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Abstract

Crookes’ Radiometer exploits thermal forces arising from temperature
gradients in rarefied gases. This instrument has remained confined to ed-
ucational physics because of the very small size of the radiometric effect
and because of the necessity of an evacuated environment for operation.
In this article the physics of this instrument is reviewed, different theo-
ries are compared and some general principles are derived. A method for
enhancing the radiometric effect and for generating radiometric forces at
higher pressures is proposed.

1 Introduction

Crookes’ Radiometer, the light mill, is a fragile engine enclosed in a low pressure
vessel and powered by sun light. It was invented by Victorian scientist Sir William
Crookes in 1874 and it was the subject of intense investigation and debate for
almost 50 years, being a laboratory for testing kinetic theory of gases. The ra-
diometer is a small chamber containing a four wing mill mounted on a vertical
pivot (see Fig.1). Each wing or vane is typically a 0.1 mm thick , 1 cm2 square
mica plate. The vanes are black-lamped on one side and silvered on the other
side. When intense light impinges on the vessel, the mill spins; the black side
becomes hotter than the silvered side because of the larger absorption coefficient
of the former. This temperature difference generates a force directed toward the
colder surface as air molecules contained in the vessel strike on the vanes. In fact,
air at low pressure exert forces proportional to the temperature gradient. The
light mill can achieve considerable rotational speed when full sun light illuminates
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the instrument. Before going into the details of the mechanism of action of the
radiometer , let us review few technical data about this instrument. The tem-
perature difference between the hot and the cold side of the vane was measured
by Marsh et. al [1] by means of thermocouple and it was found to range from 0.1
to 0.5 K. The total force acting on the four surfaces was measured by Schuster
and by O. Reynolds in 1876 [2], it was measured by suspending the vessel on a
pendulum and detecting the torsion of the vessel in the direction opposite to the
mill motion, for a rotational speed of 200 revolutions per minute, such force is
around 2∗10−6 Newton, a very small force. This force decreases when air density
inside the vessel is increased. In particular at atmospheric pressure no motion is
observed. Given the simplicity and beauty of the instrument it is of interest to
investigate whether by changing one or more of the parameters involved in the
problem radiometric forces could be observed also at atmospheric pressure.

Radiometric forces depend on the mean free path of gas molecules, this in
turn depends on the density of the gas and on the cross section of the molecules;
furthermore they depend on the value and direction of the temperature gradient.
The exact mechanism of action is a complex problem of kinetic theory of gases.
A brief description, as it is historically known, is given in the next section. In
section III a comparison of two theories and a derivation of basic principles of
radiometric effects are presented. In section IV an improved version of radiometer
vane is proposed and an estimate of the enhancement of the force at atmospheric
pressure is presented. The results are discussed briefly in the conclusions

2 Basic mechanism of action

J.C. Maxwell first pointed out in 1876 that the radiometric force acts only at the
edge of the vane being most of the surface inactive, this is because radiometric
forces are in substance a heat exchange problem and heat exchange is more ef-
ficient at edges, tips and fins. O. Reynolds [3] and G. Hettner[5] recognized the
existence of a thermal flow of molecules from the cold to the hot side of the vane,
the flow velocity is linearly dependent on the temperature gradient ∂T/∂x. The
flow is present near the edge of the vane where a strong gradient exist; in this
region air creeps along the edge toward the hot surface. The reaction to this
streaming is a force directed opposite to the temperature gradient. Let us con-
sider a plate whose section is shown partially in FIG. 2. The plate extends in the
y− z (horizontal) plane, the thickness L extends along the x (vertical) direction.
The upper surface is kept at high temperature Th and the lower surface is kept
at low temperature Tc such that (Th-Tc)= ∆T . The creep force moves the vane
downward; Such force is given below as function of the mass of a molecule of air
m, its average diameter σ the molecule density n and the thickness of the plate
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L:

Fcreep = −
3

4
√

2π2

k

σ2

∆T

L
Sv , (1)

where k is the Boltzmann constant and Sv is the vertical area of the edge. The
creep force is proportional to the surface of the plate which is parallel to the
temperature gradient. However, being Sv proportional to the thickness the force
is independent of the thickness. When L << λ formula (1) breaks down being
the concept of temperature gradient meaningless. In this regime the force is
proportional to the thickness of the plate. It is therefore clear that the maximum
effective thickness is L = λ. This is also approximately the thickness chosen by
W. Crookes for his radiometer vanes.

There is also another cause of radiometric forces which differs from thermal
transpiration. It was discovered by A. Einstein in 1924 [6] (see also [7], section
84 where Einstein’s original paper is almost entirely translated). Einstein found
that radiometric forces act also on surfaces normal to the temperature gradient,
i.e. on horizontal surfaces as defined in FIG. 2.

Einstein’s force acts on a tiny portion, a mean free path wide of the vane
surface. In FIG.3 a radiometer vane with arm is shown; here the tiny pink strip
delimited by the dashed line is , according to Einstein, the active area of the vane,
the width of the strip is λ. Einstein’s theory can be summarized as follows : when
a large, thin vane is immersed in a region of air where a temperature gradient
∂T/∂x exists, pressure will be constant in the column of air above the vane, that
is the quantity n(x)T (x) is a constant. Away from the plate air must be still,

therefore the mass motion of air must be zero and the quantity n(x)
√

T (x) is a
constant. At the edge of the plate there exist a small transition region of the size
of a mean free path in which the pressure is not a constant; in this small region
pressure is higher on the side of the plate facing the higher temperature. A strip
of width λ on the vane surface will thus suffer a higher pressure from the hot
side. The force is proportional to the perimeter of the vane and can be easily
calculated by kinetic theory of gases. It is given by:

FEinstein = −
1

2
p
λ2

T

∂T

∂x
ℓ, (2)

where ℓ is the perimeter of the vane and p is the gas pressure; this force acts
on surfaces normal to the temperature gradient. Einstein calculates the force in
the case of a vane which is hot on one side and cold on the other as in Crookes
radiometer; Einstein inserts into equation (3) the gradient

∂T/∂x = (Th − Tc)/λ. (3)

in reality Crookes vanes have thickness smaller than λ, however Einstein assumes
that λ is the minimum effective thickness. The force does not increase for L < λ,
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furthermore the concept of temperature is meaningless below the mean-free-path
scale. As a consequence of this, Einstein finds a radiometric force:

FEinstein = −pλ
Th − Tc

T
ℓ, (4)

This formula was tested in the laboratory by Marsh et al. in Journal of Optic
Society of America (J.O.S.A. & R.S.I.), 11, 257,1925 and JOSA & RSI,12, 135,
1926. In these experiments the radiometric force was measured for two kinds of
vanes shown in FIG 5 and FIG. 6. The first is a regular vane similar to Crookes
vanes, as shown in FIG. 5; the second vane has a larger perimeter but equal
surface as shown in FIG. 6. The vanes were illuminated on the lamp-blacked side
and the force was measured by means of a torsion pendulum. It was found that
on plates with larger perimeter the force was larger. Einstein’s formula (5) was
verified with good accuracy, the discrepancies being attributed to the difficulty
in measuring and maintaining the temperature gradient in the perforated plates.

3 Confronting two theories

Both thermal creep and Einstein’s effect contribute to the radiometric forces,
however they are commonly viewed as competing theories (see the discussion on
section 84, p. 380 of [7]). On closer look Einstein’s theory implies the existence
of a flow of molecules from the cold to the hot side of the gas along the vane edge.
In fact in the region at constant pressure, far away from the edge, the number
of impacts on the vane surface is higher at the cold side, thus at the edge of the
plate the excess of molecules from the cold side leak along the edge toward the
hot side; therefore thermal creep is included in Einstein’s theory. Furthermore
Einstein’s force is present on the whole surface of a solid body of size λ immersed
in air; therefore it acts also on surfaces parallel to the gradient. Although a direct
calculation of this contribution was never performed, it is expected to be equal
to the creep force. One reason for looking at Einstein’ theory with diffidence
is that Einstein used a the toy model for his calculation; in this model the gas
molecules only move along the three coordinates with a mean speed v. Conversely
the creep force (1) is calculated by means of non-equilibrium statistics given by
Chapman-Enskog approximation. It will be shown below that forces acting on
surfaces normal to the gradient can be indeed derived from the Chapman-Enskog
approximation.

Let us consider a system of Cartesian coordinates xyz and a region of air in
which a temperature gradient ∂T/∂x exists. In the presence of the gradient, gas
dynamics is described by the distribution function:

f(vx, vy, vz) =
[

A + Cvx

(

5

2
− β2(v2

x + v2
y + v2

z)
)]

e−β2(v2
x
+v2

y
+v2

z
) (5)

4



where A =
(

m
2πkT

)3/2
, β =

√

m/(2kT ) and the constant C is given 1 by

C =
3m2

4
√

2π3σ2nk2T 3

∂T

∂x
. (6)

Let us consider and imaginary surface S normal to the temperature gradient.
The net momentum flow through the surface is given by

M = nm
∫

∞

−∞

dvz

∫

∞

−∞

dvy

(
∫

∞

0
dvxvxvxf(vx, vy, vz)

−

∫ 0

−∞

dvxvxvxf(vx, vy, vz)
)

(7)

such quantity does not vanish. It is equal to:

M = −
3

√
2π2

k

σ2

∂T

∂x
. (8)

The quantity M · S is a force acting on a surface normal to the temperature
gradient. Formula (8) can be compared to Einstein’s radiometric force (2). The
latter can be written in the form:

FE = −
1

√
2π

k

σ2

∂T

∂x
(λ ℓ) . (9)

Here the quantity (λ ℓ) is the active surface as defined above. Einstein’s effect is
a force per unit active surface

PE = −
1

√
2π

k

σ2

∂T

∂x
. (10)

It can be seen that eq.(8) and eq.(10) are similar, their ratio being just 3/π.
Recalling that Einstein’s formula is an approximation the agreement of the two
theories is excellent.

Whatever the approach used, at the edge of the radiometer vane the force
acts on surfaces both normal and parallel to the gradient. The active portions of
surface are strips of material a mean free path wide In particular a small solid
body of size λ experiences a radiometric force all over its surface. In the case of a
small parallelepiped the force on horizontal surfaces can be calculated with good
approximation by equation (10), while the force on vertical surfaces is calculated
by eq.(1). Roughly The total radiometric force is given by the sum of these
contributions.

As a general principle, radiometric forces arise in the presence of: 1. a tem-
perature gradient, 2. a solid body. In the absence of solid bodies no force acts

1Such constant is found imposing uniformity of pressure all through the gas. See [4]
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and the gas is stationary. The shape of the solid body is not relevant as long as
the size of the body is smaller or equal to the mean free path. For bodies larger
than λ edges are relevant; here only portions of surface a mean free path wide
are active. For bodies smaller than λ the force decrease with the surface. The
radiometric force is always directed opposite to the temperature gradient and
therefore opposite to the heat flow.

3.1 Improved radiometer vane

From formula (9) and from the experiments of Marsh et al. it is clear that the
radiometric force can be enhanced by increasing the perimeter. The force should
be greatly enhanced when the vane is perforated with a large number of small
apertures, like for instance in Fig 4. Here the upper view of the radiometer vane
shows hexagonally packed arrays of apertures. The width of the strips of material
in between the apertures is λ on average. Apertures of size lambda or less, spaced
so as to open approximately 50% of the entire surface should maximize the force.
Since Einstein’s effect is caused by the presence of a transition region between
closed and opened spaces, an equal distribution of open and closed spaces in
Fig. 4 should generate a transition region extending over the whole area of the
vane. In this case the whole of the closed surface would be radiometrically active.
Einstein’s force can be easily calculated for this vane configuration. Equation (4)
can be rewritten in the form:

FEinstein = −nk(Th − Tc) (λℓ) (11)

since p = nkT . The quantity λℓ inside the parenthesis in Equation (11) is what
we defined above as the closed surface. Equation (11) can be rewritten in the
compact form

FE = −nk(Th − Tc)Sh . (12)

In the case of a closed surface equal to 50% of the total area A of the vane (closed
+ open surface), one finds a force per unit area of the vane

PE = −
1

2
nk(Th − Tc) (13)

Formulas (11), (12) and (13) are valid when the temperature gradient is given by
Equation (4), thus the thickness L of the vane should be λ. Were the thickness to
be larger than λ the temperature gradient would be smaller and the force would
be smaller. As explained in the first section of this paper λ is the minimum
effective thickness. Formula (13) accounts for the force acting on the perforated
surface normal to the gradient. However also the surfaces parallel to the gradient
are active. The force on this surface can be calculates by Equation (1) for thermal
creep. When a temperature differential is applied to the a perforated plate, like
the one in Fig. 4, air will stream through the apertures which are in fact channels
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with a finite length. The streaming is directed from the cold to the hot surface.
If the channels are very long, the flow will be governed by Poisseuille law for gas
flows through long tubes. Therefore, in order to maximize the creep force the
channels should be short. The minimum effective channel length is λ. Below this
value the force decreases with the channel length. Therefore the thermal creep
force is maximized when the vane thickness is λ and the number of channels is
as large as possible.

The vane thickness, is the crucial factor for maximizing radiometric forces
due to both Einstein’s effect and thermal creep. While the size and shape of the
apertures can vary, the thickness of the plate must be as close as possible to λ.

Let us calculate the creep force acting on a perforated plate of this thickness
Equation (1) can be rewritten as:

Fv = −
3

4π
nk(Th − Tc)Sv (14)

The vertical surface Sv, is a function to the thickness the number of apertures j,
and the perimeter f of a single aperture, according to the following formula:

Sv = 4bL + jfL (15)

Even if the plate is only a mean free path thick, Sv can be large, assumed the
number of apertures is large. In the case of circular apertures of radius R and
with a 50% open surface one finds a force per unit area of the plate:

Pv = −
3

4π
nk(Th − Tc)

λ

R
(16)

According to the general principles governing radiometric forces, a small body
of size λ (or smaller) suffers a radiometric force on the whole of its surface. The
thin perforated plate in Fig. 4 is a sort of aggregate of small solid bodies with
length scale equal to λ.

Using the vane configuration just described, radiometric forces can be in prin-
ciple observed at higher gas densities. With the shrinking of the mean free path,
all features of the vane must shrink. In particular the thickness of the vane and
the size and spacing of the apertures must be smaller. At atmospheric pressure
the mean free path is about 70 nm, such length scale poses several engineering
challenges. On the other hand, nanotechnology allows for fabrication of structure
as small as 20nm. Nanometer scale perforation would greatly increase the active
surface. For instance, at atmospheric pressure a square vane of side b=1m and
thickness L=70 nm perforated with circular holes of 70 nm diameter and with an
open area of 50% would have a total active area of 2.5m2. Without perforation
the same vane would have an active area of about 6∗ 10−7m2. Thus, by means of
perforation, the active area is increased by a factor 107. Being the force linearly
dependent on the active area, it is expected to increase by the same factor. It
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should be noted that by opening a large number of channels through the vane
the heat transport from the hot to the cold regions would be enhanced as well.
Therefore it is expected that a larger amount of radiant energy per unit time is
necessary to maintaint the temperature gradient in a perforated plate.

3.2 Conclusion

Radiometric forces are an interesting thermal effect explained by gas kinetic the-
ory. Such forces act on small bodies immersed in a gas where a temperature
gradient is present. The forces are linearly dependent on the temperature gradi-
ent and are directed as the heat flow. Although the forces observed in Crookes
radiometer are small, it is possible to enhance them by means of perforation of
the vane. Such vane would behave as an aggregate of small bodies. When the
size of the apertures and the thickness of the vane is sufficiently small the forces
can be significant even at high gas densities. In particular nanotechnology could
permit for an enhancement of the force by a factor 107 with respect to the typical
order of magnitude. Such force could be observable at atmospheric pressure.
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Figure 1: Crookes radiometer
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Figure 2: Thermal creep along the edge of the radiometer vane, the flow is
parallel to the temperature gradient and it is directed opposite to the heat flow.
The reaction to the creep is a radiometric force directed as the heat flow
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Figure 3: The active region of the vane surface according to Einstein’s theory
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Figure 4: An improved radiometer vane. The vane has hexagonally packed aper-
tures. The open area is 50% of the whole vane surface, the average distance
between the holes is equal to the mean free path λ. The thickness of the vane
(not shown in the figure) is exactly λ. Such geometry maximizes Eintein’s effect
and thermal creep

12


	Introduction
	Basic mechanism of action
	Confronting two theories
	Improved radiometer vane
	Conclusion


