O-29 37

NQR study of the phase segragation and sodium ordering in cobaltates Na_xCoO₂

Irek Mukhamedshin¹, Henri Alloul², Alexander Dooglav¹, Tatyana Platova¹

¹Kazan State University, 420008 Kazan, Russia ²Université Paris-Sud, 91405 Orsay, France

We have investigated a set of sodium cobaltate samples with various sodium content $(0.67 \le x \le 0.75)$ using Nuclear Quadrupole Resonance (NQR) [1]. The four different stable phases and an intermediate one have been recognized. The NQR spectra of 59 Co allowed us to differentiate clearly the pure phase samples which could be easily distinguished from multi-phase ones.

Systematic study of the Na_{2/3}CoO₂ compound using ²³Na and ⁵⁹Co NQR and NMR [2,3], allowed us to establish reliably the atomic order of the Na layers and their stacking between the CoO₂ slabs. We give evidence that the Na⁺ order stabilizes non magnetic Co³⁺ ions on 25% of the cobalt sites arranged in a triangular sublattice. The transferred holes are delocalized on the 75% complementary cobalt sites which unexpectedly display a planar cobalt kagomé structure. These experimental results prove that both Curie-Weiss magnetism and metallic conductivity are provided by this kagomé sublattice of cobalt in sodium cobaltates.

This study was partly supported by the RFBR under project #10-02-01005.

- [1] T.A. Platova, et al., JETP Lett., 91 (2010) 457
- [2] H. Alloul, et al., EPL 85 (2009) 47006
- [3] T.A. Platova, et al., Phys. Rev. B 80 (2009) 224106