A new type of order-from-disorder phase is discovered in the putative Bose-glass regime of the Br-doped DTN at high magnetic fields

<u>Mladen HORVATIĆ</u>¹, Anna ORLOVA¹, Rémi BLINDER¹, Edwin KERMARREC¹, Maxime DUPONT², Nicolas LAFLORENCIE², Sylvain CAPPONI², Hadrien MAYAFFRE¹, Claude BERTHIER¹, Armando PADUAN-FILHO³

¹Laboratoire National des Champs Magnétiques Intenses, LNCMI - CNRS,

EMFL, UGA, UPS, and INSA, BP 166, 38042, Grenoble, France

²Laboratoire de Physique Théorique, IRSAMC, Université de Toulouse, CNRS, 31062 Toulouse, France

³Instituto de Física, Universidade de São Paulo, 05315-970 São Paulo, Brazil

The NiCl₂-4SC(NH₂)₂ compound, or DTN for short, is one of the most studied archetype materials for the magnetic-field-induced 3D-ordered low-temperature phase of the Bose-Einstein condensation (BEC) type. When DTN is disordered by doping with Br, a localized, gapless Bose-glass (BG) phase is predicted to appear adjacent to the BEC phase [1], replacing the gapped regime of the pure system. Br-doped DTN is thus proposed as a unique thermodynamic model system for studying BG physics.

We have performed the first microscopic study [2], by nuclear magnetic resonance (NMR), of this putative BG regime in doped DTN at high magnetic field, and found a clear signature for a *level crossing* of the energy levels related to the localized, doping-induced impurity states, at the nearly doping-independent field value $H^* \approx 13.6$ T. This is seen by a peak in the NMR T_1^{-1} relaxation rate [2],

This is seen by a peak in the NMR T_1^{-1} relaxation rate [2], reflecting the spin fluctuations, concomitant with a step in the bulk magnetization [1]. Observation of the local NMR signal from the spin adjacent to the doped Br allowed us to fully characterize the impurity state and thus quantify a microscopic theoretical model. The level-crossing of the impurity states and their effective pairwise interaction are then providing the building blocks prone to create a new BEC-type order.

Indeed, a theoretical modelling [3], based on an effective model description of interacting impurities and large scale numerical, quantum Monte Carlo simulations of realistic quantum many-body Hamiltonians, have confirmed this scenario: close to H^* and at very low temperature, a localized BG regime is replaced by a new, delocalized, fully 3D-coherent "BEC*" phase. Predicted magnetic field and doping dependence of this phase showed that it is experimentally accessible for higher doping levels [3]. We have thus started a new NMR investigation of 13% Br-doped DTN, and our preliminary data indeed detected the ordering transition at $T_c(H^*) \approx 0.15$ K. The existence of this new, "order-from-disorder" phase is thus definitely confirmed.

[1] R. Yu et al., Nature 489, 379 (2012).

E-mail for the corresponding author: mladen.horvatic@lncmi.cnrs.fr

Figure: A peak in the magnetic field dependence of the NMR T_1^{-1} relaxation rate directly reflects the level crossing of the impurity states. These localized states provide the building blocks for a new ordered phase of the BEC type, which is formed despite a strong disorder of their interaction. A localized Bose-glass regime is thus partially replaced by an impurity-induced, long-range-ordered phase.

^[2] A. Orlova et al., Phys. Rev. Lett. 118, 067203 (2017).

^[3] M. Dupont et al., Phys. Rev. Lett. 118, 067204 (2017).