev 0.166 0.176 0.128 0.119 0.145 0.199 0.206 0.187 0.226 0.237
max 0.444 0.504 0.283 0.271 0.484 0.653 0.810 0.349 0.645 0.641
min -0.335 -0.345 -0455 -0.298 -0.384 -0.395 -0.213 -0524 -0527 -0.589

* JPY = Japanese yen, AUD = Australian dollar, NZD = New Zealand dollar, HKD = Hong Kong dollar, SGD = Singapore dollar
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Datais one of the cornerstones of any risk management methodology. We examined a number of
data providers and decided that the sources detailed in this chapter were the most appropriate for

Oour pUrposes.

9.1 Foreign exchange
Foreign exchange prices are sourced from WM Company and Reuters. They are mid-spot

exchange prices recorded at 4:00 p.m. London time (11:00 a.m. EST). All foreign exchange data
used for RiskMetricsisidentical to the data used by the J.P. Morgan family of government bond

indices. (See Table 9.1.)

Table 9.1
Foreign exchange
Currency Codes
Americas Asia Pacific Europe and Africa

ARS Argentine peso
CAD Canadian dollar
MXN Mexican peso
usb U.S. dollar

EMB EMBI+*

AUD
HKD
IDR
JPY
KRW
MYR
NZD
PHP

THB
TWD

Australian dollar
Hong Kong dollar
Indonesian rupiah
Japanese yen
Korean won
Malaysian ringgit
New Zealand dollar
Philippine peso
Singapore dollar
Thailand baht
Taiwan dollar

ATS
BEF
CHF
DEM
DKK
ESP
FIM
FRF
GBP
IEP
ITL
NLG
NOK
PTE
SEK
XEU
ZAR

Austrian shilling
Belgian franc
Swiss franc
Deutsche mark
Danish kroner
Spanish peseta
Finnish mark
French franc
Sterling

Irish pound

Italian lira

Dutch guilder
Norwegian kroner
Portuguese escudo
Swedish krona
ECU

South African rand

* EMBI+ stands for the J.P. Morgan Emerging Markets Bond Index Plus.

9.2 Money market rates

Most 1-, 2-, 3-, 6-, and 12-month money market rates (offered side) are recorded on adaily basis
by J.P. Morgan in London at 4:00 p.m. (11:00 a.m. EST). Those obtained from external sources are

also shown in Table 9.2.
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Table 9.2
Money market rates. sourcesand term structures

Source Time Term Structure
Market J.P. Morgan Third Party” U.S.EST im 3m 6m 12m
Australia . 11:00 am. . . . .
Hong Kong . 10:00 p.m. . . . .
Indonesial . 5:00 am. . . . .
Japan . 11:00 am. . . . .
MalaysiaJr . 5:00 am. . . . .
New Zealand . 12:00 am. . . .
Singapore . 4:30 am. . . . .
Thailand' . 5:00 am. . . . .
Austria . 11:00 am. . . . .
Belgium . 11:00 am. . . . .
Denmark . 11:00 am. . . . .
Finland . 11:00 am. . . . .
France . 11:00 am. . . . .
Ireland . 11:00 am. . . . .
Italy . 11:00 am. . . . .
Netherlands . 11:00 am. . . . .
Norway . 11:00 am. . . . .
Portugal . 11:00 am. . . . .
South Africa 11:00 am. . . . .
Spain . 11:00 am. . . . .
Sweden . 11:00 am. . . . .
Switzerland . 11:00 am. . . . .
U.K. . 11:00 am. . . . .
ECU . 11:00 am. . . . .
Canada . 11:00 am. . . . .
Mexico¥ . 12:00 p.m. . . . .
U.sS. . 11:00 am. . . . .

* Third party source data from Reuters Generic except for Hong Kong (Reuters HIBO), Singapore (Reuters
MASX), and New Zealand (National Bank of New Zealand).

T Money market rates for Indonesia, Malaysia, and Thailand are calculated using foreign exchange forward-
points.

$ Mexican rates represent secondary trading in Cetes.

9.3 Government bond zero rates

Zero coupon rates ranging in maturity from 2 to 30 years for the government bond markets
included in the J.P. Morgan Government Bond Index as well as the Irish, ECU, and New Zealand
markets. (See Table 9.3.)

RiskMetricsl] —Technical Document
Fourth Edition



Table 9.3

9.3 Government bond zero rates

Government bond zerorates. sourcesand term structures

201

Market

Source

Time

Term structure

J.P. Morgan Third Party

U.S. EST

2y 3y 4 Sy 7y 9 10y 15y 20y 30y

Australia
Japan
New Zealand

Belgium
Denmark
France
Germany
Ireland

Italy
Netherlands
South Africa
Spain
Sweden
U.K.

ECU

Canada
u.s.

Emerging M kt.t

1:30 am.
1:00 am.
12:00 am.

11:00 am.
10:30 am.
10:30 am.
11:30 am.
10:30 am.
10:45 am.
11:00 am.
11:00 am.
11:00 am.
10:00 am.
11:45am.
11:45am.

3:30 p.m.
3:30 am.

3:00 p.m.

* Third party data sourced from Den Danske Bank (Denmark), NCB Stockbrokers (Ireland), National Bank of New Zealand (New

Zedland), and SE Banken (Sweden).

T J. P Morgan Emerging Markets Bond Index Plus (EMBI+).

If the objective is to measure the volatility of individual cash flows, then one could ask whether it

is appropriate to use a term structure model instead of the underlying zero rates which can be

directly observed from instruments such as Strips. The selection of a modeled term structure as the
basis for calculating market volatilities was motivated by the fact that there are few markets which
have observable zero rates in the form of government bond Strips from which to estimate volatili-
ties. In fact, only the U.S. and French markets have reasonably liquid Strips which could form the
basis for a statistically solid volatility analysis. Most other markets in the OECD have either no

Strip market or arelatively illiquid one.

The one possible problem of the term structure approach is that it would not be unreasonable to
assume the volatility of points along the term structure may be lower than the market's real volatil-

ity because of the smoothing impact of passing a curve through a universe of real data points.

To see whether there was support for this assumption, we compared the volatility estimates

obtained from term structure derived zero rates and actual Strip yields for the U.S. market across

four maturities (3, 5, 7, and 10 years). The results of the comparison are shown in Chart 9.1.
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Chart 9.1
Volatility estimates: daily horizon
1.65 standard deviation—6-month moving average
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The results show that there is no clear bias from using the term structure versus underlying Strips
data. The differences between the two measures decline as maturity increases and are partially the
result of the lack of liquidity of the short end of the U.S. Strip market. Market movements specific
to Strips can also be caused by investor behavior in certain hedging strategies that cause prices to
sometimes behave erratically in comparison to the coupon curve from which the term structure is
derived.

9.4 Swap rates

Swap par rates from 2 to 10 years are recorded on a daily basis by J.P. Morgan, except for Ireland
(provided by NCB Stockbrokers), Hong Kong (Reuters TFHK) and Indonesia, Malaysiaand Thai-
land (Reuters EXOT). (See Table 9.4.) The par rates are then converted to zero coupon equivalents
rates for the purpose of inclusion within the RiskMetrics data set. (Refer to Section 8.1 for details).
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9.5 Equity indices

Source Time Term structure
Market J.P. Morgan Third Party* USEST 2y 3y 4y by 7y 10y
Australia . 1:30 am. . . . . . .
Hong Kong . 4:30 am. . . . . . .
Indonesia . 4:00 am. . . . .
Japan . 1:00 am. . . . . . .
Malaysia . 4:00 am. . . . .
New Zealand . 3:00 p.m. . . . . .
Thailand . 4:00 am. . . . .
Belgium . 10:00 am. . . . . . .
Denmark . 10:00 am. . . . . . .
Finland . 10:00 am . . . .
France . 10:00 am. . . . . . .
Germany . 10:00 p.m. . . . . . .
Ireland . 11:00 am. . . . .
Italy . 10:00 am. . . . . . .
Netherlands . 10:00 am. . . . . . .
Spain . 10:00 am. . . . . . .
Sweden . 10:00 am. . . . . . .
Switzerland . 10:00 am. . . . . . .
U.K. . 10:00 am. . . . . . .
ECU . 10:00 am. . . . . . .
Canada . 3:30 p.m. . . . . . .
u.sS. . 3:30 am. . . . . . .

* Third party source data from Reuters Generic except for Ireland (NCBI), Hong Kong (TFHK), and Indonesia,
Malaysia, Thailand (EXQOT).

9.5 Equity indices
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The following list of equity indices (Table 9.5) have been selected as benchmarks for measuring
the market risk inherent in holding equity positions in their respective markets. The factors that
determined the selection of these indices include the existence of index futures that can be used as
hedging instruments, sufficient market capitalization in relation to the total market, and low track-
ing error versus a representation of the total capitalization. All the indices listed below measure
principal return except for the DAX which is atotal return index.
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Table 9.5
Equity indices: sources*

% MKkt. Time,
Market Exchange Index Name Weighting cap. U.S. EST
Australia Australian Stock Exchange All Ordinaries MC 96 1:10 am.
Hong Kong Hong Kong Stock Exchange Hang Seng MC 77 12:30 am.
Indonesia Jakarta Stock Exchange JSE MC 4:00 am.
Korea Seoul Stock Exchange KOPSI MC 3:30am.
Japan Tokyo Stock Exchange Nikei 225 MC 46 1:00 am.
Malaysia Kuala Lumpur Stock Exchange KLSE MC 6:00 am.
New Zealand New Zealand Stock Exchange Capital 40 MC — 10:30 p.m.
Philippines Manila Stock Exchange MSE Com'’l &Inustil Price MC 1:00 am.
Singapore Stock Exchange of Singapore Sing. All Share MC — 4:30 am.
Taiwan Taipel Stock Exchange TSE MC 1:00 am.
Thailand Bangkok Stock Exchange SET MC 5:00 am.
Austria Vienna Stock Exchange Creditanstalt MC — 7:30 am.
Belgium Brussels Stock Exchange BEL 20 MC 78 10:00 am.
Denmark Copenhagen Stock Exchange KFX MC a4 9:30 am.
Finland Helsinki Stock Exchange Hex General MC — 10:00 am.
France Paris Bourse CAC 40 MC 55 11:00 am.
Germany Frankfurt Stock Exchange DAX MC 57 10:00 am.
Ireland Irish Stock Exchange Irish SE ISEQ — — 12:30 p.m.
Italy Milan Stock Exchange MIB 30 MC 65 10:30 am.
Japan Tokyo Stock Exchange Nikei 225 MC 46 1:00 am.
Netherlands Amsterdam Stock Exchange AEX MC 80 10:30 am.
Norway Oslo Stock Exchange Oslo SE General — — 9:00 am.
Portugal Lisbon Stock Exchange Banco Totta Sl — — 11:00 am.
South Africa Johannesburg Stock Exchange JSE MC 10:00 am.
Spain Madrid Stock Exchange IBEX 35 MC 80 11:00 am.
Sweden Stockholm Stock Exchange OMX MC 61 10:00 am.
Switzerland Zurich Stock Exchange SMI MC 56 10:00 am.
U.K. London Stock Exchange FTSE 100 MC 69 10:00 am.
Argentina Buenos Aires Stock Exchange Merval Vol. 5:00 p.m.
Canada Toronto Stock Exchange TSE 100 MC 63 4:15 p.m.
Mexico Mexico Stock Exchange IPC MC 3:00 p.m.
u.s. New York Stock Exchange Standard and Poor’s 100 MC 60 4:15am.

* Data sourced from DRI.
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9.6 Commodities
The commodity markets that have been included in RiskMetrics are the same markets as the
J.P. Morgan Commodity Index (JPMCI). The data for these markets are shown in Table 9.6.

Table 9.6
Commodities: sourcesand term structures

Term structure

Time,
Commodity Source U.S EST Spot 1Im 3m 6m 12m 15m 27m
WTI Light Sweet Crude NYMEX" 3:10 p.m. o e e e
Heating Oil NYMEX 3:10 p.m. . . . .
NY Harbor #2 unleaded gas NYMEX 3:10 p.m. . . .
Natural gas NYMEX 3:10 p.m. . . . .
Aluminum LMET 11:20 am. . . . .
Copper LME 11:15am. . . . .
Nickel LME 11:10 am. . . .
Zinc LME 11:30 am. . . . .
Gold LME 11:00 am. .
Silver LFOE¥ 11:00 am. .
Platinum LPPAS 11:00 am. .

* NYMEX (New York Mercantile Exchange)

1t LME (London Metals Exchange)

} LFOE (London futures and Options Metal Exchange)
§ LPPA (London Platinum & Palladium Association)

The choice between either the rolling nearby or interpolation (constant maturity) approach isinflu-
enced by the characteristics of each contract. We use the interpolation methodol ogy wherever pos-
sible, but in certain cases this approach cannot or should not be implemented.

We use interpolation (1) for all energy contracts. (See Table 9.7.)

Table 9.7
Energy maturities

Maturities

Energy Im 3m 6m 12m 15m 27m

Light sweet crude I*
Heating Oil |
Unleaded Gas |
Natural Gas |

* | = Interpolated methodol ogy.

The term structures for base metals are based upon rolling nearby contracts with the exception of
the spot (S) and 3-month contracts. Data availability is the issue here. Price data for contracts
traded on the London Metals Exchange is available for constant maturity 3-month (A) contracts
(prices are quoted on a daily basis for 3 months forward) and rolling 15- and 27- month (N) con-
tracts. Nickel extends out to only 15 months. (See Table 9.8.)
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Table 9.8
Base metal maturities

Maturities
Commaodity Spot 3m 6m 12m 15m 27m
Aluminum S AT N* N
Copper S A N N
Nickel S A N
Zinc S A N N

* S = Spot contract.
1 A = Constant maturity contract.
F N = Rolling contract.

Spot prices are the driving factor in the precious metals markets. Volatility curvesin the gold, sil-
ver, and platinum markets are relatively flat (compared to the energy curves) and spot prices are
the main determinant of the future value of instruments: storage costs are negligible and conve-
nience yields such as those associated with the energy markets are not a consideration.
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RiskMetricsvolatility and correlation files

This section serves as a guide to understanding the information contained in the RiskMetrics daily
and monthly volatility and correlation files. It defines the naming standards we have adopted for
the RiskMetrics files and time series, the file formats, and the order in which the data is presented
in these files.

10.1 Availability

Volatility and correlation files are updated each U.S. business day and posted on the Internet by
10:30 am. EST. They cover data through close-of-business for the previous U.S. business day.
Instructions on downloading these files are available in Appendix H.

10.2 File names

To ensure compatibility with MS-DOS, file names use the “8.3” format: 8-character name and
3-character extension (see Table 10.1).

Table 10.1
RiskMetricsfile names
“ddmmyy” indicates the date on which the market data was collected

File name format

Volatility Correlation File description

DVddmmyy.RM3 DCddmmyy.RM3 1-day estimates
MVddmmyy.RM3 MCddmmyy.RM3 25-day estimates

BVddmmyy.RM3 BCddmmyy.RM3 Regulatory data sets
DVddmmyy.vol DCddmmyy.cor Add-In 1-day estimates
MVddmmyy.vol M Cddmmyy.cor Add-In 25-day estimates
BVddmmyy.vol BCddmmyy.cor Add-In regulatory

Thefirst two characters designate whether thefileis daily (D) or monthly (M), and whether it con-
tains volatility (V) or correlation (C) data. The next six characters identify the collection date of
the market data for which the volatilities and correlations are computed. The extension identifies
the version of the data set.

10.3 Data series naming standards

In both volatility and correlation files, all series names follow the same naming convention. They
start with athree-letter code followed by a period and a suffix, for example, USD.R180.

The three-letter code is either a SWIFT? currency code or, in the case of commodities, a commod-
ity code, as shown in Table 10.2. The suffix identifies the asset class (and the maturity for
interest-rate and commodity series). Table 10.3 listsinstrument suffix codes, followed by an exam-
ple of how currency, commodity, and suffix codes are used.

1 The exception is EMB. This represents J. P. Morgan's Emerging Markets Bond Index Plus.
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Table 10.2
Currency and commodity identifiers

Currency Codes

Americas Asia Pacific Europe and Africa Commodity Codes
ARS Argentinepeso |AUD  Australian dollar ATS Austrian shilling ALU Aluminum
CAD Canadian dollar |HKD Hong Kong dollar BEF Belgian franc COP Copper
MXN Mexican peso IDR Indonesian rupiah CHF Swiss franc GAS Natural gas
usD U.S. dollar JPY Japanese yen DEM Deutsche mark GLD Gold
EMB EMBI+" KRW  Korean won DKK Danish kroner HTO NY Harbor #2 heating ail
MYR  Malaysian ringgit ESP Spanish peseta NIC Nickel
NzZD New Zealand dollar  |FIM Finnish mark PLA Platinum
PHP Philippine peso FRF French franc SLV Silver
SGD Singapore dollar GBP Sterling UNL Unleaded gas
THB Thailand baht IEP Irish pound WTI Light Sweet Crude
TWD  Taiwan dollar ITL Italian lira ZNC Zinc
NLG Dutch guilder
NOK Norwegian kroner
PTE Portuguese escudo
SEK Swedish krona
XEU ECU
ZAR South African rand

* EMBI+ stands for the J.P. Morgan Emerging Markets Bond Index Plus.

Table 10.3
Maturity and asset classidentifiers

Instrument Suffix Codes

Foreign Equity Money

Maturity exchange indices mar ket Swaps Gov't bonds Commodities
Spot XS SE - - - C00
Im - - R0O30 - - -
3m - - R0O90 - - C03
6m - - R180 - - C06
12m - - R360 - - C12
15m - - - - - C15
18m - - - - - C18
24m (2y) - - - S02 Z02 C24
27m - - - - - Cc27
36m (3y) - - - S03 Z03 C36
sy - - - S04 704 -
5y - - - S05 Z05 -
7y - - - so7 z07 -
9y - - - - Z09 -
10y - - - S10 Z10 -
15y - - - - 715 -
20y - - - - Z20 -
30y - - - - Z30 -
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For example, we identify the Singapore dollar foreign exchange rate by SGD.XS, the U.S. dollar
6-month money market rate by USD.R180, the CAC 40 index by FRF.SE, the 2-year sterling swap
rate by GBP.S02, the 10-year Japanese government bond (JGB) by JPY.Z10, and the 3-month nat-
ural gas future by GAS.CO03.

10.4 Format of volatility files

Each daily and monthly volatility file starts with a set of header lines that begin with an asterisk (*)
and describe the contents of the file. Following the header lines are a set of record lines (without
an asterisk) containing the daily or monthly data.

Table 10.4 shows a portion of adaily volatility file.

Table 10.4
Sample volatility file
Line#  Volatility file
1 *Estimate of volatilities for a one day horizon
2  *COLUMNS=2, LINES=418, DATE=11/14/96, VERSION 2.0
3  *RiskMetricsis based on but differs significantly from the market risk management systems
4  *developed by J.P. Morgan for its own use. J.P. Morgan does not warranty any results obtained
5  *from use of the RiskMetrics methodology, documentation or any information derived from
6  *thedata(collectively the “Data’) and does not guarantee its sequence, timeliness, accuracy or
7  *completeness. J.P. Morgan may discontinue generating the Data at any time without any prior
8  *notice. The Datais calculated on the basis of the historical observations and should not be relied
9  *upon to predict future market movements. The Datais meant to be used with systems developed
10  *by third parties. J.P. Morgan does not guarantee the accuracy or quality of such systems.
11  *SERIES, PRICE/YIELD,DECAYFCTR,PRICEVOL,YIELDVOL
12 ATS.XS.VOLD,0.094150,0.940,0.554647,ND
13 AUD.XS\VVOLD, 0.791600,0.940,0.643127,ND
14 BEFRXS.\VOLD, 0.032152,0.940,0.546484,ND

Inthistable, each lineisinterpreted as follows:
 Line 1 identifies whether the fileis adaily or monthly file.

« Line2listsfile characteristics in the following order: the number of data columns, the num-
ber of record lines, the file creation date, and the version number of the file format.

e Lines 3-10 are a disclaimer.
 Line 11 contains comma-separated column titles under which the volatility datais listed.

« Lines 12 through the last line at the end of file (not shown) represent the record lines, which
contain the comma-separated volatility data formatted as shown in Table 10.5.
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Table 10.5

Data columns and format in volatility files

Column title Data

(header line) (record lines) Format of volatility data

SERIES Series name See Section 10.3 for series naming conventions.
In addition, each series name is given an extension, either
“VOLD” (for daily volatility estimate), or “.VOLM" (for
monthly volatility estimate).

PRICE/YIELD Price/Yield level #.#HHA or “NM” if the data cannot be published.

DECAYFCTR Exponential moving #

average decay factor
PRICEVOL Price volatility estimate # A (Y% units)
YIELDVOL Yield volatility estimate #. A (Y units) or “ND” if the series has no yield vola-

tility (e.g., FX rates).

For example, in Table 10.4, the first value ATS.XS.VOLD in Line 12 corresponds to the
SERIES column title, and identifies the series to be a USD/ATS daily volatility series. Simi-
larly, the remaining values are interpreted as follows: The value 0.094150 was used as the
pricelyield level in the volatility calculation. The value 0.940 was used as the exponential
moving average decay factor. The value 0.554647% is the price volatility estimate. The value
“ND” indicates that the series has no yield volatility.

10.5 Format of correlation files

Daily and monthly correlation files are formatted similar to the volatility files (see Section 10.4),
and contain anal ogous header and record lines (see Table 10.6). Each file comprises the lower half
of the correlation matrix for the series being correlated, including the diagonal, which has a value
of “1.000.” (The upper half is not shown since the daily and monthly correlation matrices are sym-
metrical around the diagonal. For example, 3-month USD LIBOR to 3-month DEM LIBOR has
the same correlation as 3-month DEM LIBOR to 3-month USD LIBOR.)
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Table 10.6
Samplecorrelation file
Line# Correlation file
1 *Estimate of correlations for a one day horizon
2  *COLUMNS=2, LINES=087571, DATE=11/14/96, VERSION 2.0
3  *RiskMetricsis based on but differs significantly from the market risk management systems
4 *developed by J.P. Morgan for its own use. J.P. Morgan does not warranty any results obtained
5  *from use of the RiskMetrics methodology, documentation or any information derived from
6  *thedata(collectively the “Data’) and does not guarantee its sequence, timeliness, accuracy or
7  *completeness. J.P. Morgan may discontinue generating the Data at any time without any prior
8  *notice. The Datais calculated on the basis of the historical observations and should not be relied
9  *upon to predict future market movements. The Data is meant to be used with systems devel oped
10  *by third parties. J.P. Morgan does not guarantee the accuracy or quality of such systems.
11  *SERIES, CORRELATION
12 ATS.XS.ATS.XS.CORD,1.000000
13 ATS.XS.AUD.XS.CORD, -0.251566
14  ATSXS.BEF.XS.CORD, 0.985189
In Table 10.6, each lineisinterpreted as follows:
 Line 1 identifies whether the fileis adaily or monthly file.
« Line 2 listsfile characteristics in the following order: the number of data columns, the num-
ber of record lines, the file creation date, and the version number of the file format.
» Lines 3-10 are adisclaimer.
« Line 11 contains comma-separated column titles under which the correlation datais listed.
« Lines 12 through the last line at the end of the file (not shown) represent the record lines,
which contain the comma-separated correlation data formatted as shown in Table 10.7.
Table 10.7

Data columns and format in correlation files

Column title Correlation data
(header line) (record lines) Format of correlation data
SERIES Series name See Section 10.3 for series naming conventions.

CORRELATION

In addition, each series nameisgiven an extension, either “.CORD”
(for daily correlation), or “.CORM” (for monthly correlation).

Correlation # AT

coefficient
Correlation coefficients are computed by using the same expo-
nential moving average method as in the volatility files (i.e.,
decay factor of 0.940 for a 1-day horizon, and 0.970 for a
1-month horizon.)

Part

For example, Line 13 in Table 10.6 represents a USD/ATS to USD/AUD daily correlation
estimate of —0.251566 measured using an exponential moving average decay factor of 0.940
(the default value for the 1-day horizon).
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10.6 Data seriesorder

Data seriesin the volatility and correlation files are sorted first alphabetically by SWIFT code and
commodity class indicator, and then by maturity within the following asset class hierarchy: for-
eign exchange, money markets, swaps, government bonds, equity indices, and commodities.

10.7 Underlying price/rate availability

Dueto legal considerations, not all prices or yields are published in the volatility files. What is
published are energy future contract prices and the yields on foreign exchange, swaps, and govern-
ment bonds. The current level of money market yields can be approximated from Eq. [10.1] by
using the published price volatilities and yield volatilities as well as the instruments’ modified
durations.

[10.1] Currentyield = 0./ (Oy;qq (Modified Duration)
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