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The “standard model” of electroporation represents transport through pores formed when the 
transmembrane voltage exceeds a critical value. Although the model has evolved from the transient, 
stochastic pore scheme proposed over 30 years ago, it still does not predict key features of 
electropermeabilized cells, including: pore lifetimes; dynamics of membrane potential, electrical 
conductivity, and permeability to small molecules; multiple-pulse protocol outcomes; effects of cell 
size and medium conductivity.                                                                                                          
 
Impermeant, fluorescent small molecules serve as 
convenient indicators of electroporation. Among the 
most frequently used are propidium, calcein, and YO-
PRO-1. Similar in size, these three molecules show 
strikingly different patterns of entry into cells after 
exposure to permeabilizing electric pulses. These 
differences are not predicted by the standard model, 
and until now they have escaped notice in the 
electroporation literature.  
 
We describe experiments that highlight the 
importance of the charge of these molecules 
(propidium and YO-PRO-1 are positive; calcein is 
negative), and which are consistent with electrophoretic transport of charged, normally impermeant 
small molecules after membrane permeabilization. Conventional wisdom holds that the 
transmembrane potential after electroporation is so small that it can be ignored—the dogma of the 
conductive membrane. We point to recent evidence for rapid recovery of the resting membrane 
potential, and we show that transmembrane potentials as low as 10 mV must be taken into account 
in studies of the post-pulse transport of charged species across the membrane. 
 

Figure 1. Quantitative electroporative influx and 

efflux of fluorescent indicator dye molecules. 



Recovery of membrane resting potential is only one of many cellular processes involved in the 
maintenance of homeostasis. In addition to generating a transmembrane potential, a cell perturbed 
by membrane permeabilization must also activate volume and osmotic balance regulation, 
membrane repair, Ca2+ and Na+ efflux, K+ uptake, and increased ATP production (needed not only 
for the additional demands of stress response but also to replace the ATP that leaks out through the 
compromised membrane). We know little about what we call the electropermeome—the interlinked 
networks of permeabilizing structures and processes and the stress response mechanisms activated 
by the breakdown of membrane barrier functions. But to be predictive beyond the initiation of 
permeabilization, electroporation models must represent this complexity, integrating the 
immediate physics of electropore formation with the subsequent physical, chemical, and biological 
responses of cells to the stress of membrane disruption. 
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