Magnetism of the frustrated spin-2 triangular systems NaMnO₂

Andrej Zorko¹, Samir El Shawish¹, Denis Arčon¹, Peter Jeglič¹, Alexandros Lappas²

¹Jozef Stefan Institute, Jamova 39, 1000 Ljubljana ²IESL, FORTH, Heraklion, Greece

Although numerical studies speak in favor of a non-collinear long-range magnetic order (LRO) on an isotropic spin-1/2 Heisenberg antiferromagnetic triangular lattice, for spatially anisotropic exchange, the ground-state phase diagram becomes considerably richer. LRO on two or three sublattices, incommensurate magnetic order, or various spin-liquid phases can be realized. Much less is known about about the case of integer spins.

We have investigated the spatially anisotropic spin-2 triangular system α -NaMnO₂ by means of local-probe techniques. Muon spin relaxation (μ^+ SR) has provided the first evidence for a transition to a magnetically ordered state. Neutron diffraction confirmed that collinear AFM LRO order appears at T_N = 45 K [1]. The character of spin correlations above T_N is 1D despite the underlined 2D lattice [2]. From electron-spin-resonance (ESR) measurements we have determined the dominant magnetic anisotropy term, which assists in stabilizing the 3D order by suppressing spin fluctuations [3]. We have further investigated the development of spin correlations as well as the dynamics of spin excitations and the symmetry of LRO below T_N through ²³Na nuclear magnetic resonance (NMR). We shall compare our results obtaint for two polymorphs; α -NaMnO₂ and β -NaMnO₂.

[1] M. Giot et al., Phys. Rev. Lett 99 (2007) 247211

[2] C. Stock et al., Phys. Rev. Lett 103 (2009) 077202

[3] A. Zorko et al., Phys. Rev. B 77 (2008) 024412