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Abstract

Every university introductory physics course considers the problem of Atwood’s machine

taking into account the mass of the pulley. In the usual treatment the tensions at the two ends

of the string are offhandedly taken to act on the pulley and be responsible for its rotation.

However such a free-body diagram of the forces on the pulley is not a priori justified, inducing

students to construct wrong hypotheses such as that the string transfers its tension to the

pulley or that some symmetry is in operation. We reexamine this problem by integrating the

contact forces between each element of the string and the pulley and show that although the

pulley does behave as if the tensions were acting on it, this comes only as the end result of a

detailed analysis. We also address the question of how much friction is needed to prevent the

string from slipping over the pulley. Finally, we deal with the case in which the string is on

the verge of sliding and show that this will never happen unless certain conditions are met by

the coefficient of friction and the masses involved.

1 Introduction

A crucial step in solving a problem in mechanics by applying Newton’s laws to interacting bodies
is to identify the individual forces that act on each object. We dare say that the physics ends there
and the rest is only manipulation of equations. Although this may be too strong a statement, it
has been recognized in recent years that many students have difficulties with this step and that
textbooks and instructors should give more attention to the correct identification of the forces on
each body [1]. One type of problem in which most, if not all, textbooks fail to correctly identify
the forces on each object are the ones containing strings and massive pulleys. These problems are
treated in any university elementary physics course that addresses the rotational dynamics of rigid
bodies about a fixed axis. A staple problem is Atwood’s machine [2] with a pulley whose mass
M is not negligible in comparison with m1 and m2, depicted in Fig. 1. As usual, we assume that
the string is inextensible, its mass is negligible and it does not slide on the pulley, which requires
enough static friction between the string and the pulley. On the other hand, we assume that the
pulley is mounted on a frictionless axle.
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Figure 1: Two masses attached to a massless string that goes around a massive pulley.

For the sake of definiteness let us assume that m2 > m1. The standard free-body diagram of
forces on the hanging masses and the pulley is shown in Fig. 2. Since W1 = m1g and W2 = m2g,
Newton’s second law applied to the masses gives

T1 −m1g = m1a , (1.1a)

m2g − T2 = m2a . (1.1b)
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Figure 2: Standard free-body diagram of forces on the masses and the pulley.

As to the pulley, the standard claim [3] is that T2 and T1 are forces exerted by the string
on the pulley at the points P and Q, respectively. The weight of the pulley and the sustaining
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force exerted by the axle produce no torque about the rotation axis. Therefore, the net torque on
the pulley is τ = T2R − T1R. Applying the so-called Newton’s second law for rotational motion,
τ = Iα, to the pulley one has

(T2 − T1)R = Iα . (1.2)

Since the string does not slide on the pulley, there holds the constraint a = αR. With the
use of this constraint and the assumption that the pulley is a homogeneous disk, whose pertinent
moment of inertia is I = MR2/2, equation (1.2) becomes

T2 − T1 =
M

2
a . (1.3)

By simply summing equations (1.1a), (1.1b) and (1.3) one gets the acceleration, and with a little
more elementary algebra one finds the tensions. The result is

a =
m2 −m1

m1 +m2 +M/2
g , T1 =

2m2 +M/2

m1 +m2 +M/2
m1g , T2 =

2m1 +M/2

m1 +m2 +M/2
m2g . (1.4)

This standard solution to the problem of the motion of Atwood’s machine with a massive
pulley, as well as the solutions to similar problems that can be found in so many textbooks, is
open to a serious physical objection. The forces T2 and T1 are not forces on the pulley, but forces
on the points P and Q of the string exerted by the hanging parts of the string at each side of the
pulley. This gives rise to the problem of justifying the above results obtained on the basis of a
physically unwarranted identification of the forces on the pulley. Note that putting directly the
forces T2 and T1 on the pulley might reinforce a common misconception among students that all
strings do is convey forces from one object to another. Here the problem is even more subtle since
we do consider the string as massless, which usually entails that the tension is constant all along
the string. There is also an interesting question that, as far as we can tell, is never asked in the
textbooks: What is the magnitude of the friction force that prevents the string from slipping on
the pulley?

The proper physical analysis consists in taking into account that each element of the string
exerts a force on the part of the pulley with which it is in contact [4]. The determination of the
net force and the net torque on the pulley requires an integration of the infinitesimal forces and
torques exerted on the pulley by each element of the string that touches the pulley. Here one might
be tempted to justify the usual treatment by the seemingly reasonable conjecture that, except for
the forces at points P and Q of the pulley, the vector sum of all forces exerted by the the string on
the other points of the pulley cancel each other owing to an apparent symmetry. This argument
turns out to be wrong, and no such symmetry exists.

2 Forces on an element of the string

We follow the approach used in the analysis of the related problem of determining the effect of the
friction force on a rope wrapped around a capstan [5, 6].

For the sake of definiteness we insist on the assumption that m2 > m1, which implies T2 > T1.
Figure 3 shows the forces on a piece of the string that subtends the small angle ∆θ. F1 and F2 are
the tensions at the ends of the string element; f and n are, respectively, the tangential (friction)
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Figure 3: Forces on a piece of the string that subtends the small angle ∆θ.

and normal forces exerted by the pulley. Since the string is massless, Newton’s second law entails
that the vector sum of the forces shown in Figure 3 is zero:

F1 + F2 + f + n = 0 . (2.5)

Let
r̂ = cos θ x̂+ sin θ ŷ , θ̂ = − sin θ x̂+ cos θ ŷ (2.6)

respectively be the outward normal and tangential (oriented toward increasing θ) unit vectors at
the point of the pulley with angular coordinate θ. For the the friction force and the normal force
of the pulley on the piece of string we write

f = −fR∆θ θ̂ , n = nR∆θ r̂ (2.7)

where f and n are positive and have dimension of force per unit length.
The tangential and normal components of equation (2.5) are

F2 cos
(∆θ

2

)

− F1 cos
(∆θ

2

)

− fR∆θ = 0 , (2.8a)

−F1 sin
(∆θ

2

)

− F2 sin
(∆θ

2

)

+ nR∆θ = 0 . (2.8b)

In equations (2.8) we have

F2 = |F2| = T
(

θ +
∆θ

2

)

, F1 = |F1| = T
(

θ −
∆θ

2

)

, (2.9)

where T (θ) is the tension at the point of the string with angular coordinate θ with, of course,

T (0) = T1 , T (π) = T2 . (2.10)

Therefore Eqs.(2.8) become

T
(

θ +
∆θ

2

)

cos
(∆θ

2

)

− T
(

θ −
∆θ

2

)

cos
(∆θ

2

)

− fR∆θ = 0 , (2.11a)

−T
(

θ −
∆θ

2

)

sin
(∆θ

2

)

− T
(

θ +
∆θ

2

)

sin
(∆θ

2

)

+ nR∆θ = 0 . (2.11b)
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Now we divide each of the two last equations by ∆θ and let ∆θ → 0 to obtain

fR =
dT

dθ
(2.12)

and also
nR = T (θ) . (2.13)

Equation (2.12) shows that friction causes the tension in the string to be variable, even though
the string is massless.

3 Force on the pulley

We are now in a position to compute the friction force and the total force exerted by the string on
the pulley.

The net friction force exerted by the pulley on the the string is given by

F
string
f =

∫ π

0

(−fR θ̂)dθ = x̂

∫ π

0

dT

dθ
sin θdθ − ŷ

∫ π

0

dT

dθ
cos θdθ (3.14)

where we have used (2.6), (2.7) and (2.12). Integrations by parts yield

∫ π

0

dT

dθ
sin θdθ = T (θ) sin θ

∣

∣

∣

∣

π

0

−

∫ π

0

T (θ) cos θdθ = −

∫ π

0

T (θ) cos θdθ (3.15)

and
∫ π

0

dT

dθ
cos θdθ = T (θ) cos θ

∣

∣

∣

∣

π

0

+

∫ π

0

T (θ) sin θdθ = −(T1 + T2) +

∫ π

0

T (θ) sin θdθ . (3.16)

With these results Eq. (3.14) becomes

F
string
f = (T1 + T2)ŷ−

∫ π

0

T (θ)(cos θ x̂+ sin θ ŷ)dθ . (3.17)

One could think that by symmetry the x-component in (3.17) would be zero, but this is not true
because T (θ) 6= T (π− θ). We also note that the friction force on the string cannot be determined
unless the tension is known as a function of θ. Thus, in general, the question “What is the
magnitude of the friction force that prevents the string from slipping over the pulley?” does not
have a definite answer. As will be seen shortly, however, T (θ) can be found explicitly if the string
is on the verge of sliding on the pulley.

The net normal force exerted by the pulley on the the string is given by

Fstring
n =

∫ π

0

nR r̂ dθ =

∫ π

0

T (θ)(cos θ x̂+ sin θ ŷ)dθ , (3.18)

where equations (2.6), (2.7) and (2.13) have been used. From (3.17) and (3.18) it follows at once
that

F
string
f + Fstring

n − (T1 + T2)ŷ = 0 . (3.19)
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Note that −(T1+T2)ŷ is the total force on the part of the string in contact with the pulley exerted
by the hanging pieces of the string at each side of the pulley. Thus the last result is correct: the
total force on the part of the string in contact with the pulley is zero because the string is massless.

By Newton’s third law, the total force exerted by the string on the pulley is

Fpulley = −(Fstring
f + Fstring

n ) = −(T1 + T2)ŷ . (3.20)

Therefore, although T2 and T1 are not forces on the pulley, everything happens as if they actually
were forces applied by the string at the points P and Q of the pulley shown in Fig. 2, and as if
the forces exerted by the string on the other points of the pulley cancelled each other owing to an
apparent (but nonexistent) symmetry.

4 Torque on the pulley

The torque exerted by the string on an element of the pulley that subtends an angle dθ is

dτ pulley = Rr̂× (−f) = Rr̂× θ̂fRdθ = fR2ẑdθ (4.21)

where (2.7) has been used. By making use of (2.12) we are led to

dτ pulley = ẑR
dT

dθ
dθ . (4.22)

Therefore,

τ pulley = ẑR

∫ π

0

dT

dθ
dθ = R(T2 − T1)ẑ . (4.23)

Once again, this is the torque on the pulley obtained by the a priori physically unwarranted
assumption that T2 and T1 are forces on the pulley and that the torques applied by the string on
the pulley at points other than the points P and Q shown in Fig. 2 cancel each other owing to an
apparent (but nonexistent) symmetry. It should be noted that one can calculate directly the total
torque on the pulley without first finding the net frictional and normal forces as has been done
here [4].

5 String on the verge of sliding

Let us suppose that the string is on the verge of sliding on the pulley. If µ is the coefficient of
static friction between the string and the pulley we have

f = µn . (5.24)

Combining this equation with (2.12) and (2.13) we find

dT

dθ
= µT . (5.25)

It follows that
T (θ) = T1e

µθ (5.26)
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inasmuch as T (0) = T1. Since T2 = T (π) = T1e
µπ, the friction coefficient is determined:

µ =
1

π
ln
(T2

T1

)

. (5.27)

By the way, the exponential growth of the tension explains why, if a rope is wound several times
around a capstan, it takes an enormous force to make the rope slide on the capstan by pulling one
end against a tiny force at the other end [5, 6].

Now the friction force on the pulley can be explicitly computed. From (3.17) and (5.26) we
have

F
pulley
f = −F

string
f = −(T1 + T2)ŷ +

∫ π

0

T (θ)(cos θ x̂ + sin θ ŷ)dθ

= −(T1 + T2)ŷ + x̂T1

∫ π

0

eµθ cos θdθ + ŷT1

∫ π

0

eµθ sin θdθ . (5.28)

The integrals are elementary and can also be found in any table:
∫ π

0

eµθ cos θdθ =
eµθ

1 + µ2
(sin θ + µ cos θ)

∣

∣

∣

∣

π

0

= −
µ

1 + µ2
(1 + eµπ) ;

∫ π

0

eµθ sin θdθ =
eµθ

1 + µ2
(µ sin θ − cos θ)

∣

∣

∣

∣

π

0

=
1

1 + µ2
(1 + eµπ) . (5.29)

Therefore,

F
pulley
f = −(T1 + T2)ŷ−

µT1

1 + µ2
(1 + eµπ)x̂+

T1

1 + µ2
(1 + eµπ)ŷ . (5.30)

With the help of (5.27) and a little algebra this last result can be cast in the following form:

F
pulley
f = −

µ

1 + µ2
(T1 + T2)x̂−

µ2

1 + µ2
(T1 + T2)ŷ . (5.31)

Now we have a definite answer to our previous question: the magnitude of the friction force that
prevents slippage of the string over the pulley is

F pulley
f =

µ
√

1 + µ2
(T1 + T2) . (5.32)

From (1.4) and (5.27) it follows that

T2

T1

=
(4m1 +M)m2

(4m2 +M)m1

= eµπ . (5.33)

Solving this equation for M we find

M =
4m1m2(e

µπ − 1)

m2 −m1eµπ
. (5.34)

Note that if m2 ≤ m1e
µπ then the string will never slip relative to the pulley no matter how large

the pulley mass is. On the other hand, solving (5.33) for m2 we get

m2 =
Mm1e

µπ

M − 4m1(eµπ − 1)
. (5.35)
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If M ≤ 4m1(e
µπ − 1) there is no positive solution for m2. Therefore, two necessary conditions for

the string to be on the the verge of slipping over the pulley are

m2 > m1e
µπ and M > 4m1(e

µπ − 1) . (5.36)

The first requirement is expected from the force amplification effect brought about by a rope
wrapped around a capstan [5, 6]. It would be the only necessary condition if the pulley could not
rotate or, equivalently, if its mass were infinite. The second requirement is not so obvious and
stems from the fact that the pulley can freely turn on its axle.

So as to have an idea of the order of magnitude of the masses that are required for the string
to be on the verge of sliding, let us assume that m1 = 1 kg, m2 = 3 kg and µ = 0.3. Then (5.34)
gives M ≈ 43 kg, an appreciably large mass for the pulley.

6 Concluding Remarks

We have argued that the usual textbook solution to a classic problem in rotational dynamics,
Atwood’s machine, relies on a faulty identification of forces on each object, since the tensions in
the hanging parts of the string are identified as forces on the pulley. This may seem a small detail,
but we believe it is an important one, since correctly identifying the forces on each of a system
of interacting bodies is a fundamental step in solving a mechanics problem by means of Newton’s
laws. Such a shortcut also reinforces a common misconception between students to the effect that
strings merely convey forces without affecting them.

We have presented a consistent treatment of the problem by considering the normal and friction
forces between each element of the string and the pulley, and have shown that the contact force
exerted on the pulley by the entire segment of the string that touches the pulley gives rise to the
net force and the net torque usually assumed without a convincing justification in the standard
treatment given in the textbooks.

Although presenting the full mathematical treatment of the problem, as done here, is beyond
the scope of an introductory physics course, we believe that attention should be called to the fact
that the force on the pulley arises from contact forces exerted by the string and that a careful
analysis gives the conjectured result (4.23) for the torque on the pulley. Another possibility is to
consider the pulley together with the segment of the string that touches it as a single object with
the same moment of inertia as that of the pulley, since the string is massless. As far as the angular
acceleration of this object is concerned, one is allowed to disregard the internal forces between
the aforesaid segment of the string and the pulley, and now T1 and T2 are actually external forces
responsible for the net external torque on the pulley-string segment system [4].
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