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This 
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 provides a detailed description of RiskMetrics

 



 

, a set of techniques and data 
to measure market risks in portfolios of fixed income instruments, equities, foreign exchange, commod-
ities, and their derivatives issued in over 30 countries. This edition has been expanded significantly from 
the previous release issued in May 1995.

We make this methodology and the corresponding RiskMetrics

 



 

 data sets available for three reasons:

1. We are interested in promoting greater transparency of market risks. Transparency is the key to 
effective risk management.

2. Our aim has been to establish a benchmark for market risk measurement. The absence of a common 
point of reference for market risks makes it difficult to compare different approaches to and mea-
sures of market risks. Risks are comparable only when they are measured with the same yardstick.

3. We intend to provide our clients with sound advice, including advice on managing their market 
risks. We describe the RiskMetrics

 



 

 methodology as an aid to clients in understanding and eval-
uating that advice.

Both J.P. Morgan and Reuters are committed to further the development of RiskMetrics

 



 

 as a fully 
transparent set of risk measurement methods. We look forward to continued feedback on how to main-
tain the quality that has made RiskMetrics

 



 

 the benchmark for measuring market risk.

RiskMetrics

 



 

 is based on, but differs significantly from, the risk measurement methodology developed 
by J.P. Morgan for the measurement, management, and control of market risks in its trading, arbitrage, 
and own investment account activities. 

 

We remind our readers that no amount of sophisticated an-
alytics will replace experience and professional judgment in managing risks

 

. RiskMetrics

 



 

 is noth-
ing more than a high-quality tool for the professional risk manager involved in the financial markets and 
is not a guarantee of specific results.

• J.P. Morgan and Reuters have teamed up to enhance RiskMetrics

 



 

. Morgan will continue to be 
responsible for enhancing the methods outlined in this document, while Reuters will control the 
production and distribution of the RiskMetrics

 



 

 data sets.
• Expanded sections on methodology outline enhanced analytical solutions for dealing with nonlin-

ear options risks and introduce methods on how to account for non-normal distributions.
• Enclosed diskette contains many examples used in this document. It allows readers to experiment 

with our risk measurement techniques.
• All publications and daily data sets are available free of charge on J.P. Morgan’s Web page on the 
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http://www.jpmorgan.com/RiskManagement/RiskMetrics/RiskMetrics.html
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This book

 

This is the reference document for RiskMetrics

 



 

. It covers all aspects of RiskMetrics and super-
sedes all previous editions of the 

 

Technical Document

 

. It is meant to serve as a reference to the 
methodology of statistical estimation of market risk, as well as detailed documentation of the ana-
lytics that generate the data sets that are published daily on our Internet Web sites.

This document reviews

1. The conceptual framework underlying the methodologies for estimating market risks.

2. The statistics of financial market returns.

3. How to model financial instrument exposures to a variety of market risk factors.

4. The data sets of statistical measures that we estimate and distribute daily over the Internet 
and shortly, the Reuters Web.

Measurement and management of market risks continues to be as much a craft as it is a science. 
It has evolved rapidly over the last 15 years and has continued to evolve since we launched 
RiskMetrics in October 1994. Dozens of professionals at J.P. Morgan have contributed to the 
development of this market risk management technology and the latest document contains entries 
or contributions from a significant number of our market risk professionals.

We have received numerous constructive comments and criticisms from professionals at Central 
Banks and regulatory bodies in many countries, from our competitors at other financial institu-
tions, from a large number specialists in academia and last, but not least, from our clients. Without 
their feedback, help, and encouragement to pursue our strategy of open disclosure of methodology 
and free access to data, we would not have been as successful in advancing this technology as 
much as we have over the last two years.

 

What is RiskMetrics?

 

RiskMetrics is a set of tools that enable participants in the financial markets to estimate their expo-
sure to market risk under what has been called the “Value-at-Risk framework”. RiskMetrics has 
three basic components:

• A set of market risk measurement methodologies outlined in this document.

• Data sets of volatility and correlation data used in the computation of market risk.

• Software systems developed by J.P.Morgan, subsidiaries of Reuters, and third party vendors 
that implement the methodologies described herein.

With the help of this document and the associated line of products, users should be in a position 
to estimate market risks in portfolios of foreign exchange, fixed income, equity and commodity 
products.

 

J.P. Morgan and Reuters team up on RiskMetrics

 

In June 1996, J.P. Morgan signed an agreement with Reuters to cooperate on the building of a new 
and more powerful version of RiskMetrics. Since the launch of RiskMetrics in October 1994, we 
have received numerous requests to add new products, instruments, and markets to the daily vola-
tility and correlation data sets. We have also perceived the need in the market for a more flexible 
VaR data tool than the standard matrices that are currently distributed over the Internet. The new 
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partnership with Reuters, which will be based on the precept that both firms will focus on their 
respective strengths, will help us achieve these objectives.

 

Methodology

 

J.P. Morgan will continue to develop the RiskMetrics set of VaR methodologies and publish them 
in the quarterly 

 

RiskMetrics Monito

 

r and in the annual 

 

RiskMetrics—Technical Document

 

.

 

RiskMetrics data sets

 

Reuters will take over the responsibility for data sourcing as well as production and delivery of the 
risk data sets. The current RiskMetrics data sets will continue to be available on the Internet free of 
charge and will be further improved as a benchmark tool designed to broaden the understanding of 
the principles of market risk measurement. 

When J.P. Morgan first launched RiskMetrics in October 1994, the objective was to go for broad 
market coverage initially, and follow up with more granularity in terms of the markets and instru-
ments covered. This over time, would reduce the need for proxies and would provide additional 
data to measure more accurately the risk associated with non-linear instruments. 

The partnership will address these new markets and products and will also introduce a new cus-
tomizable service, which will be available over the Reuters Web service. The customizable 
RiskMetrics approach will give risk managers the ability to scale data to meet the needs of their 
individual trading profiles. Its capabilities will range from providing customized covariance matri-
ces needed to run VaR calculations, to supplying data for historical simulation and stress-testing 
scenarios.

More details on these plans will be discussed in later editions of the 

 

RiskMetrics Monitor

 

.

 

Systems

 

Both J.P. Morgan and Reuters, through its Sailfish subsidiary, have developed client-site 
RiskMetrics VaR applications. These products, together with the expanding suite of third party 
applications will continue to provide RiskMetrics implementations.

 

What is new in this fourth edition?

 

In terms of content, the Fourth Edition of the 

 

Technical Document

 

 incorporates the changes and 
refinements to the methodology that were initially outlined in the 1995–1996 editions of the 

 

RiskMetrics Monitor

 

:

•

 

Expanded framework:

 

  We have worked extensively on refining the analytical framework 
for analyzing options risk without having to perform relatively time consuming simulations 
and have outlined the basis for an improved methodology which incorporates better informa-
tion on the tails of distributions related to financial asset price returns; we’ve also developed a 
data synchronization algorithm to refine our volatility and correlation estimates for products 
which do not trade in the same time zone;

•

 

New markets:

 

  We expanded the daily data sets to include estimated volatilities and correla-
tions of additional foreign exchange, fixed income and equity markets, particularly in South 
East Asia and Latin America.

•

 

Fine-tuned methodology:

 

  We have modified the approach in a number of ways. First, we’ve 
changed our definition of price volatility which is now based on a total return concept; we’ve 
also revised some of the algorithms used in our mapping routines and are in the process of 
redefining the techniques used in estimating equity portfolio risk.
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•

 

RiskMetrics products:

 

  While we have continued to expand the list of third parties providing 
RiskMetrics products and support, this is no longer included with this document. Given the 
rapid pace of change in the availability of risk management software products, readers are 
advised to consult our Internet web site for the latest available list of products. This list, 
which now includes FourFifteen

 



 

, J.P. Morgan’s own VaR calculator and report generating 
software, continues to grow, attesting to the broad acceptance RiskMetrics has achieved.

•

 

New tools to use the RiskMetrics data sets:

 

  We have published an Excel add-in function 
which enables users to import volatilities and correlations directly into a spreadsheet. This 
tool is available from our Internet web site.

The structure of the document has changed only slightly. As before, its size warrants the following 
note:  One need not read and understand the entire document in order to benefit from RiskMetrics. 
The document is organized in parts that address subjects of particular interest to many readers.

Part I: Risk Measurement Framework

This part is for the general practitioner. It provides a practical framework on how to 
think about market risks, how to apply that thinking in practice, and how to interpret the 
results. It reviews the different approaches to risk estimation, shows how the calcula-
tions work on simple examples and discusses how the results can be used in limit man-
agement, performance evaluation, and capital allocation.

Part II: Statistics of Financial Market Returns

This part requires an understanding and interest in statistical analysis. It reviews the 
assumptions behind the statistics used to describe financial market returns and how dis-
tributions of future returns can be estimated. 

Part III: Risk Modeling of Financial Instruments

This part is required reading for implementation of a market risk measurement system. 
It reviews how positions in any asset class can be described in a standardized fashion 
(foreign exchange, interest rates, equities, and commodities). Special attention is given 
to derivatives positions. The purpose is to demystify derivatives in order to show that 
their market risks can be measured in the same fashion as their underlying.

Part IV: RiskMetrics Data Sets

This part should be of interest to users of the RiskMetrics data sets. First it describes the 
sources of all daily price and rate data. It then discusses the attributes of each volatility 
and correlation series in the RiskMetrics data sets. And last, it provides detailed format 
descriptions required to decipher the data sets that can be downloaded from public or 
commercial sources. 

Appendices

This part reviews some of the more technical issues surrounding methodology and regu-
latory requirements for market risk capital in banks and demonstrates the use of Risk-
Metrics with the example diskette provided with this document. Finally, Appendix H 
shows you how to access the RiskMetrics data sets from the Internet.



 

vi Preface to the fourth edition

RiskMetrics

 



 

 —Technical Document
Fourth Edition

 

RiskMetrics examples diskette

This diskette is located inside the back cover. It contains an Excel workbook that 
includes some of the examples shown in this document. Such examples are identified by 
the icon shown here.

 

Future plans

 

We expect to update this 

 

Technical Document

 

 annually as we adapt our market risk standards to 
further improve the techniques and data to meet the changing needs of our clients. 

RiskMetrics is a now an integral part of J.P. Morgan’s Risk Management Services group which 
provides advisory services to a wide variety of the firm’s clients. We continue to welcome any sug-
gestions to enhance the methodology and adapt it further to the needs of the market. All sugges-
tions, requests and inquiries should be directed to the authors of this publication or to your local 
RiskMetrics contacts listed on the back cover.
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Chapter 8. Data and related statistical issues
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This chapter covers the RiskMetrics underlying yields and prices that are used in the volatility and 
correlation calculations. It also discusses the relationship between the number of time series and 
the amount of historical data available on these series as it relates to the volatility and correlations.

This chapter is organized as follows:

• Section 8.1 explains the basis or construction of the underlying yields and prices for each 
instrument type.

• Section 8.2 describes the filling in of missing data points, i.e., expectation maximization.

• Section 8.3 investigates the properties of a generic correlation matrix since these determine 
whether a portfolio’s standard deviation is meaningful.

• Section 8.4 provides an algorithm for recomputing the volatilities and correlations when a 
portfolio is based in a currency other than USD.

• Section 8.5 presents a methodology to calculate correlations when the yields or prices are 
sampled at different times, i.e., data recording is nonsynchronous.

 

8.1  Constructing RiskMetrics rates and prices

 

In this section we explain the construction of the underlying rates and prices that are used in the 
RiskMetrics calculations. Since the data represent only a subset of the most liquid instruments 
available in the markets, proxies should be used for the others. Recommendations on how to apply 
RiskMetrics to specific instruments are outlined in the paragraphs below.

 

8.1.1  Foreign exchange

 

RiskMetrics provides estimates of VaR statistics for returns on 31 currencies as measured against 
the US dollar (e.g., USD/DEM, USD/FRF) as well as correlations between returns. The datasets 
provided are therefore suited for estimating foreign exchange risk from a US dollar perspective. 

The methodology for using the data to measure foreign exchange risk from a currency perspective 
other than the US dollar is identical to the one described (Section 6.1.2) above but requires the 
input of revised volatilities and correlations. These modified volatilities and correlations can easily 
be derived from the original RiskMetrics datasets as described in Section 8.4. Also refer to the 
examples diskette.

Finally, measuring market exposure to currencies currently not included in the RiskMetrics data 
set will involve accessing underlying foreign exchange data from other sources or using one of the 
31 currencies as a proxy.

 

8.1.2  Interest rates

 

In RiskMetrics we describe the fixed income markets in terms of the price dynamics of zero cou-
pon constant maturity instruments. In the interest rate swap market there are quotes for constant 
maturities (e.g., 10-year swap rate). In the bond markets, constant maturity rates do not exist there-
fore we must construct them with the aid of a term structure model.
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The current data set provides volatilities and correlations for returns on money market deposits, 
swaps, and zero coupon government bonds in 33 markets. These parameters allow direct calcula-
tion of the volatility of cash flows. Correlations are provided between all RiskMetrics vertices and 
markets. 

 

8.1.2.1  Money market deposits 

 

The volatilities of price returns on money market deposits are to be used to estimate the market 
risk of all short-term cash flows (from one month to one year). Though they only cover one instru-
ment type at the short end of the yield curve, money market price return volatilities can be applied 
to measure the market risk of instruments that are highly correlated with money market deposits, 
such as Treasury bills or instruments that reprice off of rates such as the prime rate in the US or 
commercial paper rates.

 

1

 

8.1.2.2  Swaps

 

The volatilities of price returns on zero coupon swaps are to be used to estimate the market risk of   
interest rate swaps. We construct zero coupon swap prices and rates because they are required for 
the cashflow mapping methodology described in Section 6.2. We now explain how RiskMetrics 
constructs zero coupon swap prices (rates) from observed swap prices and rates by the method 
known as bootstrapping.

Suppose one knows the zero-coupon term structure, i.e., the prices of zero-coupon swaps 
, where each  

 

i 

 

= 1, …, n and  is the zero-coupon rate for the swap 
with maturity 

 

i

 

. Then it is straightforward to find the price of a coupon swap as

[8.1]

where  denotes the current swap rate on the n period swap. Now, in practice we observe the 
coupon term structure,  maturing at each coupon payment date. Using the coupon 
swap prices we can apply Eq. [8.1] to solve for the implied zero coupon term structure, i.e., zero 
coupon swap prices and rates. Starting with a 1-period zero coupon swap,  so 
that  or . Proceeding in an iterative manner, given the 
discount prices , we can solve for  and using the formula

[8.2]

The current RiskMetrics datasets do not allow differentiation between interest rate risks of instru-
ments of different credit quality; all market risk due to credit of equal maturity and currency is 
treated the same.

 

8.1.2.3  Zero coupon government bonds

 

The volatilities of price returns on zero coupon government bonds are to be used to estimate the 
market risk in government bond positions. Zero coupon prices (rates) are used because they are 
consistent with the cash flow mapping methodology described in Section 6.2. Zero coupon gov-
ernment bond prices can also be used as proxies for estimating the volatility of other securities 
when the appropriate volatility measure does not exist (corporate issues with maturities longer 
than 10 years, for example).

 

1

 

See the fourth quarter, 1995 

 

RiskMetrics Monitor

 

 for details.
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Zero coupon government bond yield curves cannot be directly observed, they can only be implied 
from prices of a collection of liquid bonds in the respective market. Consequently, a term structure 
model must be used to estimate a synthetic zero coupon yield curve which best fits the collection 
of observed prices. Such a model generates zero coupon yields for arbitrary points along the yield 
curve. 

 

8.1.2.4  EMBI+

 

The J. P. Morgan Emerging Markets Bond Index Plus tracks total returns for traded external debt 
instruments in the emerging markets. It is constructed as a “composite” of its four markets: Brady 
bonds, Eurobonds, U.S. dollar local markets, and loans. The EMBI+ provides investors with a def-
inition of the market for emerging markets external-currency debt, a list of the traded instruments, 
and a compilation of their terms. U.S dollar issues currently make up more than 95% of the index 
and sovereign issues make up 98%. A fuller description of the EMBI+ can be found in the 
J. P. Morgan publication

 

 Introducing the Emerging Markets Bond Index Plus (EMBI+) 

 

dated 
July 12, 1995.

 

8.1.3  Equities

 

According to the current RiskMetrics methodology, equities are mapped to their domestic market 
indices (for example, S&P500 for the US, DAX for Germany, and CAC40 for Canada). That is to 
say, individual stock betas, along with volatilities on price returns of local market indices are used 
to construct VaR estimates (see Section 6.3.2.2) of individual stocks. The reason for applying the 
beta coefficient is that it measures the covariation between the return on the individual stock and 
the return on the local market index whose volatility and correlation are provided by RiskMetrics. 

 

8.1.4  Commodities

 

A commodity futures contract is a standardized agreement to buy or sell a commodity. The price to 
a buyer of a commodity futures contract depends on three factors:

1. the current spot price of the commodity,

2. the carrying costs of the commodity. Money tied up by purchasing and carrying a commod-
ity could have been invested in some risk-free, interest bearing instrument. There may be 
costs associated with purchasing a product in the spot market (transaction costs) and hold-
ing it until or consuming it at some later date (storage costs), and

3. the expected supply and demand for the commodity. 

The future price of a commodity differs from its current spot price in a way that is analogous to the 
difference between 1-year and overnight interest rates for a particular currency. From this perspec-
tive we establish a term structure of commodity prices similar to that of interest rates. 

The most efficient and liquid markets for most commodities are the futures markets. These mar-
kets have the advantage of bringing together not only producers and consumers, but also investors 
who view commodities as they do any other asset class. Because of the superior liquidity and the 
transparency of the futures markets, we have decided to use futures prices as the foundation for 
modeling commodity risk. This applies to all commodities except bullion, as described below. 

 

8.1.4.1  The need for commodity term structures

 

Futures contracts represent standard terms and conditions for delivery of a product at future dates. 
Recorded over time, their prices represent instruments with decreasing maturities. That is to say, if 
the price series of a contract is a sequence of expected values of a single price at a specific date in 
the future, then each consecutive price implies that the instrument is one day close to expiring.



 

168 Chapter 8.  Data and related statistical issues

RiskMetrics

 



 

 —Technical Document
Fourth Edition

 

RiskMetrics constructs constant maturity contracts in the same spirit that it constructs constant 
maturity instruments for the fixed income market. Compared to the fixed income markets, how-
ever, commodity markets are significantly less liquid. This is particularly true for very short and 
very long maturities. Frequently, volatility of the front month contract may decline when the con-
tract is very close to expiration as it becomes uninteresting to trade for a small absolute gain, diffi-
cult to trade (a thin market may exist due to this limited potential gain) and, dangerous to trade 
because of physical delivery concerns. At the long end of the curve, trading liquidity is limited. 

Whenever possible, we have selected the maturities of commodity contracts with the highest 
liquidity as the vertices for volatility and correlation estimates. These maturities are indicated in 
Table 9.6 in Section 9.6.

In order to construct constant maturity contracts, we have defined two algorithms to convert 
observed prices into prices from constant maturity contracts:

• Rolling nearby: we simply use the price of the futures contract that expires closest to a fixed 
maturity.

• Linear interpolation: we linearly interpolate between the prices of the two futures contracts 
that straddle the fixed maturity.

 

8.1.4.2  Rolling nearby futures contracts

 

Rolling nearby contracts are constructed by concatenating contracts that expire, approximately 1, 
6, and 12 months (for instance) in the future. An example of this method is shown in Table 8.1.

Note that the price of the front month contract changes from the price of the March to the April 
contract when the March contract expires. (To conserve space certain active contracts were omit-
ted).

The principal problem with the rolling nearby method is that it may create discontinuous price 
series when the underlying contract changes: for instance, from February 23 (the March contract) 
to February 24 (the April contract) in the example above. This discontinuity usually is the largest 
for very short term contracts and when the term structure of prices is steep.

 

Table 8.1

 

Construction of rolling nearby futures prices for Light Sweet Crude (WTI)

 

Rolling nearby Actual contracts

 

1st 6th 12th Mar-94 Apr-94 Aug-94 Sep-94 Feb-95 Mar-95

17-Feb-94 13.93 15.08 16.17 13.93 14.13 15.08 15.28 16.17 16.3

18-Feb-94 14.23 15.11 16.17 14.23 14.3 15.11 15.3 16.17 16.3

19-Feb-94 14.21 15.06 16.13 14.21 14.24 15.06 15.25 16.13 16.27

23-Feb-94

 

14.24

 

15.23 16.33

 

14.24

 

14.39 15.23 15.43 16.33 16.47

24-Feb-94

 

14.41

 

15.44 16.46

 

14.41

 

15.24 15.44 16.32 16.46
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8.1.4.3  Interpolated futures prices

 

To address the issue of discontinuous price series, we use the simple rule of linear interpolation to 
define constant maturity futures prices, , from quoted futures prices:

[8.3]

where

The following example illustrates this method using the data for the heating oil futures contract. 
On April 26, 1994 the 1-month constant maturity equivalent heating oil price is calculated as 
follows:

[8.4]

Table 8.2 illustrates the calculation over successive days. Note that the actual results may vary 
slightly from the data represented in the table because of numerical rounding.

 

Table 8.2

 

Price calculation for 1-month CMF NY Harbor #2 Heating Oil

 

Contract expiration Days to expiration Weights (%) Contract prices cmf†

 

Date 1 nb* 1m cmf† 2 nb* 1 nb* 1m cmf 2 nb* 1 nb* 2 nb* Apr May Jun

22-Apr-94 29-Apr 23-May 31-May 7 30 39 23.33 76.67 47.87 47.86 48.15 47.862

25-Apr-94 29-Apr 25-May 31-May 4 30 36 13.33 86.67 48.23 48.18 48.48 48.187

26-Apr-94 29-Apr 26-May 31-May 3 30 35 10.00 90.00 47.37 47.38 47.78 47.379

28-Apr-94 29-Apr 30-May 31-May 1 30 33 3.33 96.67 46.52 46.57 47.02 47.005

29-Apr-94 29-Apr 31-May 31-May 0 30 32 0.00 100.00 47.05 47.09 47.49 47.490

2-May-94 31-May 1-Jun 30-Jun 29 30 59 96.67 3.33 — 47.57 47.95 47.583

3-May-94 31-May 2-Jun 30-Jun 28 30 58 93.33 6.67 — 46.89 47.29 46.917

4-May-94 31-May 3-Jun 30-Jun 27 30 57 90.00 10.00 — 46.66 47.03 46.697

* 1 nb and 2 nb indicate first and second nearby contracts, respectively.

† cmf means constant maturity future.

Pcmf

Pcmf ωNB1PNB1 ωNB2PNB2+=

Pcmf constant maturity futures prices=

ωNB1
δ
∆
--- ratio of Pcmf   made up by PNB1= =
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∆ days to expiration of constant maturity contract=

PNB1 price of NB1=

ωNB2 1 ωNB1–=

ratio of Pcmf  made up by PNB2=

PNB2 price of NB2=

NB1 nearby contract with a maturity < constant maturity contract=

NB2 first contract with a maturity < constant maturity contract=

P1m  April 26,
1day

30 days
------------------ 

  PriceApril× 29 days
30 days
------------------ 

  PriceMay×+=

1
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Chart 8.1 illustrates the linear interpolation rule graphically.

Chart 8.1
Constant maturity future: price calculation

8.2  Filling in missing data

The preceding section described the types of rates and prices that RiskMetrics uses in its calcula-
tions. Throughout the presentation it was implicitly assumed that there were no missing prices. In 
practice, however, this is often not the case. Because of market closings in a specific location, 
daily prices are occasionally unavailable for individual instruments and countries. Reasons for the 
missing data include the occurrence of significant political or social events and technical problems 
(e.g., machine down time). 

Very often, missing data are simply replaced by the preceding day’s value. This is frequently the 
case in the data obtained from specialized vendors. Another common practice has simply been to 
exclude an entire date from which data were missing from the sample. This results in valuable data 
being discarded. Simply because one market is closed on a given day should not imply that data 
from the other countries are not useful. A large number of nonconcurrent missing data points 
across markets may reduce the validity of a risk measurement process.

Accurately replacing missing data is paramount in obtaining reasonable estimates of volatility and 
correlation. In this section we describe how missing data points are “filled-in”—by a process 
known as the EM algorithm—so that we can undertake the analysis set forth in this document. In 
brief, RiskMetrics applies the following steps to fill in missing rates and prices:

• Assume at any point in time that a data set consisting of a cross-section of returns (that may 
contain missing data) are multivariate normally distributed with mean µ and covariance 
matrix Σ. 

• Estimate the mean and covariance matrix of this data set using the available, observed data.

• Replace the missing data points by their respective conditional expectations, i.e., use the 
missing data’s expected values given current estimates of µ, Σ and the observed data. 

2926 31
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8.2.1  Nature of missing data

We assume throughout the analysis that the presence of missing data occur randomly. Suppose that 
at a particular point in time, we have K return series and for each of the series we have T historical 
observations. Let Z denote the matrix of raw, observed returns. Z has T rows and K columns. Each 
row of Z is a Kx1 vector of returns, observed at any point in time, spanning all K securities.   
Denote the tth row of Z by zt for t = 1,2,...T. The matrix Z may have missing data points.

Define a complete data matrix R that consists of all the data points Z plus the “filled-in” returns for 
the missing observations. The tth row of R is denoted rt. Note that if there are no missing observa-
tions then zt=rt for all t=1,...,T. In the case where we have two assets (K=2) and three historical 
observations (T=3) on each asset, R takes the form:

[8.5]

where “T” denotes transpose.

8.2.2  Maximum likelihood estimation

For the purpose of filling in missing data it is assumed that at any period t, the return vector rt 
(Kx1) follows a multivariate normal distribution with mean vector µ and covariance matrix . 
The probability density function of rt is

[8.6]

It is assumed that this density function holds for all time periods, t = 1,2,...,T. Next, under the 
assumption of statistical independence between time periods, we can write the joint probability 
density function of returns given the mean and covariance matrix as follows

[8.7]

The joint probability density function describes the probability density for the 
data given a set of parameter values (i.e., µ and Σ). Define the total parameter vector θ = (µ,Σ). 
Our task is to estimate θ given the data matrix that contains missing data. To do so, we must derive 
the likelihood function of θ given the data. The likelihood function |  is similar in 
all respects to  except that it considers the parameters as random variables and 
takes the data as given. Mathematically, the likelihood function is equivalent to the probability 
density function. Intuitively, the likelihood function embodies the entire set of parameter values 
for an observed data set.

Now, for a realized sample of, say, exchange rates, we would want to know what set of parameter 
values most likely generated the observed data set. The solution to this question lies in maximum 
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likelihood estimation. In essence, the maximum likelihood estimates (MLE) θMLE are the 
parameter values that most likely generated the observed data matrix. 

θMLE is found by maximizing the likelihood function . In practice it is often eas-
ier to maximize natural logarithm of the likelihood function which is given by

[8.8]

with respect to θ. This translates into finding solutions to the following first order conditions:

[8.9]

The maximum likelihood estimators for the mean vector,  and covariance matrix  are

[8.10]

[8.11]

where  represents the sample mean taken over T time periods.

8.2.3  Estimating the sample mean and covariance matrix for missing data

When some observations of rt are missing, the maximum likelihood estimates θMLE are not avail-
able. This is evident from the fact that the likelihood function is not defined (i.e., it has no value) 
when it is evaluated at the missing data points. To overcome this problem, we must implement 
what is known as the EM algorithm.

Since its formal exposition (Dempster, Laird and Rubin, 1977) the expectation maximization or 
EM algorithm (hereafter referred to as EM) has been on of the most successful methods of estima-
tion when the data under study are incomplete (e.g., when some of the observations are missing). 
Among its extensive applications, the EM algorithm has been used to resolve missing data prob-
lems involving financial time series (Warga, 1992). For a detailed exposition of the EM algorithm 
and its application in finance see Kempthorne and Vyas (1994). 

Intuitively, EM is an iterative algorithm that operates as follows. 

• For a given set of (initial) parameter values, instead of evaluating the log likelihood function, 
(which is impossible, anyway) EM evaluates the conditional expectation of the latent (under-
lying) log likelihood function. The mathematical conditional expectation of the log-likelihood 
is taken over the observed data points.

• The expected log likelihood is maximized to yield parameter estimates . (The superscript 
“0” stands for the initial parameter estimate). This value is then substituted into the log likeli-
hood function and expectations are taken again, and new parameter estimates  are found. 
This iterative process is continued until the algorithm converges at which time final parameter 
estimates have been generated. For example, if the algorithm is iterated N+1 times then the 
sequence of parameter estimates  is generated. The algorithm stops 
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when adjacent parameter estimates are sufficiently close to one another, i.e., when  is 
sufficiently close to .

The first step in EM is referred to as the expectation or E-Step. The second step is the maximiza-
tion or M-step. EM iterates between these two steps, updating the E-Step from the parameter esti-
mates generated in the M-Step. For example, at the ith iteration of the algorithm, the following 
equations are solved in the M-Step:

[8.12a]  (the sample mean)

[8.12b]  (the sample covariance matrix)

To evaluate the expectations in these expressions (  and ), we make use 
of standard properties for partitioning a multivariate normal random vector. 

[8.13]

Here, one can think of  as the sample data with missing values removed and R as the vector of 
the underlying complete set of observations. Assuming that returns are distributed multivariate 
normal, the distribution of R conditional on  is multivariate normal with mean

[8.14]

and covariance matrix

[8.15]

Using Eq. [8.14] and Eq. [8.15] we can evaluate the E- and M- steps. The E -Step is given by

[8.16]

where

[8.17]

Notice that the expressions in Eq. [8.17] are easily evaluated since they depend on parameters that 
describe the observed and missing data. 

Given the values computed in the E-Step, the M-Step yields updates of the mean vector and cova-
riance matrix.
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[8.18]

Notice that summing over t implies that we are adding “down” the columns of the data 
matrix R. For a practical, detailed example of the EM algorithm see Johnson and Wichern (1992, 
pp. 203–206).

A powerful result of EM is that when a global optimum exists, the parameter estimates from the 
EM algorithm converge to the ML estimates. That is, for a sufficiently large number of iterations, 
EM converges to . Thus, the EM algorithm provides a way to calculate the ML estimates of 
the unknown parameter even if all of the observations are not available. 

The assumption that the time series are generated from a multivariate normal distribution is innoc-
uous. Even if the true underlying distribution is not normal, it follows from the theory of pseudo-
maximum likelihood estimation that the parameter estimates are asymptotically consistent (White, 
1982) although not necessarily asymptotically efficient. That is, it has been shown that the pseudo-
MLE obtained by maximizing the unspecified log likelihood as if it were correct produces a con-
sistent estimator despite the misspecification. 

8.2.4  An illustrative example

A typical application of the EM algorithm is filling in missing values resulting from a holiday in a 
given market. We applied the algorithm outlined in the section above to the August 15 Assumption 
holiday in the Belgian government bond market. While most European bond markets were open 
on that date, including Germany and the Netherlands which show significant correlation with Bel-
gium, no data was available for Belgium. 

A missing data point in an underlying time series generates two missing points in the log change 
series as shown below (from t−1 to t as well as from t to t + 1). Even though it would be more 
straightforward to calculate the underlying missing value through the EM algorithm and then gen-
erate the two missing log changes, this would be statistically inconsistent with our basic assump-
tions on the distribution of data.

In order to maintain consistency between the underlying rate data and the return series, the adjust-
ment for missing data is performed in three steps. 

1. First the EM algorithm generates the first missing percentage change, or −0.419% in the 
example below. 

2. From that number, we can back out the missing underlying yield from the previous day’s 
level, which gives us the 8.445% in the example below. 

3. Finally, the second missing log change can be calculated from the revised underlying yield 
series. 
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Table 8.3 presents the underlying rates on the Belgian franc 10-year zero coupon bond, the corre-
sponding EM forecast, and the adjusted “filled-in” rates and returns.

Chart 8.2 presents a time series of the Belgian franc 10-year rate before and after the missing 
observation was filled in by the EM algorithm.

Chart 8.2
Graphical representation
10-year zero coupon rates; daily % change 

Table 8.3
Belgian franc 10-year zero coupon rate
application of the EM algorithm to the 1994 Assumption holiday in Belgium

Observed

EM forecast

Adjusted

Collection date 10-year rate Return (%) 10-year rate Return (%)

11-Aug-94 8.400 2.411 8.410 2.411

12-Aug-94 8.481 0.844 8.481 0.844

15-Aug-94 missing missing −0.419 8.445* −0.419†

16-Aug-94 8.424 missing 8.424 −0.254‡

17-Aug-94 8.444 0.237 8.444 0.237

18-Aug-94 8.541 1.149 8.541 1.149

* Filled-in rate based on EM forecast.

† From EM.
‡ Return now available because prior rate (*) has been filled in.

• ♦
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8.2.5  Practical considerations

A major part of implementing the EM algorithm is to devise the appropriate input data matrices 
for the EM. From both a statistical and practical perspective we do not run EM on our entire time 
series data set simultaneously. Instead we must partition the original data series into non-overlap-
ping sub-matrices. Our reasons for doing so are highlighted in the following example. 

Consider a TxK data matrix where T is the number of observations and K is the number of price 
vectors. Given this data matrix, the EM must estimate K+K(K+1)/2 parameters. Consequently, to 
keep the estimation practical K cannot be too large. To get a better understanding of this issue con-
sider Chart 8.3, which plots the number of parameters estimated by EM (K +K(K+1)/2) against the 
number of variables. As shown, the number of estimated parameters grows rapidly with the num-
ber of variables. 

Chart 8.3
Number of variables used in EM and parameters required
number of parameters (Y-axis) versus number of variables (X-axis)

The submatrices must be chosen so that vectors within a particular submatrix are highly correlated 
while those vectors between submatrices are not significantly correlated. If we are allowed to 
choose the submatrices in this way then EM will perform as if it had the entire original data 
matrix. This follows from the fact that the accuracy of parameter estimates are not improved by 
adding uncorrelated vectors. 

In order to achieve a logical choice of submatrices, we classify returns into the following catego-
ries:  (1) foreign exchange, (2) money market, (3) swap, (4) government bond, (5) equity, and
(6) commodity.

We further decompose categories 2, 3, 4, and 6 as follows. Each input data matrix corresponds to a 
particular country or commodity market. The rows of this matrix correspond to time while the col-
umns identify the maturity of the asset. Foreign exchange, equity indices, and bullion are the 
exceptions:  all exchange rates, equity indices, and bullion are grouped into three separate 
matrices.

8.3  The properties of correlation (covariance) matrices and VaR

In Section 6.3.2 it was shown how RiskMetrics applies a correlation matrix to compute the VaR of 
an arbitrary portfolio. In particular, the correlation matrix was used to compute the portfolio’s 
standard deviation. VaR was then computed as a multiple of that standard deviation. In this section 
we investigate the properties of a generic correlation matrix since it is these properties that will 
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determine whether the portfolio’s standard deviation forecast is meaningful.2 Specifically, we will 
establish conditions3 that guarantee the non-negativity of the portfolio’s variance, i.e., .

At first glance it may not seem obvious why it is necessary to understand the conditions under 
which the variance is non-negative. However, the potential sign of the variance, and consequently 
the VaR number, is directly related to the relationship between (1) the number of individual price 
return series (i.e., cashflows) per portfolio and (2) the number of historical observations on each of 
these return series. In practice there is often a trade-off between the two since, on the one hand, 
large portfolios require the use of many time series, while on the other hand, large amounts of his-
torical data are not available for many time series.

Below, we establish conditions that ensure the non-negativity of a variance that is constructed 
from correlation matrices based on equally and exponentially weighted schemes. We begin with 
some basic definitions of covariance and correlation matrices.

8.3.1  Covariance and correlation calculations

In this section we briefly review the covariance and correlation calculations based on equal and 
exponential moving averages. We do so in order to establish a relationship between the underlying 
return data matrix and the properties of the corresponding covariance (correlation) matrix.

8.3.1.1  Equal weighting scheme
Let X denote a T x K data matrix, i.e., matrix of returns. X has T rows and K columns. 

[8.19]

Each column of X is a return series corresponding to a particular price/rate (e.g., USD/DEM FX 
return) while each row corresponds to the time (t = 1,...,T) at which the return was recorded. If we 
compute standard deviations and covariances around a zero mean, and weigh each observation 
with probability 1/T, we can define the covariance matrix simply by

[8.20]

where  is the transpose of X.

Consider an example when T = 4 and K = 2.

2 By properties, we mean specifically whether the correlation matrix is positive definite, positive semidefinite or 
otherwise (these terms will be defined explicitly below)

3 All linear algebra propositions stated below can be found in Johnston, J. (1984).
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[8.21]

An estimate of the covariance matrix is given by 

[8.22]

Next, we show how to compute the correlation matrix R. Suppose we divide each element of the 
matrix X by the standard deviation of the series to which it belongs; i.e., we normalize each series 
of X to have a standard deviation of 1. Call this new matrix with the standardized values Y. 

The correlation matrix is

[8.23]

where

[8.24]

As in the previous example, if we set T = 4 and K = 2, the correlation matrix is

[8.25]
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8.3.1.2  Exponential weighting scheme
We now show how similar results are obtained by using exponential weighting rather than equal 
weighting. When computing the covariance and correlation matrices, use, instead of the data 
matrix X, the augmented data matrix  shown in Eq. [8.26].

[8.26]

Now, we can define the covariance matrix simply as

[8.27]

To see this, consider the example when T = 4 and K = 2.

[8.28]

The exponentially weighted correlation matrix is computed just like the simple correlation matrix. 
The standardized data matrix and the correlation matrix are given by the following expressions.

[8.29]
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where 

 

and the correlation matrix is

[8.30]

which is the exact analogue to Eq. [8.25]. Therefore, all results for the simple correlation matrix 
carry over to the exponential weighted matrix. 

Having shown how to compute the covariance and correlation matrices, the next step is to show 
how the properties of these matrices relate to the VaR calculations.

We begin with the definition of positive definite and positive semidefinite matrices. 

[8.31] If  0 for all nonzero vectors , then C is said to be positive (negative) 
definite. 

[8.32] If  0 for all nonzero vectors , then C is said to be positive semidefinite 
(nonpositive definite).

Now, referring back to the VaR calculation presented in Section 6.3.2, if we replace the vector  
by the weight vector  and C by the correlation matrix, , then it should be obvious 
why we seek to determine whether the correlation matrix is positive definite or not. Specifically, 

• If the correlation matrix R is positive definite, then VaR will always be positive. 

• If R is positive semidefinite, then VaR could be zero or positive. 

• If R is negative definite,4 then VaR will be negative.

8.3.2  Useful linear algebra results as applied to the VaR calculation

In order to define a relationship between the dimensions of the data matrix X (or ) (i.e., the num-
ber of rows and columns of the data matrix) and the potential values of the VaR estimates, we must 
define the rank of X. 

The rank of a matrix X, denoted r(X), is the maximum number of linearly independent rows (and 
columns) of that matrix. The rank of a matrix can be no greater than the minimum number of rows 
or columns. Therefore, if X is T x K with T > K (i.e., more rows than columns) then r(X) K. In 
general, for an T x K matrix X, r(X) min(T,K). 

4 We will show below that this is not possible.
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A useful result which equates the ranks of different matrices is:

[8.33]  

As applied to the VaR calculation, the rank of the covariance matrix Σ = XTX is the same as the 
rank of X.

We now refer to two linear algebra results which establish a relationship between the rank of the 
data matrix and the range of VaR values. 

[8.34] If X is T x K with rank K < T, then XTX is positive definite and XXT is positive semidef-
inite.

[8.35]  If X is T x K with rank J < min(T,K) then XTX and XXT is positive semidefinite.

Therefore, whether Σ is positive definite or not will depend on the rank of the data matrix X. 

Based on the previous discussion, we can provide the following results for RiskMetrics VaR calcu-
lations. 

• Following from Eq. [8.33], we can deduce the rank of R simply by knowing the rank of Y, the 
standardized data matrix. 

• The rank of the correlation matrix R can be no greater than the number of historical data 
points used to compute the correlation matrix, and

• Following from Eq. [8.34], if the data matrix of returns has more rows than columns and the 
columns are independent, then R is positive definite and VaR > 0. If not, then Eq. [8.35] 
applies, and R is positive semidefinite and .

In summary, a covariance matrix, by definition, is at least positive semidefinite. Simply put, posi-
tive semidefinite is the multi-dimensional analogue to the definition, .

8.3.3  How to determine if a covariance matrix is positive semi-definite5

Finally, we explain a technique to determine whether a correlation matrix is positive (semi) defi-
nite. We would like to note at the beginning that due to a variety of technical issues that are beyond 
the scope of this document, the suggested approach described below known as the singular value 
decomposition (SVD) is to serve as a general guideline rather than a strict set of rules for deter-
mining the “definiteness” of a correlation matrix.

The singular value decomposition (SVD)

The T x K standardized data matrix Y ( ) may be decomposed as6  where 
 and D is diagonal with non-negative diagonal elements , 

called the singular values of Y. All of the singular values are . 

5 This section is based on Belsley (1981), Chapter 3.

6 In this section we work with the mean centered and standardized matrix Y instead of X since Y is the data matrix 
on which an SVD should be applied.
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A useful result is that the number of non-zero singular values is a function by the rank of Y. Spe-
cifically, if Y is full rank, then all K singular values will be non zero. If the rank of Y is J=K-2, 
then there will be J positive singular values and two zero singular values.

In practice, it is difficult to determine the number of zero singular values. This is due to that fact 
that computers deal with finite, not exact arithmetic. In other words, it is difficult for a computer to 
know when a singular value is really zero. To avoid having to determine the number of zero singu-
lar values, it is recommended that practitioners should focus on the condition number of Y which 
is the ratio of the largest to smallest singular values, i.e., 

[8.36]  (condition number)

Large condition numbers point toward ‘ill-condition’ matrices, i.e., matrices that are nearly not 
full rank. In other words, a large  implies that there is a strong degree of collinearity between the 
columns of Y. More elaborate tests of collinearity can be found in Belsley (1981). 

We now apply the SVD to two data matrices. The first data matrix consists of time series of price 
returns on 10 USD government bonds for the period January 4, 1993–October 14, 1996 (986 
observations). The columns of the data matrix correspond to the price returns on the 2yr, 3yr, 4yr, 
5yr, 7yr, 9yr, 10yr, 15yr, 20yr, and 30yr USD government bonds. The singular values for this data 
matrix are given in Table 8.4. 

The condition number, , is 497.4. We conduct a similar experiment on a data matrix that consists 
of 14 equity indices.7 The singular values are shown in Table 8.5. The data set consists of a total 
number of 790 observations for the period October 5, 1996 through October 14, 1996. 

For this data matrix, the condition number, , is 4.28. Notice how much lower the condition num-
ber is for equities than it is for the US yield curve. This result should not be surprising since we 
expect the returns on different bonds along the yield curve to move in a similar fashion to one 
another relative to equity returns. Alternatively expressed, the relatively large condition number 
for the USD yield curve is indicative of the near collinearity that exists among returns on US gov-
ernment bonds. 

7 For the countries Austria, Australia, Belgium, Canada, Switzerland, Spain, France, Finland, Great Britain, Hong 
Kong, Ireland, Italy, Japan and the Netherlands.

Table 8.4
Singular values for USD yield curve data matrix

3.045 0.051
0.785 0.043
0.271 0.020
0.131 0.017
0.117 0.006

Table 8.5
Singular values for equity indices returns

2.329 0.873 0.696
1.149 0.855 0.639
0.948 0.789 0.553
0.936 0.743 0.554
0.894 0.712

υ
ι max

ι min
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υ
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The purpose of the preceding exercise was to demonstrate how the interrelatedness of individual 
time series affects the condition of the resulting correlation matrix. As we have shown with a sim-
ple example, highly correlated data (USD yield curve data) leads to high condition numbers rela-
tive to less correlated data (equity indices). 

In concluding, due to numerical rounding errors it is not unlikely for the theoretical properties of a 
matrix to differ from its estimated counterpart. For example, covariance matrices are real, sym-
metric and non-positive definite. However, when estimating a covariance matrix we may find that 
the positive definite property is violated. More specifically, the matrix may not invert. Singularity 
may arise because certain prices included in a covariance matrix form linear combinations of other 
prices. Therefore, if covariance matrices fail to invert they should be checked to determine 
whether certain prices are linear functions of others. Also, the scale of the matrix elements may be 
such that it will not invert. While poor scaling may be a source of problems, it should rarely be the 
case. 

8.4  Rebasing RiskMetrics volatilities and correlations

A user’s base currency will dictate how RiskMetrics standard deviations and correlations will be 
used. For example, a DEM-based investor with US dollar exposure is interested in fluctuations in 
the currency USD/DEM whereas the same investor with an exposure in Belgium francs is inter-
ested in fluctuations in BEF/DEM. Currently, RiskMetrics volatility forecasts are expressed in US 
dollars per foreign currency such as USD/DEM for all currencies. To compute volatilities on cross 
rates such as BEF/DEM, users must make use of the RiskMetrics provided USD/DEM and USD/
BEF volatilities as well as correlations between the two. We now show how to derive the variance 
(standard deviation) of the BEF/DEM position. Let r1,t and r2,t represent the time t returns on 
USD/DEM and USD/BEF, respectively, i.e., 

[8.37]  and 

The cross rate BEF/DEM is defined as 

[8.38]

 The variance of the cross rate r3t is given by 

[8.39]

Equation [8.39] holds for any cross rate that can be defined as the arithmetic difference in two 
other rates.

We can find the correlation between two cross rates as follows. Suppose we want to find the corre-
lation between the currencies BEF/DEM and FRF/DEM. It follows from Eq. [8.38] that we first 
need to define these cross rates in terms of the returns used in RiskMetrics. 
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and

[8.40c]                

The correlation between BEF/DEM and USD/FRF (r3,t and r4,t) is the covariance of r3,t and r4,t 
divided by their respective standard deviations, mathematically,

[8.41]

Analogously, the correlation between USD/DEM and FRF/DEM is 

[8.42]

8.5  Nonsynchronous data collection

Estimating how financial instruments move in relation to each other requires data that are collated, 
as much as possible, consistently across markets. The point in time when data are recorded is a 
material issue, particularly when estimating correlations. When data are observed (recorded) at 
different times they are known to be nonsynchronous.

Table 8.7 (pages 186–187) outlines how the data underlying the time series used by RiskMetrics 
are recorded during the day. It shows that most of the data are taken around 16:00 GMT. From the 
asset class perspective, we see that potential problems will most likely lie in statistics relating to 
the government bond and equity markets.

To demonstrate the effect of nonsynchronous data on correlation forecasts, we estimated the 
1-year correlation of daily movements between USD 10-year zero yields collected every day at the 
close of business in N.Y. with two series of 3-month money market rates, one collected by the 
British Bankers Association at 11:00 a.m. in London and the other collected by J.P. Morgan at the 
close of business in London (4:00 p.m.). This data is presented in Table 8.6. 

Table 8.6
Correlations of daily percentage changes with USD 10-year
August 1993 to June 1994 – 10-year USD rates collated at N.Y. close

LIBOR

Correlation at London time:

11 a.m. 4 p.m.

1-month −0.012 0.153

3-month 0.123 0.396

6-month 0.119 0.386

12-month 0.118 0.622
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None of the data series are synchronous, but the results show that the money market rates collected 
at the London close have higher correlation to the USD 10-year rates than those collected in the 
morning.

Getting a consistent view of how a particular yield curve behaves depends on addressing the tim-
ing issue correctly. While this is an important factor in measuring correlations, the effect of timing 
diminishes as the time horizon becomes longer. Correlating monthly percentage changes may not 
be dependent on the condition that rates be collected at the same time of day. Chart 8.4 shows how 
the correlation estimates against USD 10-year zeros evolve for the two money market series men-
tioned above when the horizon moves from daily changes to monthly changes. Once past the 10-
day time interval, the effect of timing differences between the two series becomes negligible.

Chart 8.4
Correlation forecasts vs. return interval
3-month USD LIBOR vs. 10-year USD government bond zero rates

In a perfect world, all rates would be collected simultaneously as all markets would trade at the 
same time. One may be able to adapt to nonsynchronously recorded data by adjusting either the 
underlying return series or the forecasts that were computed from the nonsynchronous returns. In 
this context, data adjustment involves extensive research. The remaining sections of this document 
present an algorithm to adjust correlations when the data are nonsynchronous.
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Table 8.7
Schedule of data collection

London time,
a.m.

Country
Instrument 
summary 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00 12:00

Australia FX/Eq/LI/Sw/Gv Eq Gv
Hong Kong FX/Eq/LI/Sw LI Eq Sw
Indonesia FX/Eq/LI/Sw Eq LI/Sw
Japan FX/Eq/LI/Sw/Gv Gv Eq
Korea FX/Eq Eq
Malaysia FX/Eq/LI/Sw Eq LI/Sw
New Zealand FX/Eq/LI/Sw/Gv Eq LI/Gv Sw
Philippines FX/Eq Eq
Singapore FX/Eq/LI/Sw/Gv LI/Eq
Taiwan FX/Eq/
Thailand FX/Eq/LI/Sw Eq LI/Sw

Austria FX/Eq/LI Eq
Belgium FX/Eq/LI/Sw/Gv
Denmark FX/Eq/LI/Sw/Gv
Finland FX/Eq/LI/Sw/Gv
France FX/Eq/LI/Sw/Gv
Germany FX/Eq/LI/Sw/Gv
Ireland FX/Eq/LI/Sw/Gv
Italy FX/Eq/LI/Sw/Gv
Netherlands FX/Eq/LI/Sw/Gv
Norway FX/Eq/LI/Sw/Gv
Portugal FX/Eq/LI/Sw/Gv
South Africa FX/Eq/LI//Gv
Spain FX/Eq/LI/Sw/Gv
Sweden FX/Eq/LI/Sw/Gv
Switzerland FX/Eq/LI/Sw/Gv
U.K. FX/Eq/LI/Sw/Gv
ECU FX/ /LI/Sw/Gv

Argentina FX/Eq
Canada FX/Eq/LI/Sw/Gv
Mexico FX/Eq/LI
U.S. FX/Eq/LI/Sw/Gv

FX = Foreign Exchange, Eq = Equity Index, LI = LIBOR, Sw = Swap, Gv = Government
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Table 8.7 (continued)
Schedule of data collection

London time,
p.m.

1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00 12:00
Instrument 
summary Country

FX/LI/Sw FX/Eq/LI/Sw/Gv Australia
FX FX/Eq/LI/Sw Hong Kong
FX FX/Eq/LI/Sw Indonesia

FX/LI/Sw FX/Eq/LI/Sw/Gv Japan
FX FX/Eq Korea
FX FX/Eq/LI/Sw Malaysia
FX FX/Eq/LI/Sw/Gv New Zealand
FX FX/Eq Philippines
FX FX/Eq/LI/Sw/Gv Singapore
FX FX/Eq Taiwan
FX FX/Eq/LI/Sw Thailand

FX/LI FX/Eq/LI Austria
Eq FX/LI/Sw/Gv FX/Eq/LI/Sw/Gv Belgium

Eq Gv FX/LI/Sw FX/Eq/LI/Sw/Gv Denmark
Eq FX/LI FX/Eq/LI/Sw/Gv Finland
Gv FX/LI/Sw/Eq FX/Eq/LI/Sw/Gv France

FX/LI/Sw/Gv/Eq FX/Eq/LI/Sw/Gv Germany
FX/LI/Sw/Gv Eq FX/Eq/LI/Sw/Gv Ireland

FX/LI/Sw/Gv/Eq FX/Eq/LI/Sw/Gv Italy
FX/LI/Sw/Gv/Eq FX/Eq/LI/Sw/Gv Netherlands

Eq FX/LI FX/Eq/LI/Sw/Gv Norway
FX/LI/Eq FX/Eq/LI/Sw/Gv Portugal

Eq Gv FX/LI FX/Eq/LI//Gv South Africa
FX/LI/Sw Gv/Eq FX/Eq/LI/Sw/Gv Spain

Gv FX/LI/Sw/Eq FX/Eq/LI/Sw/Gv Sweden
FX/LI/Sw/Eq FX/Eq/LI/Sw/Gv Switzerland
FX/LI/Sw/Eq Gv FX/Eq/LI/Sw/Gv U.K.

FX/LI/Sw Gv FX/ /LI/Sw/Gv ECU

FX Eq FX/Eq Argentina
FX/LI/Sw Gv Eq FX/Eq/LI/Sw/Gv Canada

FX/LI Eq FX/Eq/LI Mexico
FX/LI/Sw Gv Eq FX/Eq/LI/Sw/Gv U.S.

FX = Foreign Exchange, Eq = Equity Index, LI = LIBOR, Sw = Swap, Gv = Government
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8.5.1  Estimating correlations when the data are nonsynchronous

The expansion of the RiskMetrics data set has increased the amount of underlying prices and rates 
collected in different time zones. The fundamental problem with nonsynchronous data collection 
is that correlation estimates based on these prices will be underestimated. And estimating correla-
tions accurately is an important part of the RiskMetrics VaR calculation because standard devia-
tion forecasts used in the VaR calculation depends on correlation estimates. 

Internationally diversified portfolios are often composed of assets that trade in different calendar 
times in different markets. Consider a simple example of a two stock portfolio. Stock 1 trades only 
on the New York Stock Exchange (NYSE 9:30 am to 4:00 pm EST) while stock 2 trades exclu-
sively on the Tokyo stock exchange (TSE 7:00 pm to 1:00 am EST). Because these two markets 
are never open at the same time, stocks 1 and 2 cannot trade concurrently. Consequently, their 
respective daily closing prices are recorded at different times and the return series for assets 1 and 
2, which are calculated from daily close-to-close prices, are also nonsynchronous.8

Chart 8.5 illustrates the nonsynchronous trading hours of the NYSE and TSE. 

Chart 8.5
Time chart
NY and Tokyo stock markets

8 This terminology began in the nonsynchronous trading literature. See, Fisher, L. (1966) and Sholes, M. and Will-
iams (1977). Nonsynchronous trading is often associated with the situation when some assets trade more fre-
quently than others [see, Perry, P. (1985)]. Lo and MacKinlay (1990) note that “the nonsynchronicity problem 
results from the assumption that multiple time series are sampled simultaneously when in fact the sampling is non-
synchronous.” For a recent discussion of the nonsynchronous trading issue see Boudoukh, et. al (1994).
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We see that the Tokyo exchange opens three hours after the New York close and the New York 
exchange reopens 81/2 hours after the Tokyo close. Because a new calendar day arrives in Tokyo 
before New York, the Tokyo time is said to precede New York time by 14 hours (EST). 

RiskMetrics computes returns from New York and Tokyo stock markets using daily close-to-close 
prices. The black orbs in Chart 8.5 mark times when these prices are recorded. Note that the orbs 
would line up with each other if returns in both markets were recorded at the same time.

The following sections will:

1. Identify the problem and verify whether RiskMetrics really does underestimate certain cor-
relations.

2. Present an algorithm to adjust the correlation estimates.

3. Test the results against actual data.

8.5.1.1  Identifying the problem: correlation and nonsynchronous returns
Whether different return series are recorded at the same time or not becomes an issue when these 
data are used to estimate correlations because the absolute magnitude of correlation (covariance) 
estimates may be underestimated when calculated from nonsynchronous rather than synchronous 
data. Therefore, when computing correlations using nonsynchronous data, we would expect the 
value of observed correlation to be below the true correlation estimate. In the following analysis 
we first establish the effect that nonsynchronous returns have on correlation estimates and then 
offer a method for adjusting correlation estimates to account for the nonsynchronicity problem.

The first step in checking for downward bias is estimating what the “true” correlation should be. 
This is not trivial since these assets do not trade in the same time zone and it is often not possible 
to obtain synchronous data. For certain instruments, however, it is possible to find limited datasets 
which can provide a glimpse of the true level of correlation; this data would then become the 
benchmark against which the methodology for adjusting nonsynchronous returns would be tested. 

One of these instruments is the US Treasury which has the advantage of being traded 24 hours a 
day. While we generally use nonsynchronous close-to-close prices to estimate RiskMetrics corre-
lations, we obtained price data for both the US and Australian markets quoted in the Asian time 
zone (August 1994 to June 1995). We compared the correlation based on synchronous data with 
correlation estimates that are produced under the standard RiskMetrics data (using the nonsyn-
chronous US and Australian market close). Plots of the two correlation series are shown in 
Chart 8.6. 
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Chart 8.6
10-year Australia/US government bond zero correlation
based on daily RiskMetrics close/close data and 0:00 GMT data

While the changes in correlation estimates follow similar patterns over time (already an interesting 
result in itself), the correlation estimates obtained from price data taken at the opening of the mar-
kets in Asia are substantially higher. One thing worth noting however, is that while the synchro-
nous estimate appears to be a better representation of the “true” level of correlation, it is not 
necessarily equal to the true correlation. While we have adjusted for the timing issue, we may have 
introduced other problems in the process, such as the fact that while US Treasuries trade in the 
Asian time zone, the market is not as liquid as during North American trading hours and the prices 
may therefore be less representative of “normal trading” volumes. Market segmentation may also 
affect the results. Most investors, even those based in Asia put on positions in the US market dur-
ing North American trading hours. U.S. Treasury trading in Asia is often the result of hedging.

Nevertheless, from a risk management perspective, this is an important result. Market participants 
holding positions in various markets including Australia (and possibly other Asian markets) would 
be distorting their risk estimates by using correlation estimates generated from close of business 
prices.

8.5.1.2  An algorithm for adjusting correlations 
Correlation is simply the covariance divided by the product of two standard errors. Since the stan-
dard deviations are unaffected by nonsynchronous data, correlation is adversely affected by non-
synchronous data through its covariance. This fact simplifies the analysis because under the 
current RiskMetrics assumptions, long horizon covariance forecasts are simply the 1-day covari-
ance forecasts multiplied by the forecast horizon.

Let us now investigate the effect that nonsynchronous trading has on correlation estimates for his-
torical rate series from the United States (USD), Australian (AUD) and Canadian (CAD) govern-
ment bond markets. In particular, we focus on 10-year government bond zero rates. Table 8.8 
presents the time that RiskMetrics records these rates (closing prices). 
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Note that the USD and CAD rates are synchronous while the USD and AUD, and CAD and AUD 
rates are nonsynchronous. We chose to analyze rates in these three markets to gain insight as to 
how covariances (correlations) computed from synchronous and nonsynchronous return series 
compare with each other. For example, at any time t, the observed return series,  and 

 are nonsynchronous, whereas  and  are synchronous. We are interested in 
measuring the covariance and autocovariance of these return series.

Table 8.9 provides summary statistics on 1-day covariance and autocovariance forecasts for the 
period May 1993 to May 1995. The numbers in the table are interpreted as follows: over the sam-
ple period, the average covariance between USD and AUD 10-year zero returns, 

 is 0.16335 while the average covariance between current USD 10-year zero 
returns and lagged CAD 10-year zero returns (autocovariance) is −0.0039. 

The results show that when returns are recorded nonsynchronously, the covariation between 
lagged 1-day USD returns and current AUD returns (0.5685) is larger, on average, than the covari-
ance (0.1633) that would typically be reported. Conversely, for the USD and CAD returns, the 
autocovariance estimates are negligible relative to the covariance estimates. This evidence points 
to a typical finding: first order autocovariances of returns for assets that trade at different times are 
larger than autocovariances for returns on assets that trade synchronously.9

9 One possible explanation for the large autocovariances has to do with information flows between markets. The lit-
erature on information flows between markets include studies analyzing Japanese and US equity markets (Jaffe 
and Westerfield (1985), Becker, et.al, (1992), Lau and Diltz, (1994)). Papers that focus on many markets include 
Eun and Shim, (1989).

Table 8.8
RiskMetrics closing prices
10-year zero bonds

Country EST London

USD 3:30 p.m. 8:00 p.m.

CAD 3:30 p.m. 8:00 p.m.

AUD 2:00 a.m. 7:00 a.m.

Table 8.9
Sample statistics on RiskMetrics daily covariance forecasts
10-year zero rates; May 1993 – May 1995

Daily forecasts Mean Median Std. dev. Max Min

0.1633* 0.0995 0.1973 0.8194 −0.3396

0.5685 0.4635 0.3559 1.7053 0.1065

0.0085 −0.0014 0.1806 0.5667 −0.6056

0.6082 0.4912 0.3764 1.9534 0.1356

0.0424 0.0259 0.1474 0.9768 −0.2374

−0.0039 −0.0003 0.1814 0.3333 −0.7290

* All numbers are multiplied by 10,000.
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As a check of the results above and to understand how RiskMetrics correlation forecasts are 
affected by nonsynchronous returns, we now focus on covariance forecasts for a specific day. We 
continue to use USD, CAD and AUD 10-year zero rates. Consider the 1-day forecast period 
May 12 to May 13, 1995. In RiskMetrics, these 1-day forecasts are available at 10 a.m. EST on 
May 12. The most recent USD (CAD) return is calculated over the period 3:30 pm EST on 5/10 to 
3:30 pm EST on 5/11 whereas the most recent AUD return is calculated over the period 1:00 am 
EST on 5/10 to 1:00 am EST on 5/11. Table 8.10 presents covariance forecasts for May 12 along 
with their standard errors. 

In agreement with previous results, we find that while there is strong covariation between lagged 
USD returns  and current AUD returns (as shown by large t-statistics), the 
covariation between lagged USD and CAD returns is not nearly as strong. The results also show 
evidence of covariation between lagged AUD returns and current USD returns. 

The preceding analysis describes a situation where the standard covariances calculated from non-
synchronous data do not capture all the covariation between returns. By estimating autocovari-
ances, it is possible to measure the 1-day lead and lag effects across return series. With 
nonsynchronous data, these lead and lag effects appear quite large. In other words, current and 
past information in one return series is correlated with current and past information in another 
series. If we represent information by returns, then following Cohen, Hawawini, Maier, Schwartz 
and Whitcomb, (CHMSW 1983) we can write observed returns as a function of weighted unob-
served current and lag true returns. The weights simply represent how much information in a spe-
cific true return appears in the return that is observed. Given this, we can write observed 
(nonsynchronous) returns for the USD and AUD 10-year zero returns as follows:

[8.43]

The ’s are random variables that represent the proportion of the true return of asset j gener-
ated in period t-i that is actually incorporated in observed returns in period t. In other words, the 

’s are weights that capture how the true return generated in one period impacts on the observed 
returns in the same period and the next. It is also assumed that:

Table 8.10
RiskMetrics daily covariance forecasts
10-year zero rates; May 12, 1995

Return series Covariance T-statistic†

0.305 -

0.629 (0.074)* 8.5

0.440 (0.074) 5.9

0.530 -

0.106 (0.058) 1.8

0.126 (0.059) 2.13

* Asymptotic standard errors are reported in parentheses.

† For a discussion on the use of the t-statistic for the autocovariances see Shanken (1987).
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[8.44]

Table 8.11 shows, for the example given in the preceding section, the relationship between the 
date when the true return is calculated and the weight assigned to the true return. 

Earlier we computed the covariance based on observed returns,  However, 
we can use Eq. [8.43] to compute the covariance of the true returns , i.e., 

[8.45]

We refer to this estimator as the “adjusted” covariance. Having established the form of the 
adjusted covariance estimator, the adjusted correlation estimator for any two return series j 
and k is:

[8.46]

Table 8.12 shows the original and adjusted correlation estimates for USD-AUD and USD-CAD 
10-year zero rate returns.

Note that the USD-AUD adjusted covariance increases the original covariance estimate by 84%. 
Earlier (see Table 8.10) we found the lead-lag covariation for the USD-AUD series to be statisti-
cally significant. Applying the adjusted covariance estimator to the synchronous series USD-CAD, 
we find only an 8% increase over the original covariance estimate. However, the evidence from 
Table 8.10 would suggest that this increase is negligible.

Table 8.11
Relationship between lagged returns and applied weights
observed USD and AUD returns for May 12, 1995

Date 5/9–5/10 5/9–5/10 5/10–5/11 5/10–5/11

Weight

Table 8.12
Original and adjusted correlation forecasts
USD-AUD 10-year zero rates; May 12, 1995

Daily forecasts Original Adjusted % change

0.305 0.560  84%

0.530 0.573  8%

θAUD t,  and θUSD τ,  are independent for all t and τ

θAUD t,  and θUSD τ,  are independent of RAUD t,  and RUSD τ,

E θAUD t,( )  = E θUSD t,( )  for all t and τ

E θ j t, θ j t 1–,+( ) 1 for j = AUD, USD and for all t and τ=

θAU D t 1–, θUSD t 1–, θAU D t, θUSD t,

cov rUSD t,
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obs, 

 

cov rUSD t, rAUD t,,( )

cov rUSD t, rAUD t,,( ) cov rUSD t,
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obs, 

 
=
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 
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8.5.1.3  Checking the results 
How does the adjustment algorithm perform in practice? Chart 8.7 compares three daily correla-
tion estimates for 10-year zero coupon rates in Australia and the United States:  (1) Standard 
RiskMetrics using nonsynchronous data, (2) estimate correlation using synchronous data collected 
in Asian trading hours and, (3) RiskMetrics Adjusted using the estimator in Eq. [8.46].

Chart 8.7
Adjusting 10-year USD/AUD bond zero correlation
using daily RiskMetrics close/close data and 0:00 GMT data

The results show that the adjustment factor captures the effects of the timing differences that affect 
the standard RiskMetrics estimates which use nonsynchronous data. A potential drawback of using 
this estimator, however, is that the adjusted series displays more volatility than either the unad-
justed or the synchronous series. This means that in practice, choices may have to be made as to 
when to apply the methodology. In the Australian/US case, it is clear that the benefits of the adjust-
ment in terms of increasing the correlation to a level consistent with the one obtained when using 
synchronous data outweighs the increased volatility. The choice, however, may not always be that 
clear cut as shown by Chart 8.8 which compares adjusted and unadjusted correlations for the US 
and Japanese 10-year zero rates. In periods when the underlying correlation between the two mar-
kets is significant (Jan-Feb 1995, the algorithm correctly adjusts the estimate). In periods of lower 
correlation, the algorithm only increases the volatility of the estimate.
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Chart 8.8
10-year Japan/US government bond zero correlation
using daily RiskMetrics close/close data and 0:00 GMT data

Also, in practice, estimation of the adjusted correlation is not necessarily straightforward because 
we must take into account the chance of getting adjusted correlation estimates above 1. This 
potential problem arises because the numerator in Eq. [8.46] is being adjusted without due consid-
eration of the denominator. An algorithm that allows us to estimate the adjusted correlation with-
out obtaining correlations greater than 1 in absolute value is given in Section 8.5.2. 

Table 8.13 on page 196 reports sample statistics for 1-day correlation forecasts estimated over var-
ious sample periods for both the original RiskMetrics and adjusted correlation estimators. Correla-
tions between United States and Asia-Pacific are based on non-synchronous data.

8.5.2  Using the algorithm in a multivariate framework

Finally, we explain how to compute the adjusted correlation matrix.

1. Calculate the unadjusted (standard) RiskMetrics covariance matrix, Σ. (Σ is an N x N, posi-
tive semi-definite matrix).

2. Compute the nonsynchronous data adjustment matrix K where the elements of K are

[8.47]

3. The adjusted covariance matrix M, is given by  where . The param-
eter f that is used in practice is the largest possible f such that M is positive semi-definite.

February March April May June
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

RiskMetrics adjusted

RiskMetrics

Correlation

1995

kk j,

cov rk t, r,
j t 1–,( ) cov rk t 1–, r,

j t,( )+ for k j≠

0 for k j=



=

M Σ fK+= 0 f 1≤ ≤



196 Chapter 8.  Data and related statistical issues

RiskMetrics  —Technical Document
Fourth Edition

Table 8.13
Correlations between US and foreign instruments

Correlations between USD 10-year zero rates and JPY, AUD, and NZD 10-year zero rates.*
Sample period:  May 1991–May 1995.

Original Adjusted

JPY AUD NZD JPY AUD NZD

mean 0.026 0.166 0.047 0.193 0.458 0.319

median 0.040 0.155 0.036 0.221 0.469 0.367

std dev 0.151 0.151 0.171 0.308 0.221 0.241

max 0.517 0.526 0.613 0.987 0.937 0.921

min −0.491 −0.172 −0.389 −0.762 −0.164 −0.405

Correlations between USD 2-year swap rates and JPY, AUD, NZD, HKD 2-year swap rates.* 
Sample period:  May 1993–May 1995.

Original Adjusted

JPY AUD NZD HKD JPY AUD NZD HKD

mean 0.018 0.233 0.042 0.139 0.054 0.493 0.249 0.572

median 0.025 0.200 0.020 0.103 0.065 0.502 0.247 0.598

std dev 0.147 0.183 0.179 0.217 0.196 0.181 0.203 0.233

max 0.319 0.647 0.559 0.696 0.558 0.920 0.745 0.945

min −0.358 −0.148 −0.350 −0.504 −0.456 −0.096 −0.356 −0.411

Correlations between USD equity index and JPY, AUD, NZD, HKD, SGD equity indices.* 
Sample period:  May 1993–May 1995.

Original Adjusted

JPY AUD NZD HKD SGD JPY AUD NZD HKD SGD

mean 0.051 0.099 -0.023 0.006 0.038 0.124 0.330 −0.055 −0.013 0.014

median 0.067 0.119 -0.021 -0.001 0.028 0.140 0.348 −0.053 0.056 −0.024

std dev 0.166 0.176 0.128 0.119 0.145 0.199 0.206 0.187 0.226 0.237

max 0.444 0.504 0.283 0.271 0.484 0.653 0.810 0.349 0.645 0.641

min −0.335 −0.345 −0.455 −0.298 −0.384 −0.395 −0.213 −0.524 −0.527 −0.589

* JPY = Japanese yen, AUD = Australian dollar, NZD = New Zealand dollar, HKD = Hong Kong dollar, SGD = Singapore dollar 
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Data is one of the cornerstones of any risk management methodology. We examined a number of 
data providers and decided that the sources detailed in this chapter were the most appropriate for 
our purposes.

 

9.1  Foreign exchange

 

Foreign exchange prices are sourced from WM Company and Reuters. They are mid-spot 
exchange prices recorded at 4:00 p.m. London time (11:00 a.m. EST). All foreign exchange data 
used for RiskMetrics is identical to the data used by the J.P. Morgan family of government bond 
indices. (See Table 9.1.)

 

9.2  Money market rates 

 

Most 1-, 2-, 3-, 6-, and 12-month money market rates (offered side) are recorded on a daily basis 
by J.P. Morgan in London at 4:00 p.m. (11:00 a.m. EST). Those obtained from external sources are 
also shown in Table 9.2.

 

Table 9.1

 

Foreign exchange

 

Currency Codes

 Americas Asia Pacific Europe and Africa

 

ARS Argentine peso AUD Australian dollar ATS Austrian shilling

CAD Canadian dollar HKD Hong Kong dollar BEF Belgian franc

MXN Mexican peso IDR Indonesian rupiah CHF Swiss franc

USD U.S. dollar JPY Japanese yen DEM Deutsche mark

EMB EMBI+

 

*

 

KRW Korean won DKK Danish kroner

MYR Malaysian ringgit ESP Spanish peseta

NZD New Zealand dollar FIM Finnish mark

PHP Philippine peso FRF French franc

SGD Singapore dollar GBP Sterling

THB Thailand baht IEP Irish pound

TWD Taiwan dollar ITL Italian lira

NLG Dutch guilder

NOK Norwegian kroner

PTE Portuguese escudo

SEK Swedish krona

XEU ECU

ZAR South African rand

* EMBI+ stands for the J.P. Morgan Emerging Markets Bond Index Plus.
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9.3  Government bond zero rates

 

Zero coupon rates ranging in maturity from 2 to 30 years for the government bond markets 
included in the J.P. Morgan Government Bond Index as well as the Irish, ECU, and New Zealand 
markets. (See Table 9.3.)

 

Table 9.2 

 

Money market rates:  sources and term structures

 

Source Time Term Structure

Market

 

J.P. Morgan Third Party

 

*

 

U.S. EST 1m 3m 6m 12m

Australia • 11:00 a.m. • • • •

Hong Kong • 10:00 p.m. • • • •

Indonesia

 

†

 

• 5:00 a.m. • • • •

Japan • 11:00 a.m. • • • •

Malaysia

 

†

 

•  5:00 a.m. • • • •

New Zealand • 12:00 a.m. • • •

Singapore • 4:30 a.m. • • • •

Thailand

 

†

 

• 5:00 a.m. • • • •

Austria • 11:00 a.m. • • • •

Belgium • 11:00 a.m. • • • •

Denmark • 11:00 a.m. • • • •

Finland • 11:00 a.m. • • • •

France • 11:00 a.m. • • • •

Ireland • 11:00 a.m. • • • •

Italy • 11:00 a.m. • • • •

Netherlands • 11:00 a.m. • • • •

Norway • 11:00 a.m. • • • •

Portugal • 11:00 a.m. • • • •

South Africa 11:00 a.m. • • • •

Spain • 11:00 a.m. • • • •

Sweden • 11:00 a.m. • • • •

Switzerland • 11:00 a.m. • • • •

U.K. • 11:00 a.m. • • • •

ECU • 11:00 a.m. • • • •

Canada • 11:00 a.m. • • • •

Mexico

 

‡

 

• 12:00 p.m. • • • •

U.S. • 11:00 a.m. • • • •

* Third party source data from Reuters Generic except for Hong Kong (Reuters HIBO), Singapore (Reuters 
MASX), and New Zealand (National Bank of New Zealand).

† Money market rates for Indonesia, Malaysia, and Thailand are calculated using foreign exchange forward-
points.

‡ Mexican rates represent secondary trading in Cetes.
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If the objective is to measure the volatility of individual cash flows, then one could ask whether it 
is appropriate to use a term structure model instead of the underlying zero rates which can be 
directly observed from instruments such as Strips. The selection of a modeled term structure as the 
basis for calculating market volatilities was motivated by the fact that there are few markets which 
have observable zero rates in the form of government bond Strips from which to estimate volatili-
ties. In fact, only the U.S. and French markets have reasonably liquid Strips which could form the 
basis for a statistically solid volatility analysis. Most other markets in the OECD have either no 
Strip market or a relatively illiquid one.

The one possible problem of the term structure approach is that it would not be unreasonable to 
assume the volatility of points along the term structure may be lower than the market’s real volatil-
ity because of the smoothing impact of passing a curve through a universe of real data points. 

To see whether there was support for this assumption, we compared the volatility estimates 
obtained from term structure derived zero rates and actual Strip yields for the U.S. market across 
four maturities (3, 5, 7, and 10 years). The results of the comparison are shown in Chart 9.1.

 

Table 9.3 

 

Government bond zero rates:  sources and term structures

 

Source Time Term structure

Market

 

J.P. Morgan Third Party U.S. EST 2y 3y 4y 5y 7y 9y 10y 15y 20y 30y

Australia • 1:30 a.m. • • • • • • • •

Japan • 1:00 a.m. • • • • • • •

New Zealand • 12:00 a.m. • • • • • • • •

Belgium • 11:00 a.m. • • • • • • • • •

Denmark • 10:30 a.m. • • • • • • • • • •

France • 10:30 a.m. • • • • • • • • • •

Germany • 11:30 a.m. • • • • • • • • • •

Ireland • 10:30 a.m. • • • • • • • • •

Italy • 10:45 a.m. • • • • • • • • • •

Netherlands • 11:00 a.m. • • • • • • • • • •

South Africa • 11:00 a.m. • • • • • • • • •

Spain • 11:00 a.m. • • • • • • • •

Sweden • 10:00 a.m. • • • • • • • •

U.K. • 11:45 a.m. • • • • • • • • • •

ECU • 11:45 a.m. • • • • • • •

Canada • 3:30 p.m. • • • • • • • • • •

U.S. • 3:30 a.m. • • • • • • • • • •

Emerging Mkt.

 

†

 

• 3:00 p.m.

* Third party data sourced from Den Danske Bank (Denmark), NCB Stockbrokers (Ireland), National Bank of New Zealand (New 
Zealand), and SE Banken (Sweden).

† J. P. Morgan Emerging Markets Bond Index Plus (EMBI+).
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Chart 9.1

 

Volatility estimates: daily horizon

 

1.65 standard deviation—6-month moving average

 

The results show that there is no clear bias from using the term structure versus underlying Strips 
data. The differences between the two measures decline as maturity increases and are partially the 
result of the lack of liquidity of the short end of the U.S. Strip market. Market movements specific 
to Strips can also be caused by investor behavior in certain hedging strategies that cause prices to 
sometimes behave erratically in comparison to the coupon curve from which the term structure is 
derived.

 

9.4  Swap rates

 

Swap par rates from 2 to 10 years are recorded on a daily basis by J.P. Morgan, except for Ireland 
(provided by NCB Stockbrokers), Hong Kong (Reuters TFHK) and Indonesia, Malaysia and Thai-
land (Reuters EXOT). (See Table 9.4.) The par rates are then converted to zero coupon equivalents 
rates for the purpose of inclusion within the RiskMetrics data set. (Refer to Section 8.1 for details).
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9.5  Equity indices

 

The following list of equity indices (Table 9.5) have been selected as benchmarks for measuring 
the market risk inherent in holding equity positions in their respective markets. The factors that 
determined the selection of these indices include the existence of index futures that can be used as 
hedging instruments, sufficient market capitalization in relation to the total market, and low track-
ing error versus a representation of the total capitalization. All the indices listed below measure 
principal return except for the DAX which is a total return index.

 

Table 9.4

 

Swap zero rates:  sources and term structures

 

Source Time Term structure

Market

 

J.P. Morgan Third Party

 

*

 

US EST 2y 3y 4y 5y 7y 10y

Australia • 1:30 a.m. • • • • • •

Hong Kong • 4:30 a.m. • • • • • •

Indonesia • 4:00 a.m. • • • •

Japan • 1:00 a.m. • • • • • •

Malaysia • 4:00 a.m. • • • •

New Zealand • 3:00 p.m. • • • • •

Thailand • 4:00 a.m. • • • •

Belgium • 10:00 a.m. • • • • • •

Denmark • 10:00 a.m. • • • • • •

Finland • 10:00 a.m • • • •

France • 10:00 a.m. • • • • • •

Germany • 10:00 p.m. • • • • • •

Ireland • 11:00 a.m. • • • •

Italy • 10:00 a.m. • • • • • •

Netherlands • 10:00 a.m. • • • • • •

Spain • 10:00 a.m. • • • • • •

Sweden • 10:00 a.m. • • • • • •

Switzerland • 10:00 a.m. • • • • • •

U.K. • 10:00 a.m. • • • • • •

ECU • 10:00 a.m. • • • • • •

Canada • 3:30 p.m. • • • • • •

U.S. • 3:30 a.m. • • • • • •

* Third party source data from Reuters Generic except for Ireland (NCBI), Hong Kong (TFHK), and Indonesia, 
Malaysia, Thailand (EXOT).
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Table 9.5 

 

Equity indices:  sources*

 

Market Exchange Index Name Weighting
% Mkt. 

cap.
Time,

U.S. EST

 

Australia Australian Stock Exchange All Ordinaries MC 96 1:10 a.m.

Hong Kong Hong Kong Stock Exchange Hang Seng MC 77 12:30 a.m.

Indonesia Jakarta Stock Exchange JSE MC 4:00 a.m.

Korea Seoul Stock Exchange KOPSI MC 3:30 a.m.

Japan Tokyo Stock Exchange Nikei 225 MC 46 1:00 a.m.

Malaysia Kuala Lumpur Stock Exchange KLSE MC 6:00 a.m.

New Zealand New Zealand Stock Exchange Capital 40 MC — 10:30 p.m.

Philippines Manila Stock Exchange MSE Com’l &Inustil Price MC 1:00 a.m.

Singapore Stock Exchange of Singapore Sing. All Share MC — 4:30 a.m.

Taiwan Taipei Stock Exchange TSE MC 1:00 a.m.

Thailand Bangkok Stock Exchange SET MC 5:00 a.m.

Austria Vienna Stock Exchange Creditanstalt MC — 7:30 a.m.

Belgium Brussels Stock Exchange BEL 20 MC 78 10:00 a.m.

Denmark Copenhagen Stock Exchange KFX MC 44 9:30 a.m.

Finland Helsinki Stock Exchange Hex General MC — 10:00 a.m.

France Paris Bourse CAC 40 MC 55 11:00 a.m.

Germany Frankfurt Stock Exchange DAX MC 57 10:00 a.m.

Ireland Irish Stock Exchange Irish SE ISEQ — — 12:30 p.m.

Italy Milan Stock Exchange MIB 30 MC 65 10:30 a.m.

Japan Tokyo Stock Exchange Nikei 225 MC 46 1:00 a.m.

Netherlands Amsterdam Stock Exchange AEX MC 80 10:30 a.m.

Norway Oslo Stock Exchange Oslo SE General — — 9:00 a.m.

Portugal Lisbon Stock Exchange Banco Totta SI — — 11:00 a.m.

South Africa Johannesburg Stock Exchange JSE MC 10:00 a.m.

Spain Madrid Stock Exchange IBEX 35 MC 80 11:00 a.m.

Sweden Stockholm Stock Exchange OMX MC 61 10:00 a.m.

Switzerland Zurich Stock Exchange SMI MC 56 10:00 a.m.

U.K. London Stock Exchange FTSE 100 MC 69 10:00 a.m.

Argentina Buenos Aires Stock Exchange Merval Vol. 5:00 p.m.

Canada Toronto Stock Exchange TSE 100 MC 63 4:15 p.m.

Mexico Mexico Stock Exchange IPC MC 3:00 p.m.

U.S. New York Stock Exchange Standard and Poor’s 100 MC 60 4:15 a.m.

*  Data sourced from DRI.
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9.6  Commodities

 

The commodity markets that have been included in RiskMetrics are the same markets as the 
J.P. Morgan Commodity Index (JPMCI). The data for these markets are shown in Table 9.6.

The choice between either the rolling nearby or interpolation (constant maturity) approach is influ-
enced by the characteristics of each contract. We use the interpolation methodology wherever pos-
sible, but in certain cases this approach cannot or should not be implemented.

We use interpolation (I) for all energy contracts. (See Table 9.7.)

The term structures for base metals are based upon rolling nearby contracts with the exception of 
the spot (S) and 3-month contracts. Data availability is the issue here. Price data for contracts 
traded on the London Metals Exchange is available for constant maturity 3-month (A) contracts 
(prices are quoted on a daily basis for 3 months forward) and rolling 15- and 27- month (N) con-
tracts. Nickel extends out to only 15 months. (See Table 9.8.)

 

Table 9.6

 

Commodities:  sources and term structures

 

Time,
U.S. EST

Term structure

Commodity Source

 

Spot 1m 3m 6m 12m 15m 27m

WTI Light Sweet Crude NYMEX

 

*

 

3:10 p.m. • • • •

Heating Oil NYMEX 3:10 p.m. • • • •

NY Harbor #2 unleaded gas NYMEX 3:10 p.m. • • •

Natural gas NYMEX 3:10 p.m. • • • •

Aluminum LME

 

†

 

11:20 a.m. • • • •

Copper LME 11:15 a.m. • • • •

Nickel LME 11:10 a.m. • • •

Zinc LME 11:30 a.m. • • • •

Gold LME 11:00 a.m. •

Silver LFOE

 

‡

 

11:00 a.m. •

Platinum LPPA

 

§

 

11:00 a.m. •

* NYMEX (New York Mercantile Exchange)

† LME (London Metals Exchange)

‡ LFOE (London futures and Options Metal Exchange)

§ LPPA (London Platinum & Palladium Association)

 

Table 9.7

 

Energy maturities

 

Maturities

Energy

 

1m 3m 6m 12m 15m 27m

Light sweet crude I* I I I

Heating Oil I I I I

Unleaded Gas I I I

Natural Gas I I I I

* I = Interpolated methodology.
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Spot prices are the driving factor in the precious metals markets. Volatility curves in the gold, sil-
ver, and platinum markets are relatively flat (compared to the energy curves) and spot prices are 
the main determinant of the future value of instruments: storage costs are negligible and conve-
nience yields such as those associated with the energy markets are not a consideration.

 

Table 9.8

 

Base metal maturities

 

Maturities

Commodity

 

Spot 3m 6m 12m 15m 27m

Aluminum S* A

 

†

 

N

 

‡

 

N

Copper S A N N

Nickel S A N

Zinc S A N N

* S = Spot contract.

† A = Constant maturity contract.

‡ N = Rolling contract.



 

207

Part IV:  RiskMetrics Data Sets

 

Chapter 10. RiskMetrics volatility and correlation files

 

10.1  Availability 209
10.2  File names 209
10.3  Data series naming standards 209
10.4  Format of volatility files 211
10.5  Format of correlation files 212
10.6  Data series order 214
10.7  Underlying price/rate availability 214



 

208   

RiskMetrics

 



 

 —Technical Document
Fourth Edition



 

209

Part IV:  RiskMetrics Data Sets

 

Chapter 10. RiskMetrics volatility and correlation files

 

Scott Howard
Morgan Guaranty Trust Company
Risk Management Advisory
(1-212) 648-4317

 

howard_james_s@jpmorgan.com

 

This section serves as a guide to understanding the information contained in the RiskMetrics daily 
and monthly volatility and correlation files. It defines the naming standards we have adopted for 
the RiskMetrics files and time series, the file formats, and the order in which the data is presented 
in these files.

 

10.1  Availability

 

Volatility and correlation files are updated each U.S. business day and posted on the Internet by 
10:30 a.m. EST. They cover data through close-of-business for the previous U.S. business day. 
Instructions on downloading these files are available in Appendix H. 

 

10.2  File names

 

To ensure compatibility with MS-DOS, file names use the “8.3” format:  8-character name and 
3-character extension (see Table 10.1). 

The first two characters designate whether the file is daily (D) or monthly (M), and whether it con-
tains volatility (V) or correlation (C) data. The next six characters identify the collection date of 
the market data for which the volatilities and correlations are computed. The extension identifies 
the version of the data set. 

 

10.3  Data series naming standards

 

In both volatility and correlation files, all series names follow the same naming convention. They 
start with a three-letter code followed by a period and a suffix, for example, USD.R180.

The three-letter code is either a SWIFT

 

1

 

 currency code or, in the case of commodities, a commod-
ity code, as shown in Table 10.2. The suffix identifies the asset class (and the maturity for 
interest-rate and commodity series). Table 10.3 lists instrument suffix codes, followed by an exam-
ple of how currency, commodity, and suffix codes are used.

 

1

 

The exception is EMB. This represents J. P. Morgan’s Emerging Markets Bond Index Plus.

 

Table 10.1

 

RiskMetrics file names

 

“ddmmyy” indicates the date on which the market data was collected

 

File name format

Volatility Correlation

 

File description

 

DVddmmyy.RM3 DCddmmyy.RM3 1-day estimates
MVddmmyy.RM3 MCddmmyy.RM3 25-day estimates

BVddmmyy.RM3 BCddmmyy.RM3 Regulatory data sets

DVddmmyy.vol DCddmmyy.cor Add-In 1-day estimates
MVddmmyy.vol MCddmmyy.cor Add-In 25-day estimates
BVddmmyy.vol BCddmmyy.cor Add-In regulatory 
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Table 10.2

 

Currency and commodity identifiers

 

Currency Codes

 Americas Asia Pacific Europe and Africa Commodity Codes

 

ARS Argentine peso AUD Australian dollar ATS Austrian shilling ALU Aluminum

CAD Canadian dollar HKD Hong Kong dollar BEF Belgian franc COP Copper

MXN Mexican peso IDR Indonesian rupiah CHF Swiss franc GAS Natural gas

USD U.S. dollar JPY Japanese yen DEM Deutsche mark GLD Gold

EMB EMBI+

 

*

 

KRW Korean won DKK Danish kroner HTO NY Harbor #2 heating oil

MYR Malaysian ringgit ESP Spanish peseta NIC Nickel

NZD New Zealand dollar FIM Finnish mark PLA Platinum

PHP Philippine peso FRF French franc SLV Silver

SGD Singapore dollar GBP Sterling UNL Unleaded gas

THB Thailand baht IEP Irish pound WTI Light Sweet Crude

TWD Taiwan dollar ITL Italian lira ZNC Zinc

NLG Dutch guilder

NOK Norwegian kroner

PTE Portuguese escudo

SEK Swedish krona

XEU ECU

ZAR South African rand

* EMBI+ stands for the J.P. Morgan Emerging Markets Bond Index Plus. 

 

Table 10.3 

 

Maturity and asset class identifiers

 

Maturity

Instrument Suffix Codes

Foreign
exchange

Equity 
indices

Money 
market Swaps Gov’t bonds Commodities

 

Spot XS SE – – – C00
1m – – R030 – – –

3m – – R090 – – C03

6m – – R180 – – C06

12m – – R360 – – C12

15m – – – – – C15

18m – – – – – C18

24m (2y) – – – S02 Z02 C24

27m – – – – – C27

36m (3y) – – – S03 Z03 C36

4y – – – S04 Z04 –

5y – – – S05 Z05 –

7y – – – S07 Z07 –

9y – – – – Z09 –

10y – – – S10 Z10 –

15y – – – – Z15 –

20y – – – – Z20 –

30y – – – – Z30 –
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For example, we identify the Singapore dollar foreign exchange rate by SGD.XS, the U.S. dollar 
6-month money market rate by USD.R180, the CAC 40 index by FRF.SE, the 2-year sterling swap 
rate by GBP.S02, the 10-year Japanese government bond (JGB) by JPY.Z10, and the 3-month nat-
ural gas future by GAS.C03.

 

10.4  Format of volatility files

 

Each daily and monthly volatility file starts with a set of header lines that begin with an asterisk (*) 
and describe the contents of the file. Following the header lines are a set of record lines (without 
an asterisk) containing the daily or monthly data.

 Table 10.4 shows a portion of a daily volatility file.

In this table, each line is interpreted as follows:

• Line 1 identifies whether the file is a daily or monthly file.

• Line 2 lists file characteristics in the following order:  the number of data columns, the num-
ber of record lines, the file creation date, and the version number of the file format.

• Lines 3–10 are a disclaimer.

• Line 11 contains comma-separated column titles under which the volatility data is listed.

• Lines 12 through the last line at the end of file (not shown) represent the record lines, which 
contain the comma-separated volatility data formatted as shown in Table 10.5.

 

Table 10.4

 

Sample volatility file

Line # Volatility file 

 

1
2
3
4
5
6
7
8
9

10
11
12
13
14

*Estimate of volatilities for a one day horizon
*COLUMNS=2, LINES=418, DATE=11/14/96, VERSION 2.0
*RiskMetrics is based on but differs significantly from the market risk management systems
*developed by J.P. Morgan for its own use. J.P. Morgan does not warranty any results obtained 
*from use of the RiskMetrics methodology, documentation or any information derived from
*the data (collectively the “Data”) and does not guarantee its sequence, timeliness, accuracy or
*completeness. J.P. Morgan may discontinue generating the Data at any time without any prior 
*notice. The Data is calculated on the basis of the historical observations and should not be relied 
*upon to predict future market movements. The Data is meant to be used with systems developed
*by third parties. J.P. Morgan does not guarantee the accuracy or quality of such systems.
*SERIES, PRICE/YIELD,DECAYFCTR,PRICEVOL,YIELDVOL
ATS.XS.VOLD,0.094150,0.940,0.554647,ND
AUD.XS.VOLD, 0.791600,0.940,0.643127,ND
BEF.XS.VOLD, 0.032152,0.940,0.546484,ND
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For example, in Table 10.4, the first value ATS.XS.VOLD in Line 12 corresponds to the 
SERIES column title, and identifies the series to be a USD/ATS daily volatility series. Simi-
larly, the remaining values are interpreted as follows:  The value 0.094150 was used as the 
price/yield level in the volatility calculation. The value 0.940 was used as the exponential 
moving average decay factor. The value 0.554647% is the price volatility estimate. The value 
“ND” indicates that the series has no yield volatility.

 

10.5  Format of correlation files

 

Daily and monthly correlation files are formatted similar to the volatility files (see Section 10.4), 
and contain analogous header and record lines (see Table 10.6). Each file comprises the lower half 
of the correlation matrix for the series being correlated, including the diagonal, which has a value 
of “1.000.” (The upper half is not shown since the daily and monthly correlation matrices are sym-
metrical around the diagonal. For example, 3-month USD LIBOR to 3-month DEM LIBOR has 
the same correlation as 3-month DEM LIBOR to 3-month USD LIBOR.)

 

Table 10.5

 

Data columns and format in volatility files 

 

Column title
(header line)

Data
(record lines) Format of volatility data

 

SERIES Series name See Section 10.3 for series naming conventions.

In addition, each series name is given an extension, either 
“.VOLD” (for daily volatility estimate), or “.VOLM” (for 
monthly volatility estimate).

PRICE/YIELD Price/Yield level #.###### or “NM” if the data cannot be published.

DECAYFCTR Exponential moving
average decay factor

#.###

PRICEVOL Price volatility estimate #.###### (% units)

YIELDVOL Yield volatility estimate #.###### (% units) or “ND” if the series has no yield vola-
tility (e.g., FX rates).
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In Table 10.6, each line is interpreted as follows:

• Line 1 identifies whether the file is a daily or monthly file.

• Line 2 lists file characteristics in the following order:  the number of data columns, the num-
ber of record lines, the file creation date, and the version number of the file format.

• Lines 3–10 are a disclaimer.

• Line 11 contains comma-separated column titles under which the correlation data is listed.

• Lines 12 through the last line at the end of the file (not shown) represent the record lines, 
which contain the comma-separated correlation data formatted as shown in Table 10.7. 

For example, Line 13 in Table 10.6 represents a USD/ATS to USD/AUD daily correlation 
estimate of 

 

−

 

0.251566 measured using an exponential moving average decay factor of 0.940 
(the default value for the 1-day horizon).

 

Table 10.6

 

Sample correlation file

Line # Correlation file 

 

1
2
3
4
5
6
7
8
9

10
11
12
13
14

*Estimate of correlations for a one day horizon
*COLUMNS=2, LINES=087571, DATE=11/14/96, VERSION 2.0
*RiskMetrics is based on but differs significantly from the market risk management systems
*developed by J.P. Morgan for its own use. J.P. Morgan does not warranty any results obtained 
*from use of the RiskMetrics methodology, documentation or any information derived from
*the data (collectively the “Data”) and does not guarantee its sequence, timeliness, accuracy or
*completeness. J.P. Morgan may discontinue generating the Data at any time without any prior 
*notice. The Data is calculated on the basis of the historical observations and should not be relied 
*upon to predict future market movements. The Data is meant to be used with systems developed
*by third parties. J.P. Morgan does not guarantee the accuracy or quality of such systems.
*SERIES, CORRELATION
ATS.XS.ATS.XS.CORD,1.000000
ATS.XS.AUD.XS.CORD, -0.251566
ATS.XS.BEF.XS.CORD, 0.985189

 

Table 10.7

 

Data columns and format in correlation files

 

Column title
(header line)

Correlation data
(record lines) Format of correlation data

 

SERIES Series name See Section 10.3 for series naming conventions.

In addition, each series name is given an extension, either “.CORD” 
(for daily correlation), or “.CORM” (for monthly correlation).

 

CORRELATION Correlation 
coefficient

#.######

Correlation coefficients are computed by using the same expo-
nential moving average method as in the volatility files (i.e., 
decay factor of 0.940 for a 1-day horizon, and 0.970 for a 
1-month horizon.)
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10.6  Data series order

 

Data series in the volatility and correlation files are sorted first alphabetically by SWIFT code and 
commodity class indicator, and then by maturity within the following asset class hierarchy:  for-
eign exchange, money markets, swaps, government bonds, equity indices, and commodities.

 

10.7  Underlying price/rate availability

 

Due to legal considerations, not all prices or yields are published in the volatility files. What is 
published are energy future contract prices and the yields on foreign exchange, swaps, and govern-
ment bonds. The current level of money market yields can be approximated from Eq. [10.1] by 
using the published price volatilities and yield volatilities as well as the instruments’ modified 
durations.

[10.1] Current yield σPrice σYield Modified  Duration⋅( )⁄=


