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Abstract

A new data analysis method is developed for the angle resolving silicon telescope introduced at the neutron time of flight facility
n TOF at CERN. The telescope has already been used in measurements of several neutron induced reactions with charged particles
in the exit channel. The development of a highly detailed method is necessitated by the latest joint measurement of the 12C(n, p) and
12C(n, d) reactions from n TOF. The reliable analysis of these data must account for the challenging nature of the involved reactions,
as they are affected by the multiple excited states in the daughter nuclei and characterized by the anisotropic angular distributions
of the reaction products. The method aims at the separate reconstruction of all relevant reaction parameters – the absolute cross
section, the branching ratios and the angular distributions – from the integral number of the coincidental counts detected by the
separate pairs of silicon strips. The clear formalism behind the method also allows for its many (reduced or extended) variants to
be developed and adapted to a particular level of uncertainties in the input data.
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1. Introduction1

The neutron time of flight facility n TOF at CERN is a highly2

sophisticated neutron production facility aiming at measuring3

the neutron induced reactions. A massive lead spallation target4

irradiated by the 20 GeV proton beam from the CERN Proton5

Synchrotron serves as the primary source of neutrons, deliv-6

ering an extremely luminous white neutron beam spanning 127

orders of magnitude in energy – from 10 meV to 10 GeV. The8

n TOF facility features two experimental areas: Experimental9

Area 1 (EAR1), horizontally placed at 185 m from the spal-10

lation target, and the Experimental Area 2 (EAR2) vertically11

placed at 20 m above the target. While EAR1 is best adjusted12

to the high neutron energy and the high resolution measure-13

ments, EAR2 excels at the measurements with small, highly14

radioactive samples characterized by low cross sections for the15

investigated reactions. More details on the general features of16

the n TOF facility and EAR1 itself may be found in Ref. [1],17

while the specifics on EAR2 are addressed in Refs. [2, 3, 4]. An18

overview of the experimental program at n TOF may be found19

in Ref. [5]. A general overview of many different types of de-20

tectors used at n TOF for the measurements of various types21

of the neutron induced reactions, together with the detailed de-22
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scription of the procedures for the analysis of electronic signals23

from these detectors, is to be found in Ref. [6].24

A new, highly sophisticated silicon telescope (SITE) has re-25

cently been introduced at n TOF for measurements of the neu-26

tron induced reactions with charged particles in the exit channel27

[7]. It consists of two separate and segmented layers of 16 sili-28

con strips, 3 mm wide and placed in parallel between the layers.29

The detector is shown in Fig. 1. Both layers are 5 cm × 5 cm30

Figure 1: Experimental setup housing the segmented silicon telescope (SITE),
originally used for the measurement of the 7Be(n, p) reaction.
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Figure 2: Top: upgraded experimental configuration used for the measurements
of the 12C(n, p) and 12C(n, d) reactions, comprising two silicon telescopes (a
caption from Geant4 simulations). The central object is a carbon sample, as a
source of several displayed proton trajectories. Bottom: closeup of a rear tele-
scope, showing a stripped structure of ∆E and E layers (the strips of alternating
colors, separated by a very thin layer of inactive silicon).

in lateral dimensions. The first (∆E) layer and the second (E)31

layer are 20 µm and 300 µm thick, respectively. The detector32

allows for the detected particle type discrimination by means of33

the ∆E–E coincidences, as well as for the limited angular dis-34

crimination, governed by its geometry and the sample-relative35

positioning.36

Excellent particle discrimination capabilities of this silicon37

telescope have been clearly demonstrated [7] and it has already38

been successfully used in the challenging measurement of the39

7Be(n, p) reaction cross section, highly relevant for the long-40

standing Cosmological Lithium Problem [8]. This measure-41

ment has also been accompanied by the measurement of the42

7Be(n, α) reaction cross section [9], employing a similar type43

of silicon sandwich detector [10].44

Rather recently an integral measurement of the 12C(n, p)12B45

reaction has been performed at n TOF, using two liquid scintil-46

lation C6D6 detectors for the detection of β-rays from the decay47

of the produced 12B [11, 12]. The results of this measurement48

have turned out somewhat surprising, lying entirely outside of49

values predicted by all earlier datasets available for this reac-50

tion (experimental or otherwise), which are in a rather poor51

agreement between each other (for a concise review of these52

datasets see Refs. [11, 12, 13]). In order to resolve this conun-53

drum a more advanced energy-differential measurement of the54

12C(n, p)12B and 12C(n, d)11B reactions was proposed [13] and55

already performed at EAR1 at n TOF, using an upgraded SITE56

configuration displayed in Fig. 2. The upgrade consisted in in-57

troducing a second telescope in order to increase the angular58

coverage as much as possible, while keeping both of them out-59

side of the neutron beam. We will refer to these two telescopes60

as front and rear, the front one being parallel to the sample and61

covering the forward angles, with the rear one being parallel to62

the neutron beam and mostly covering the backward angles (see63

Fig. 2). The analysis of the experimental data on the 12C(n, p)64

and the 12C(n, d) reaction is under way, pending the develop-65

ment of a new analysis method for extracting the relevant re-66

action parameters. Most important among these is the absolute67

cross section. The angle-differential cross sections for the reac-68

tion flow via the separate excited states of a daughter nucleus69

(11B [14] or 12B [15]) would also be highly desirable. However,70

the reliable decoupling of these states might not be possible at71

the level of statistics expected from the latest measurement.72

Section 2 develops the formalism behind the method and its73

implementation. Section 3 addresses several technical issues74

to be considered during the method implementation, including75

the selection of the optimal set of the reaction parameters. Sec-76

tion 4 presents a reduced variant of the method, to be applied77

to the experimental data affected by the high level of uncertain-78

ties. Section 5 summarizes the main conclusions of this work.79

Appendices cover several additional issues worth addressing.80

2. Derivation of the method81

We develop the method having a specific 12C(n, p)12B reac-82

tion in mind, though it will be applicable to any other (type of)83

reaction.84

Let θ be the angle of proton emission in the center of mass85

frame (of the incoming neutron and 12C nucleus before the re-86

action, and of the outgoing proton and the 12B nucleus after87

the reaction), relative to the direction of the neutron beam. We88

immediately introduce:89

χ ≡ cos θ (1)

as a relevant variable. For simplicity of terminology we still re-90

fer to χ as the angle of the proton emission. Let Ni j be the total91

number of protons detected in coincidence by the (i, j)-pair of92

strips, with the first index i denoting some of the thin ∆E-strips93

and the a second index j denoting some of the thick E-strips94

from any telescope (front or rear). Let E be the energy of the95

incident neutron. The proton produced by the neutron of suf-96

ficiently high energy might be emitted leaving the 12B nucleus97

in any of the energetically accessible states. Thus, the proton98

energy is clearly contingent on the daughter nucleus’ excited99

states. Denoting these states by x (x = 0 being the ground100

state), we define the efficiency εi j(x, E, χ) for the coincidental101

detection – by the (i, j)-pair of strips – of protons produced by102

the neutrons of energy E and emitted under an angle χ leaving103

the 12B nucleus in a state x:104

εi j(x, E, χ) ≡
d2Ni j(x, E, χ)
d2N(x, E, χ)

(2)

with d2Ni j(x, E, χ) as the number of the detected protons and105

d2N(x, E, χ) as the number of protons emitted under such con-106

ditions. These efficiencies may easily be obtained from the ded-107

icated simulations. It should be noted that they reflect the prop-108

erties of the experimental setup itself, and are independent of109

the angular distribution of the emitted protons.110
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Figure 3: Examples of the coincidental detection efficiencies for protons from
the 12C(n, p) reaction induced by 20 MeV neutrons, leaving the 12B nucleus in
the ground state. The efficiencies are shown for an arbitrary (i-th) ∆E-strip in
coincidence with the several closest E-strips.

Only for illustration purposes, Fig. 3 shows the coinciden-111

tal detection efficiencies εi j(0, 20 MeV, χ) for protons produced112

by 20 MeV neutrons, leaving the 12B nucleus in the ground113

state (x = 0). The efficiencies are shown for some arbitrarily114

selected, i-th ∆E-strip in coincidence with the several closest115

E-strips. The area below these curves corresponds to the to-116

tal efficiency for the proton detection by the particular pair of117

strips. During the method implementation these curves, i.e.118

their smooth(ed) forms never have to be constructed, as their119

integrals can be calculated as the weighted sum of the simu-120

lated counts. The issue is addressed in Appendix A.121

The number of protons emitted under the described specific122

conditions may be decomposed as:123

d2N(x, E, χ) = φ(E)µ(E)
%(x, E, χ)
Σtot(E)

(
1 − e−ηΣtot(E)

)
dEdχ (3)

with φ(E) as a time-integrated energy dependent neutron flux124

irradiating the sample: φ(E) = dΦ(E)/dE, dΦ(E) being the to-125

tal number of neutrons of energy E intercepted by the sample.126

The multiple scattering factor µ(E) describes an increase in the127

neutron flux at an energy E due to the energy loss of higher-128

energy neutrons by means of the multiple scattering inside the129

sample itself. With %(x, E, χ) as the partial cross section for130

the 12C(n, p) reaction, i.e. for a particular reaction of interest,131

Σtot(E) is the total cross section for any neutron induced reac-132

tion in the carbon sample. Finally, η is the areal density of the133

sample, as encountered by the neutron beam, in the number of134

atoms per unit area. While the term 1 − e−ηΣtot(E) gives a prob-135

ability for any neutron reaction to occur, the differential ratio136

%(x, E, χ)/Σtot(E) governs the probability of that reaction being137

the one of interest. The differential cross section may now be138

decomposed as:139

%(x, E, χ) = σ(E) ρ(x, E) A(x, E, χ) (4)

with σ(E) as the total cross section for the 12C(n, p) reaction,140

ρ(x, E) as the energy-dependent branching ratios for the reac-141

tion flow via the particular excited state of 12B, and A(x, E, χ)142

as the angular distribution of protons specific to that state.143

From Eq. (3) we now isolate all the terms that are indepen-144

dent of the detector setup, while being available from the ex-145

periment, simulation or any evaluation database:146

w(E) ≡
1 − e−ηΣtot(E)

Σtot(E)
φ(E)µ(E) (5)

The neutron flux φ(E) at EAR1 (as well as the flux at EAR2147

[16]) is available from the dedicated measurements at n TOF148

[17]. Even in a general case of a thick sample, the multiple149

scattering factor could be obtained from the dedicated simula-150

tions if the total cross section Σtot(E) and the elastic scattering151

cross section Σel(E) for carbon were known with sufficient pre-152

cision, which they are [12]. However, as the very thin carbon153

sample was used during the energy-differential measurement –154

0.25 mm [13], with the thickness of 0.35 mm, i.e. an areal den-155

sity of η = 4×10−3 atoms/barn being intercepted by the neutron156

beam due to the sample tilt of 45◦ (Fig. 2) – a thin sample ap-157

proximation becomes highly appropriate. In this approximation158

the deviation of the multiple scattering factor from unity is com-159

pletely negligible: µ(E) ≈ 1, while the full fractional term from160

Eq. (5) approximates to η due to ηΣtot(E) � 1 within the entire161

neutron energy range of interest. Hence:162

w(E) ≈ ηφ(E) (6)

Using Eqs. (4) and (5), Eq. (3) may now be rewritten as:163

d2N(x, E, χ) = w(E)σ(E) ρ(x, E) A(x, E, χ) dEdχ (7)

We now take into account that due to the energy spread of the164

neutron beam the experimental data must be analyzed within165

the energy intervals of finite width. We use the following nota-166

tion for one such interval:167

E ≡ [Emin, Emax] (8)

meaning that all the later quantities denoted by E are either in-168

tegrals or averages over E, or that they may be separately and169

independently selected for each such energy interval. Since any170

particular method implementation requires a weighted averag-171

ing over w(E), we immediately introduce the following norm:172

WE ≡

∫
E

w(E)dE (9)

Returning to the differential number of protons d2Ni j(x, E, χ)173

detected by a particular pair of strips and recalling that there174

may be multiple excited states of the daughter nucleus con-175

tributing to the reaction flow, we may write the expression for176

the total number of protons detected by the (i, j)-pair of strips:177

N(E)
i j =

XE∑
x=0

∫
E

dE
∫ 1

−1
dχ

d2Ni j(x, E, χ)
dEdχ

(10)
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with XE as the highest excited state affecting the data from the178

energy interval E. It should be noted that the total detected179

counts N(E)
i j taken for analysis will also be dependent on the en-180

ergy deposition cuts imposed on the experimental data. We will181

consider this dependence implicitly absorbed within the terms182

N(E)
i j and, consequently, the corresponding detection efficiencies183

εi j(x, E, χ).184

We now define an arbitrary bijective mapping:185

(i, j) 7→ α (11)

allowing us to write Eq. (10) in a single index, which will soon186

become useful in bringing the system to an appropriate matrix187

form. This bijection never needs to be explicitly constructed.188

Using this formal manipulation in conjunction with applying189

Eqs. (2) and (7) to Eq. (10), we arrive at the master equation:190

N(E)
α =

XE∑
x=0

∫
E

dE
∫ 1

−1
dχ εα(x, E, χ)w(E)σ(E)ρ(x, E)A(x, E, χ)

(12)
Our goal is now to bring this equation into the matrix form:191

~N(E) = EE ~P (E) (13)

by constructing the vector ~N(E) of total detected counts N(E)
α , by192

designing an appropriate matrix EE and by isolating the sought193

parameters of the partial cross section within the vector ~P (E).194

We will obtain this matrix form by decomposing the angular195

distributions into partial waves (Legendre polynomials).196

Before proceeding further let us put forth the tools and con-197

siderations common to any particular implementation of the198

method. Let us denote by RE the number of relevant pairs of199

strips composing the experimental dataset from ~N(E) and by PE200

the number of the partial cross section parameters from ~P (E).201

Then we can select at most RE parameters to reconstruct:202

RE ≡ dim
[~N(E)]

PE ≡ dim
[~P (E)] }

⇒ PE ≤ RE (14)

When PE < RE, the best solution to this system may be found203

by means of the weighted least squares method [18]:204

~P (E) =
(
E
>
E V−1

E EE
)−1
E
>
E V−1

E
~N(E) (15)

with VE are the covariance matrix of the input data, allowing205

for the propagation of experimental uncertainties in order to ob-206

tain the covariance matrixVE of the reconstructed parameters207

and their respective uncertainties δP(E)
β as:208

VE =
(
E
>
E V−1

E EE
)−1

⇒ δP(E)
β =

√
[VE ]ββ (16)

From the raw results obtained from Eq. (15) we will have to cal-209

culate various consequent quantities – the total reaction cross210

section, branching ratios and the angular distribution parame-211

ters – while dealing with the high uncertainties and possible212

correlations in the reconstructed ~P (E). Therefore, we are well213

advised to take into account the effects of the full covariance214

matrix upon the propagation of uncertainties. Let any of these215

quantities be the scalar function of ~P (E) that we generally denote216

as: FE ≡ F
(~P (E)). Then the respective uncertainty δFE may be217

expressed as:218

δFE =

√
JFVE J>F =

√√√
PE∑
β=1

PE∑
β′=1

∂FE

∂P(E)
β

∂FE

∂P(E)
β′

[VE ]ββ′ (17)

with JF indicating the conventionally defined Jacobian matrix219

of the function F.220

2.1. Partial waves decomposition221

We start by decomposing the angular distributions into the222

selected number of partial waves, i.e. Legendre polynomials223

Pl(χ):224

A(x, E, χ) ≈
LE(x)∑

l=0

al(x, E) Pl(χ) (18)

with the maximum wave numberLE(x) freely adjustable to any225

given excited state, within the constraints of the total number226

RE of the available data points. Eq. (12) may now be rewritten227

as:228

N(E)
α ≈

XE∑
x=0

LE(x)∑
l=0

∫
E

w(E)σ(E) ρ(x, E) al(x, E) dE ×

×

∫ 1

−1
εα(x, E, χ)Pl(χ) dχ = 2WE

XE∑
x=0

LE(x)∑
l=0

〈
σρal

〈
εα

〉
l
〉
E

(19)

where we recognize the appearance of the weighted averages229

〈·〉E and 〈·〉l, with w(E) and Pl(χ) as the respective weighting230

functions. We now approximate the average product by the231

product of averages:232 〈
σρal

〈
εα

〉
l
〉
E ≈ ¯̄ε(E)

αxlσ̄
(E)ρ̄(E)

x ā(E)
xl (20)

with the single and double averages appearing as:233

σ̄(E) ≡
1

WE

∫
E

w(E)σ(E) dE (21)

ρ̄(E)
x ≡

1
WE

∫
E

w(E) ρ(x, E) dE (22)

ā(E)
xl ≡

1
WE

∫
E

w(E) al(x, E) dE (23)

¯̄ε(E)
αxl ≡

1
2WE

∫
E

w(E) dE
∫ 1

−1
εα(x, E, χ) Pl(χ) dχ (24)

In analogy to Eq. (11) we introduce another arbitrary bijective234

mapping:235

(x, l) 7→ β (25)

never having to be explicitly constructed, but allowing for a236

unique-index labeling. In that, β spans the range of all free pa-237

rameters, i.e. the total number of coefficients ā(E)
xl : β = 1, ...,PE.238

As it holds: PE =
∑XE

x=0[LE(x) + 1], from Eq. (14) we have the239
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following constraint upon the distribution of Legendre coeffi-240

cients among the relevant exited states:241

1 + XE +

XE∑
x=0

LE(x) ≤ RE (26)

Equation (19) is now recast as:242

N(E)
α ≈ 2WE

XE∑
x=0

LE(x)∑
l=0

¯̄ε(E)
αxlσ̄

(E)ρ̄(E)
x ā(E)

xl = 2WE

PE∑
β=1

¯̄ε(E)
αβ σ̄

(E)ρ̄(E)
β ā(E)

β

(27)

having thus been brought into the matrix form from Eq. (13),243

with the appropriate definitions:244 [
EE

]
αβ ≡ 2WE ¯̄ε(E)

αβ (28)

P(E)
β ≡ σ̄

(E)ρ̄(E)
β ā(E)

β (29)

The entire solution ~P (E) and the corresponding uncertainties are245

now easily found from Eqs. (15) and (16).246

Applying the normalization condition
∫ 1
−1 A(x, E, χ)dχ = 1 to247

Eq. (18), we find that:248

a0(x, E) = 1/2 ⇒ ā(E)
x0 = 1/2 (30)

i.e. all the 0th terms are fixed and carry the entire angu-249

lar distribution norm. Plugging this result into Eq. (29):250

P(E)
x0 = σ̄(E)ρ̄(E)

x /2 and combining it with the normalization con-251

dition
∑XE

x=0 ρ̄
(E)
x = 1, we find:252

σ̄(E) = 2
XE∑
x=0

P(E)
x0 (31)

The next step consists of identifying the branching ratios as:253

ρ̄(E)
x =

2P(E)
x0

σ̄(E) =
P(E)

x0∑XE
y=0 P(E)

y0

(32)

culminating in the separation of the angular coefficients:254

ā(E)
xl =

P(E)
xl

σ̄(E)ρ̄(E)
x

=
1
2

P(E)
xl

P(E)
x0

(33)

The uncertainties δσ̄(E), δρ̄(E)
x and δā(E)

xl follow directly from255

Eq. (17), according to the full covariance matrix VE from256

Eq. (16) .257

When the total number of the relevant excited states becomes258

so large that the total number PE of required parameters be-259

comes comparable to the total number RE of available data260

points, and/or when these points are affected by large uncertain-261

ties, the coefficients ā(E)
xl exhibit substantial uncertainties them-262

selves and the contributions from the particular excited states263

can not be reliably separated. In this case one may attempt to264

reconstruct the ”global” partial wave coefficients averaged over265

the excited states:266

¯̄a(E)
l =

XE∑
x=0

ρ̄(E)
x ā(E)

xl fLE(x)−l =

∑XE
x=0 P(E)

xl fLE(x)−l

2
∑XE

y=0 P(E)
y0

(34)

hoping for a manageable uncertainty in the total contribution to267

a given partial wave. The factors f`,defined as:268

f` ≡
{

0 if ` < 0
1 if ` ≥ 0 (35)

simply take into account whether a given partial wave was269

adopted for a given excited state. As all the 0th terms are fixed270

by Eq. (30), we immediately have ¯̄a(E)
0 = 1/2 and δ ¯̄a(E)

0 = 0.271

3. Implementing the method272

We illustrate the implementation of the method by applying273

it to the 12C(n, p) data artificially generated by the Geant4 sim-274

ulations. We consider here the data from 1 MeV wide energy275

range E = [19.5 MeV, 20.5 MeV], approximately where this re-276

action’s cross section is expected to reach its maximum. The277

branching ratios and the angular distributions for each relevant278

excited state were arbitrarily constructed.279

3.1. Selecting the excited states280

The excited states contributing to the reaction flow within281

the given neutron energy range E need to be clearly identified,282

as the method requires them to be known in advance. For the283

12C(n, p) reaction, there are total of 15 states in the 12B daughter284

nucleus with the energy threshold Ethr below the upper limit of285

the considered neutron energy range (Ethr < 20.5 MeV) [15].286

Their excitation energies together with the corresponding Q-287

values and the energy thresholds in the laboratory frame are288

listed in Table 1. While all these states contribute to the reac-289

tion flow, not all of them necessarily contribute to the totality of290

the detected counts, especially those very close to the reaction291

threshold. The reason is threefold: (1) the very low reaction292

cross section close to the threshold; (2) the pronounced forward293

boost of the produced protons in the laboratory frame, making294

them miss most of the detection setup; (3) the low proton pro-295

duction energy causing them to be stopped by the sample itself,296

never reaching the detectors at all. Therefore, it needs to be297

estimated in advance which states may be excluded from the298

analysis of the experimental data. As the exact evaluation of299

the expected amount of the detected counts from each state is,300

of course, impossible without the prior knowledge of the partial301

cross sections for each separate state (their branching ratios and302

angular distributions), one needs to rely on some reasonable303

estimate. One such useful figure of merit is the approximate ef-304

ficiency estimator ε̃(E)
x for the coincidental detection by any pair305

of the ∆E–E strips:306

ε̃(E)
x ≡

1
2WE

∑
α

∫
E

w(E)dE
∫ 1

−1
εα(x, E, χ)dχ (36)
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Table 1: States in the 12B nucleus relevant for the selected demonstration exam-
ple. The table lists their excitation energies Ex [15], the corresponding Q-values
and the energy thresholds Ethr for the 12C(n, p) reaction in the laboratory frame.

x Ex [MeV] Q [MeV] Ethr [MeV]
0 0.00 12.59 13.65
1 0.95 13.54 14.68
2 1.67 14.26 15.46
3 2.62 15.21 16.49
4 2.73 15.31 16.60
5 3.39 15.98 17.32
6 3.76 16.35 17.72
7 4.00 16.59 17.98
8 4.30 16.89 18.31
9 4.46 17.05 18.48
10 4.52 17.11 18.55
11 4.99 17.56 19.05
12 5.61 18.20 19.73
13 5.73 18.31 19.85
14 6.00 18.59 20.15

constructed by assuming – in the absence of any prior informa-307

tion – the isotropic angular distribution of protons in the center308

of mass frame: A(x, E, χ) ≈ 1/2, and applying the same energy309

deposition cuts as are to be applied to the experimental data.310

Figure 4 shows thus obtained efficiency estimates for the rele-311

vant 12B states. Although the portionN (E)
x of the produced pro-312

tons still remains entirely unknown, the observed decrease in313

ε̃(E)
x together with the expected decrease in N (E)

x for the higher314

states allows one to make an informed estimates about the rele-315

vance of the expected partial contributions N(E)
x to the detected316

counts: N(E)
x ≈ ε̃(E)

x N
(E)
x . From these considerations applied to317

Fig. 4 we elect to include only the first 11 states (up to the 10th
318

excited one, i.e. XE = 10) for further analysis. The artificial319

data to be analyzed were, of course, simulated by including all320

15 states with the energy thresholds below the upper limit of the321

considered neutron energy range.322

It must be pointed out that this exclusion of higher states from323

the analysis may, in principle, affect the cross section normal-324

ization, as the branching ratios of the excluded states become325

unobtainable. However, as already discussed, the cross sections326

around the energy thresholds for these states are expected to be327

negligible and so is their impact upon the total reaction cross328

section. Still, if there were reasonable indications to the con-329

trary, one should be aware that the reconstructed cross section330

σ̄(E) is only partially contributed by those states that were kept331

for the analysis.332

3.2. Varying the amount of partial waves333

The highest wave numbers LE(x) for each excited state are334

evidently the method’s adjustable parameters. For the total of335

RE relevant pairs of strips from Eq. (14), there is a total of
(
RE
XE+1

)
336

selections ofLE(x) satisfying the constraint from Eq. (26), with337 (
·

·

)
denoting a binomial factor. For RE = 60, as used later,338

and XE = 10 this amounts to approximately 3.4 × 1011 com-339

binations. If we were to impose some maximum admissible340
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Figure 4: Figure of merit: estimated efficiency for the coincidental detection of
protons from the 12C(n, p) reaction by any pair of ∆E–E strips, dependent on
the excited state x that the daughter nucleus 12B was left in. The considered
neutron energy range is E = [19.5 MeV, 20.5 MeV].

wave number LE that may be assigned to any particular state341

– implying, for purpose of these simple estimates, that the se-342

lection of LE itself must be such that (LE + 1)(XE + 1) ≤ RE,343

in order for each of XE + 1 states to be allowed LE + 1 waves344

– then the number of possible selections for LE(x) reduces345

to (LE + 1)XE+1. For example, the maximum value LE = 4346

compatible with RE = 60 and XE = 10 yields approximately347

4.9 × 107 combinations. However, the following physical ar-348

gument helps us in reducing the number of possible combina-349

tions even further, by keeping only the physically sensible se-350

lections of LE(x). We consider that close to the reaction thresh-351

old the nuclear reactions are expected to be isotropic (in the352

center-of-mass frame), while the anisotropy is expected to ap-353

pear (and possibly intensify) with increasing incident particle354

energy. This suggests that the higher excited states – character-355

ized by a higher threshold – should not be assigned more partial356

waves than the lower states, i.e.:357

LE(x1) ≥ LE(x2) for x1 < x2 (37)

For the maximum admissible wave number LE, the number of358

combinations consistent with this constraint is now reduced to359 (
LE+XE+1
XE+1

)
. For example, the maximal value LE = 4 compatible360

with RE = 60 and XE = 10 leaves the total of 1365 combina-361

tions. All we need now is the algorithm for constructing such362

combinations. For the maximum wave number LE to be as-363

signed to any state, the particular combination of nonincreasing364

LE(x) values may be uniquely defined by the set of LE states365

Λ` (` = 1, . . . , LE) at which the maximum wave number LE(x)366

increases by 1. In other words, Λ` form a set of states such that367

LE(x) = ` ends at x = Λ`, i.e.:368

LE(x) = ` for Λ`+1 < x ≤ Λ` (38)

with additional fixed boundaries Λ0 = XE and ΛLE+1 = −1, de-369

fined for the convenience of the implementation. The algorithm370

now reduces to generating all combinations (LE-tuples) of Λ`371
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such that:372

Λ`+1 ≤ Λ` with Λ` ∈
{
− 1, . . . ,XE

}
for ` = 1, . . . , LE

(39)
It is easy to confirm that if Λ` = −1 for all `, then LE(x) = 0373

for all x, i.e. all the states are assigned only the isotropic com-374

ponent. The other extreme is Λ` = XE for all `, meaning that375

LE(x) = LE for all x, i.e. all the states are assigned the maxi-376

mum allowed number of partial waves.377

3.3. Optimizing the model parameters378

The obvious question now is how to select an optimal com-379

bination of the wave numbers LE(x). We propose here a simple380

– and by no means unique – selection principle. As the varia-381

tions in LE(x) directly affect the number of the model parame-382

ters: PE =
∑XE

x=0[LE(x) + 1], the reduced chi-squared estimator383

X2 lends itself easily to a quick and efficient evaluation of the384

goodness of the fit:385

X2 =

(~N(E) − EE ~P (E))>V−1
E

(~N(E) − EE ~P (E))
RE − PE

'
1

RE − PE

RE∑
α=1

(
N(E)
α −

∑PE
β=1

[
EE

]
αβP

(E)
β

)2(
δN(E)

α

)2

(40)

The rightmost expression holds when the covariance matrix VE386

of the input data is diagonal, i.e. when the correlations between387

the components of ~N(E) are negligible. As opposed to the good-388

ness of fit – which will for large RE systematically improve389

by increasing the number of partial waves, as long as PE does390

not closely approach RE – the reliability of the fit, reflected391

through the uncertainties in the reconstructed ~P (E), rapidly de-392

grades with increasing number of parameters. For estimating393

this reliability we propose a simple calculation of the uncer-394

tainty δX2 in the chi-squared value from Eq. (40) by means395

of Eq. (17), since X2 is sensitive to all the fitted parameters396

– unlike, for example, the reconstructed cross section σ̄(E) from397

Eq. (31). In the context of our problem the minimization of X2
398

and its uncertainty δX2 seem to be opposing objectives. There-399

fore, we propose to minimize their product X2δX2 as the sim-400

plest estimator that should at its minimum provide the optimal401

tradeof between the goodness and the reliability of the fit.402

There are additional issues to consider. For the number of403

partial waves too inadequate for a given set of the experimen-404

tal data, some of the branching ratios ρ̄(E)
x from Eq. (32) may405

turn out to be negative or greater than unity – a clear signa-406

ture of the badness of the fit, going beyond the particular values407

of X2. These fits should be immediately rejected as physically408

unsound, i.e. disqualified from any kind of optimization proce-409

dure, be it the minimization of X2δX2 or some alternate tech-410

nique.411

Yet another quality control mechanism consists of checking412

if the reconstructed angular distributions for each angular state:413

Ā(E)
x (χ) ≡

LE(x)∑
l=0

ā(E)
xl Pl(χ) =

1
2

LE(x)∑
l=0

P(E)
xl

P(E)
x0

Pl(χ) (41)

become negative at any point. If so, such fits may also be im-414

mediately rejected, regardless of their goodness. One should be415

wary, however, in making such rejections when there are prior416

indications that some states may indeed feature the very low417

branching ratios or highly anisotropic angular distributions that418

locally come close to zero. In this case any statistical fluctua-419

tion in the input data may easily drive the reconstructed results420

toward the negative values, while the results do remain reason-421

ably reliable representations of the true reaction parameters. It422

should be noted that the reconstructed branching ratios may dis-423

card all fits as unphysical, if every combination of wave num-424

bers LE(x) produces at least one negative ρ̄(E)
x . On the other425

hand, the isotropic angular distributions will always pass the426

negativity test, so that the fully isotropic fit (LE(x) = 0 for all x)427

will always be accepted, based on the positivity of the angular428

distributions themselves.429

Prior to calculating X2, δX2 or any consequent quantity to be430

used in judging the suitability of the fitted result, one may also431

consider manually eliminating from the set of fitted parameters432

those P(E)
xl that, according to Eq. (33), yield the angular coeffi-433

cients too small (|ā(E)
xl | � 1) or unreasonably large (|ā(E)

xl | � 1)434

in magnitude. For the associated β, this is most easily done by435

setting P(E)
β = 0 and [VE ]ββ′ = [VE ]β′β = 0 for all β′ within the436

covariance matrix from Eq. (16). This procedure helps in reg-437

ularizing the fit, as the exceedingly small |ā(E)
xl | are commonly438

the sporadic results caused by the finite precision data, while the439

distinctly large |ā(E)
xl | are expected to appear as the consequence440

of overfitting the statistical fluctuations in the input data. One441

should, of course, be prepared for the closer inspection and the442

critical evaluation of the results if the optimal set of parameters443

happens to be precisely thus manipulated set. However, what is444

expected from this procedure is the artificially induced increase445

in the fit suitability estimator X2δX2, such that some alternative446

set of parameters takes precedence as the optimal one.447

In summary, we propose to identify the optimal combina-448

tion of the maximum wave numbers LE(x) by minimizing the449

product X2δX2 – or any such estimator balancing between the450

goodness and the reliability of the fit – while taking into account451

the physical soundness of the results, whether by immediately452

rejecting those physically inadmissible or by appropriately pe-453

nalizing them during the optimization procedure.454

3.4. Method demonstration455

We now test the method on a particularly challenging ex-456

ample of the artificially generated 12C(n, p) data, as means457

of appraising its applicability to the experimental data from458

n TOF. The simulated dataset – the set of counts N(E)
α detected459

by a particular pair of strips – was obtained from the same460

Geant4 simulations as used for obtaining the coincidental de-461

tection efficiencies, i.e. the central design matrix EE . The462

neutron energies were sampled within the 1 MeV wide inter-463

val E = [19.5 MeV, 20.5 MeV], all 15 states from Table 1 were464

used in constructing the dataset, while only the first 11 states465

from Fig. 4 were considered for the reconstruction. For the466

buildup of the test counts an arbitrarily constructed branching467

ratios ρ(x, E) for each of the 15 states were used (represented by468
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Figure 5: Artificial set of the coincidentally detected counts obtained from
an exceedingly large dataset generated by Geant4 simulations, virtually unaf-
fected by the statistical fluctuations. The numbers of counts are ordered by their
magnitude and scaled relative to their maximum value (from the most efficient
∆E–E pair of strips). The values for the analysis are constructed by first scaling
these counts to a desired level of statistics and then generating the appropriate
Poissonian fluctuations. Only the counts above 5% of the maximum value (the
dashed threshold) are kept for the analysis.

later Fig. 6), together with the angular distributions A(x, E, χ)469

arbitrarily constructed for each state, which were all designed470

from the three lowest Legendre polynomials (P0, P1, P2).471

Figure 5 shows the relevant set of coincidental counts472

recorded by different ∆E–E pairs of strips, ordered by magni-473

tude. While there are (16 E-strips)×(16 ∆E-strips )×(2 tele-474

scopes) = 512 possible pairs of strips in the used SITE config-475

uration from Fig. 2, one can see from Fig. 5 that only the tenth476

of those are characterized by a sufficient coincidental detection477

efficiency to be considered for analysis. It should be noted that478

the counts from Fig. 5 were constructed from an exceedingly479

large dataset, featuring the negligible statistical fluctuations. In480

order to easily generate the statistical variations in the dataset481

to be taken for analysis, we first scale these counts to a desired482

level of statistics (thus constructing their statistically expected483

values) and then generate the appropriate Poissonian fluctua-484

tions. For purposes of this demonstration we keep only those485

coincidental counts N(E)
α that are higher than 5% of the maxi-486

mum value (the dashed threshold from Fig. 5). Depending on487

a particular realization of the Poissonian fluctuations, around488

RE = 60 relevant pairs of strips meet this condition. The statis-489

tical uncertainties are then assigned to these counts by setting490

the diagonal elements of the input covariance matrix VE from491

Eqs. (15) and (16) to: [VE ]αα = N(E)
α .492

In order to vary the maximum wave numbers LE(x) for each493

excited state we follow the procedure from Section 3.2, adopt-494

ing the maximum supported value LE = 4. We choose the495

number of counts from the most efficient pair of strips to be:496

max
[
N(E)
α

]
= 106, making the total number of counts detected497

across all kept pairs:
∑RE
α=1 N(E)

α = 2 × 107. The reason be-498

hind this selection is rather simple and carries the critical reper-499

cussions for the analysis of the experimental data from n TOF:500

at lower statistics basically all the fits are discarded due to the501

appearance of the negative branching ratios. In other words,502

for almost all generated instances of Poissonian fluctuations all503

the fits (for any combination of state boundaries Λ`) produce at504

least one negative ρ̄(E)
x . One must be careful at this point not to505

confuse max
[
N(E)
α

]
= 106 with some minimum intrinsic level of506

reliable statistics. Instead, it reflects an amount of excited states507

at play: a high number of states naturally requires high statistics508

if they were to be reliably disentangled one from the other.509

We now appraise the method based on the accuracy and un-510

certainty of the reconstructed parameters. For a condensed511

demonstration of the results on the reconstructed angular dis-512

tributions, we we use the overall distribution AE(χ), averaged513

over all excited states:514

AE(χ) =
1

WE

X+
E∑

x=0

∫
E

w(E) ρ(x, E) A(x, E, χ) dE

'

XE∑
x=0

ρ̄(E)
x

LE(x)∑
l=0

ā(E)
xl Pl(χ) =

∑XE
x=0

∑LE(x)
l=0 P(E)

xl Pl(χ)

2
∑XE

x=0 P(E)
x0

(42)

The reference distribution stems from the arbitrarily con-515

structed distributions A(x, E, χ) for each of the 15 states con-516

tributing to the reaction flow (X+
E = 14; see Table 1). The recon-517

structed distribution, as denoted by ', is contributed by the re-518

duced number of states taken for the analysis (XE = 10). After519

applying the method to the different realizations of Poissonian520

fluctuations, our conclusions are rather simple and straightfor-521

ward. The fits yielding an unphysical set of branching ratios522

also grossly misidentify the overall angular distribution AE(χ)523

and, in general, the reconstructed cross section σ̄(E), reflecting524

the absolute normalization of the data. As such, they should525

indeed be immediately rejected. Among the physically admis-526

sible fits (if there are any at all) the ones identified as optimal do527

seem to reasonably reconstruct both the overall angular distri-528

bution and the cross section, at least under the level of statistics529

adopted here out of necessity. However, the set of reconstructed530

branching ratios themselves most often seems to be unrepre-531

sentative of the true results, as illustrated by a typical example532

from Fig. 6 (we have confirmed the correctness of the method533

implementation by applying it to the set of counts without as-534

signed fluctuations, yielding the properly reconstructed set of535

the branching ratios). The example from Fig. 6 also shows536

that their uncertainties may also be grossly underestimated and537

unrepresentative of their error. Therefore, the reconstructed538

branching ratios should be taken with maximum caution.539

At the adopted level of statistics most often there seems to540

be little difference in the results obtained by minimizing X2 or541

the proposed product X2δX2, as the physicality of the branch-542

ing ratios serves as the main discriminator of the unreliable fits.543

Figure 7 shows an example when the difference in the recon-544

structed overall angular distributions obtained by minimizing545

X2 or X2δX2 turns out to be appreciable. This example clearly546

illustrates the superiority of optimizing the tradeoff between he547

goodness and the reliability of the fit. The power of this proce-548

dure lies not in reducing the uncertainties per se, but in penal-549

izing the overfitting, i.e. in rejecting the sporadic parameters550
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Figure 6: Typical example of the reconstructed set of branching ratios, recov-
ered by an optimal set of wave numbers assigned to each excited state. Only the
first 11 states were considered for the reconstruction, as the rest of them hardly
contribute to the detected counts or not at all.

that unnecessarily and disproportionately increase the uncer-551

tainties in all other parameters, besides introducing their own552

excessive ones. Indeed, while the reference angular distribu-553

tion from Fig. 6 was constructed as a linear combination of the554

3 lowest Legendre polynomials, the one identified by minimiz-555

ing X2 allows for 5 of them (the maximum amount supported556

by LE = 4; a clear symptom of overfitting), while the minimiza-557

tion of X2δX2 finds the combination of 4 partial waves as the558

optimal one.559

Let us recall that with so many exited states at play, the phys-560

icality of the branching ratios serves as the primary discrimi-561

nator of unreliable fits. For a significantly reduced number of562

states, this method of assessment becomes much more insen-563

sitive or even entirely unavailable in case of a single relevant,564

ground state. In that case the quality tradeoff between the good-565

ness and the reliability of the fit remains the crucial, if not the566

only available method for identifying the optimal set of the fit567

parameters.568

Finally, at the adopted level of statistics the relative uncer-569

tainty in the reconstructed cross section σ̄(E) appears to be570

around 10%. As the statistically expected uncertainty scales571

as
(
N(E)

tot
)−1/2 with the total number N(E)

tot of the detected counts,572

one can easily estimate the expected level of uncertainty at any573

level of statistics, provided that the available data produce any574

acceptable fit in the first place. Considering that the experi-575

mental n TOF data on the 12C(n, p) reaction are expected to576

provide 4 to 5 orders of magnitude less statistics than adopted577

for this demonstration [13], even if they could be fitted without578

all fits failing the physicality test, the uncertainty in σ̄(E) is thus579

expected to be at least an order of magnitude grater than recon-580

structed cross section itself! Hence, the direct application of581

the full reconstruction method presented up to this point is ill-582

adjusted to these experimental data, due to the particularly un-583

favorable combination of the available statistics and the amount584

of excited states at play. This outcome should not be confused585

with some intrinsic shortcoming of the method itself, as there is586
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Figure 7: Overall angular distribution recovered from an optimal set of wave
numbers for each excited state, obtained by minimizing either X2 (the goodness
of the fit) or X2δX2 (the tradeoff between the goodness and the reliability).

a limit to the quality of the results that could be extracted from587

the data of a finite statistical precision. Fortunately, this even-588

tuality was foreseen in advance of the experiment and the ex-589

perimental setup was specially optimized so as to minimize the590

systematic effects due to the alternative approach to the analy-591

sis of these data. This approach consists of utilizing the reduced592

variant of the method, by adopting a priori information on the593

branching ratios and the angular distributions from an outside594

source – such as the TALYS theoretical model [19], adjusted595

to the preexisting experimental data – and aiming solely at the596

reconstruction of the absolute cross section σ̄(E). This reduced597

variant is addressed in the following Section.598

4. Method reduction599

Even when the full unfolding procedure may not be mean-600

ingfully applied due to the uncertainties in the input data limit-601

ing the usefulness of the output results, the method formalism602

from Section 2 still remains relevant, as it clearly establishes the603

connection between the measured observables and the underly-604

ing reaction parameters. Furthermore, the coincidental detec-605

tion efficiency of the experimental setup must be characterized606

– most appropriately by means of the dedicated simulations de-607

scribed in Appendix A – regardless of the particular approach608

to the data analysis. Starting from Eq. (12), one may derive609

any particular variant of the unfolding procedure, be it the re-610

duction of the one from Section 2.1 or even some further ex-611

tension, shortly addressed in Appendix B. Motivated by the612

status of the experimental n TOF data on the 12C(n, p) reaction,613

we consider here the adoption of a priori information on the614

branching ratios and angular distributions, aiming solely at the615

reconstruction of the absolute cross section. Assuming that in-616

formation to be available from an independent source, Eq. (12)617

may be linearized as:618

~N(E) ≈ ~ε (E)σ̄(E) (43)
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with the vector ~ε (E) (as a matrix of a reduced dimensionality)619

standing in place of the design matrix EE from Eq. (13) and the620

single unknown σ̄(E) replacing the previous set ~P (E) of underly-621

ing reaction parameters. While the definition of σ̄(E) stays the622

same as in Eq. (21), ~ε (E) is now defined by components as:623

ε (E)
α ≡

XE∑
x=0

∫
E

dE
∫ 1

−1
dχ w(E) ρ(x, E) A(x, E, χ) εα(x, E, χ)

(44)
where the branching ratios ρ(x, E) and angular distributions624

A(x, E, χ) are taken from an outside source of information. Ap-625

plying Eqs. (15) and (16) – while taking the covariance matrix626

VE to be diagonal and composed of the uncertainties δN(E)
α in627

the detected counts: [VE ]αα =
(
δN(E)

α

)2 – the final solution for628

the sought cross section may now be written in a rather simple629

closed form:630

σ̄(E) =
(
δσ̄(E))2

RE∑
α=1

ε (E)
α N(E)

α(
δN(E)

α

)2 (45)

with the associated uncertainty:631

δσ̄(E) =

 RE∑
α=1

(
ε (E)
α

δN(E)
α

)2

−1/2

(46)

It should be noted that this procedure still makes full use of all632

the experimentally available information from separate pairs of633

∆E–E strips. This feature is in clear opposition with the more634

extreme reduction of the method, taking only the total num-635

ber N(E)
tot =

∑RE
α=1 N(E)

α of coincidental counts detected across an636

entire detection setup, in conjunction with its total detection ef-637

ficiency ε(E)
tot =

∑RE
α=1 ε

(E)
α in order to obtain the absolute cross638

section overly simplistically as σ̄(E) = N(E)
tot /ε

(E)
tot , thus defeating639

any benefit of having used a high-end telescope – in particular,640

its sophisticated dissociation into multiple strips.641

Evidently, the main challenge with thus reduced method is642

the estimation of the systematic uncertainties brought on by the643

out-of-necessity adopted branching ratios and angular distribu-644

tions. An indication of those uncertainties – and a conserva-645

tive one, at that – may be obtained by adopting all the involved646

angular distributions as isotropic: A(x, E, χ) = 1/2, and recal-647

culating σ̄(E). The difference between the externally provided648

and all-isotropic distributions is to be taken as representing the649

extreme case of the possible disparity with the true angular dis-650

tributions. Another possibility is taking among the externally651

provided distributions only the branching ratios or the angular652

distributions as given, and unfolding the data with the other type653

of distributions unconstrained. Comparing these alternative re-654

sults for σ̄(E) allows for an informed estimate of the systematic655

uncertainties.656

5. Conclusions657

A new angle resolving stripped silicon telescope (SITE) has658

recently been introduced at the neutron time of flight facility659

n TOF at CERN for the measurements of the neutron induced660

reactions with the charged particles in the exit channel. Its out-661

standing detection properties have already been demonstrated662

in the challenging measurement of the 7Be(n, p) reaction, rele-663

vant for the famous Cosmological Lithium Problem. The joint664

energy-differential measurement of the 12C(n, p) and 12C(n, d)665

reactions has also been recently performed at n TOF, using the666

upgraded and specially optimized detector configuration con-667

sisting of the two separate silicon telescopes. As the nature of668

these reactions poses significant challenges for the meaningful669

data analysis – being affected by the multiple excited states in670

the daughter nuclei and featuring the anisotropic angular distri-671

butions of the reaction products – we have established a clear672

and detailed formalism behind the measured observables: the673

total number of the coincidental counts detected by any combi-674

nation of ∆E–E pairs of silicon strips. From this formal connec-675

tion we have developed and tested the unfolding procedure for676

the reconstruction of the underlying reaction parameters, con-677

sisting of the absolute reaction cross section, the branching ra-678

tios and the angular distributions of the reaction products for679

each excited state in the daughter nucleus. Though the method680

may, in principle, reconstruct all these quantities separately, its681

performance may be severely limited by the amount of param-682

eters – determined by the number of excited states and the level683

of anisotropy – as well as the level of uncertainties in the input684

data. By testing the method on the artificially generated dataset685

resembling the n TOF measurement the of the 12C(n, p) reac-686

tion, we have found little hope that the full unfolding procedure687

could be meaningfully applied to the experimental data, pre-688

cisely due to the highly unfavorable combination of the large689

number of the excited states and the reduced level of statistics690

expected from the experiment. Nevertheless, the clear formal-691

ism behind the method allows for its many alternative variants692

to be developed. One of these, to be applied to the measured693

12C(n, p) and 12C(n, d) data, is the reduced procedure relying694

on the independent source of information on the branching ra-695

tios and angular distributions, aiming at the reconstruction of696

the absolute cross section as the central reaction parameter of697

interest. It is worth noting that thus reduced method still takes698

advantage of the distribution of the detected counts across the699

separate ∆E–E pairs of strips, as opposed to considering only700

the total number of counts across all of them. Thus retained701

angular sensitivity opens the possibility for the estimation of702

the systematic effects due to the adopted outside information703

(branching ratios and/or angular distributions), allowing for the704

informed assessment of the systematic uncertainties in the final705

results.706
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Appendix A. Detection efficiencies simulations712

We describe the detection efficiency simulations and the use713

of the simulated data in the construction of the design matrix714

EE from Eq. (28). For specificity, we again keep the 12C(n, p)715

reaction in mind. The reaction details – except for its basic kine-716

matics – are assumed unknown. The reaction itself or its ba-717

sic details may not even be (properly) implemented in the used718

simulation package. Therefore, the simulations need to start by719

generating the exit products (protons), based on the energy and720

the spatial distribution of the primary reaction-inducing parti-721

cles (neutrons).722

For each separate excited state x in the daughter nucleus (12B;723

see Table 1) the neutron energy E is sampled from some pre-724

selected energy distribution ϕ̂E(x, E), where we use the hat-725

notation ·̂ to indicate the simulated (as opposed to the later726

determined, experimental) quantities. These distributions are727

best selected as uniform or isolethargic, for the simplicity of728

later analysis. The produced proton direction in the center-729

of-mass frame is then sampled from a preselected angular dis-730

tribution Â(x, E, χ), which is best selected as isotropic. The731

proton energy in the center-of-mass frame is calculated based732

on the Q-value for a particular excited state. The proton en-733

ergy and direction are then boosted into the laboratory frame734

by the proper (in our case relativistic) transformations. As for735

the initial proton position, its radial distribution relative to the736

direction of the neutron beam must be sampled according to the737

known neutron beam profile; alternatively, the data need to be738

properly reweighed according to the same beam profile during739

the later construction of the EE matrix. The sampling (or the740

later data reweighing) of the initial proton position along the741

neutron beam direction depends on the properties of the simu-742

lated sample and may vary between extremely simple and rather743

involved. In case of the thin sample – implying the combina-744

tion of the geometric thickness and the total cross section such745

that ηΣtot(E) � 1, as discussed in a context of Eq. (6) – the lon-746

gitudinal proton distribution may be sampled uniformly, as the747

neutron beam attenuation along the sample is negligible. This748

was the case with our setup. Otherwise, if the beam losses are749

known to be considerable, then the relative proton production750

probability along the sample must be properly accounted for. In751

case of the homogeneous and geometrically regular sample this752

correction amounts to the factor 1 − e−ηΣtot(E)×d/D with d as the753

proton production depth and D as the sample thickness along754

the neutron beam direction; however, this procedure still does755

not take into account the multiple scattering effects. For more756

complex samples the correction involves its full spatial charac-757

terization.758

Each coincidental proton detection by any pair of ∆E–E759

strips needs to be recorded by outputting the relevant physical760

parameters of that particular event. The necessary data consist761

of: (1) the primary neutron energy E; (2) the proton emission762

angle χ from the center-of-mass frame; (3) the unique desig-763

nation of the activated ∆E–E pair of strips; (4) the energy de-764

posited in those strips. In addition, the excited state x, the sam-765

pled neutron energy distribution ϕ̂E(x, E) and the proton angu-766

lar distribution Â(x, E, χ), together with the total number N̂E(x)767

of generated protons within the sampled neutron energy interval768

E also have to be documented for a complete and meaningful769

utilization of the simulated data. By the virtue of Eq. (2), the770

elements of the design matrix EE from Eq. (28) may be treated771

as the integrals over the detected counts, so that by identifying772

the amount d2N̂(x, E, χ) of generated protons as:773

d2N̂(x, E, χ) = N̂E(x) ϕ̂E(x, E) Â(x, E, χ) dEdχ (A.1)

we may write:774

[
EE

]
αβ =

∫
E∈E

∫
χ∈[−1,1]

w(E)Pl(χ)
ϕ̂E(x, E) Â(x, E, χ)

d2N̂α(x, E, χ)

N̂E(x)
(A.2)

This formalism allows us to construct the sought integrals775

directly on a count-by-count basis, without ever having to776

build the full coincidental detection efficiency distributions777

εα(x, E, χ), such as those shown in Fig. 1. This is achieved778

simply by taking a weighted sum of all detected counts:779

[
EE

]
αβ '

1

N̂E(x)

N̂(E)
αx∑

q=1

w(Eq)Pl(χq)

ϕ̂E(x, Eq) Â(x, Eq, χq)
(A.3)

Here ' symbolically denotes the representation of the integrals780

from Eq. (A.2), with the index q enumerating all the appro-781

priately detected counts: N̂(E)
αx of them caused by the protons782

leaving the daughter nucleus in the excited state x and being783

coincidentally detected by the α-th pair of strips. In exactly the784

same manner, the design vector elements from Eq. (44) may be785

expressed as:786

ε (E)
α =

XE∑
x=0

∫
E∈E

∫
χ∈[−1,1]

w(E) ρ(x, E) A(x, E, χ)
ϕ̂E(x, E) Â(x, E, χ)

d2N̂α(x, E, χ)

N̂E(x)
(A.4)

and thus constructed on a count-to-count basis:787

ε (E)
α '

XE∑
x=0

1

N̂E(x)

N̂(E)
αx∑

q=1

w(Eq) ρ(x, Eq) A(x, Eq, χq)

ϕ̂E(x, Eq) Â(x, Eq, χq)
(A.5)

where the branching ratios ρ(x, E) and angular distributions788

A(x, E, χ) are now taken to be known from an independent789

source of information.790

We remind that the energy deposition cuts used in the anal-791

ysis of the experimental data are to be implemented precisely792

at this point, in the construction of the matrix EE or the vec-793

tor ~ε (E), thus directly affecting the numbers N̂(E)
αx of the accept-794

able counts. It is also worth noting that the weighting function795

w(E) is determined by the actual experimental conditions, as796

opposed to the arbitrary sampling distributions ϕ̂E(x, Eq) and797

Â(x, Eq, χq). In that, it is evident that both the simulations and798

the computational procedures from Eqs. (A.3) and (A.5) are im-799

mensely simplified when the uniform neutron energy distribu-800

tions ϕ̂E(x, E) = 1/|E| and the isotropic proton angular distribu-801

tions Â(x, E, χ) = 1/2 are used.802
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Appendix B. Method extension803

We shortly comment on the possibility of the further method804

generalization that may be applicable under specific conditions,805

namely the high statistics and at least a partial separation of806

the excited states in the deposited energy spectra. For the sil-807

icon telescope consisting of ∆E and E-layers, the entire two-808

dimensional ∆E–E spectra may be considered in the most gen-809

eral case, as we do here. For simplicity, Fig. B.8 illustrates the810

basic idea on the schematic example of the one-dimensional,811

e.g. (E + ∆E)-spectrum. Evidently, if the excited states are suf-812

ficiently far apart in energy (as determined by the detector res-813

olution), the spectra shapes may serve as an additional source814

of information to be exploited. In this case one defines the dif-815

ferential coincidental detection efficiency:816

ξi j(x, E, χ,E(1),E(2)) ≡
d4Ni j(x, E, χ,E(1),E(2))
d2N(x, E, χ)dE(1)dE(2) (B.1)

starting from the number of counts d4Ni j(x, E, χ,E(1),E(2)) char-817

acterized by the energy E(1) deposited in the i-th ∆E-strip and818

the energy E(2) deposited in the j-th E-strip. The master equa-819

tion for the total number of counts N(E)
i j ı 

detected within the ı-th820

E(1)-interval of width E(1)
ı and the -th E(2)-interval of width E(2)

821

is easily rewritten as:822

N(E)
i j ı 

=

XE∑
x=0

∫
E

dE
∫ 1

−1
dχ

∫
E(1)

ı

dE(1)
∫

E(2)


dE(2) ×

ξi j(x, E, χ,E(1),E(2)) w(E)σ(E) ρ(x, E) A(x, E, χ)
(B.2)

where the binning of the deposited-energy distributions, i.e. the823

set of bin widths E(1)
ı and E(2)

 is entirely arbitrary and may,824

in the most general case, depend on the particular (i, j)-pair of825

strips and the neutron energy interval E. In place of the earlier826

bijective mapping from Eq. (11), an entire set of indices i, j, ı, 827
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Figure B.8: Illustrative example: the reaction products leaving the daughter
nucleus in any of its excited states may leave a clear signature in the deposited
energy spectrum if the energy separation of the excited states is sufficient.

is now to be mapped onto the unique index α:828

(i, j, ı, ) 7→ α (B.3)

allowing the extended design matrix EE :829

[
EE

]
αβ ≡

∫
E

dE
∫ 1

−1
dχ

∫
E(1)

ı

dE(1)
∫

E(2)


dE(2) ×

ξi j(x, E, χ,E(1),E(2)) w(E) Pl(χ)

(B.4)

to be used in bringing Eq. (B.2) to the matrix form from830

Eq. (13), with ~P (E) staying the same as in Eq. (29).831
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