Institut Ruđer Bošković ZAVOD ZA TEORIJSKU FIZIKU

Bijenička c. 54 ZAGREB, HRVATSKA

SEMINAR ZAVODA ZA TEORIJSKU FIZIKU

(Zajednički seminari Zavoda za teorijsku fiziku, Zavoda za eksperimentalnu fiziku IRB-a i Fizičkog odsjeka PMF-a)

Renormalization in Finite-Time-Path Out-of-Equilibrium ϕ^3 QFT

Ivica Dadić

Zavod za teorijsku fiziku, IRB

Datum: srijeda, 9. ožujak 2016. Vrijeme: **14 sati c.t.** Mjesto: IRB, dvorana **III** krilo

Abstract:

This talk is based on work with Prof. Dr. D. Klabucar.

We formulate the perturbative renormalization for the out-of-equilibrium $g\phi^3$ quantum field theory in the formalism with the finite time path. We use the retarded/advanced basis of out-of-equilibrium Green functions. We use the dimensional regularization method and find the correspondence of diverging contributions in the Feynman diagrams and their counterparts in R/A basis.

- 1. The tadpole contributions are only partially eliminated by renormalization condition. But, finite tadpole contributions are vanishing as $t\to\infty$, in a good agreement with the renormalization condition $<0|\phi|0>=0$ of the S-Matrix theory.
- 2. Renormalized finite part of retarded (advanced) self-energy $\Sigma_{\infty,R(A)}(p_0)$ is not retarded (i.e. not causal), as it is not vanishing when $|p_0|\to\infty$. The same happens in S-matrix theory, where $\Sigma_{\infty,F}(p_0)$ cannot be split into its retarded and advanced component. The problem is "avoided" by considering self-energy with legs $G_F(p_0)\Sigma_{\infty,F}(p_0)G_F(p_0)$, which can be split to R and A components. The same works in the Glaser-Epstein renormalisation approach. In the finite-time-path approach $G_R*\Sigma_R*G_R$ should be calculated at $D\neq 4$.

Voditeljica seminara: Kornelija Passek-Kumerički $\langle passek@irb.hr
angle$