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Abstract

At approximate radii of 200-300 km, asteroids transition from oblong ‘potato’ shapes to spheres.

This limit is known as the Potato Radius, and has been proposed as a classification for separating

asteroids from dwarf planets. The Potato Radius can be calculated from first principles based on

the elastic properties and gravity of the asteroid. Similarly, the tallest mountain that a planet can

support is also known to be based on the elastic properties and gravity. In this work, a simple novel

method of calculating the Potato Radius is presented using what is known about the maximum

height of mountains and Newtonian gravity for a spherical body. This method does not assume

any knowledge beyond high school level mechanics, and may be appropriate for students interested

in applications of physics to astronomy.

1

ar
X

iv
:1

51
1.

04
29

7v
1 

 [
ph

ys
ic

s.
ed

-p
h]

  7
 N

ov
 2

01
5



I. INTRODUCTION

Spacecraft are currently exploring asteroids and dwarf planets, such as the Near Earth

Asteroid Rendezvous mission (NEAR) landing on Eros,1 the Dawn mission orbiting Ceres

and Vesta,2 and the New Horizons flyby of Pluto and Charon.3 Additionally, the Mars Re-

connaissance Orbiter (MRO) has observed the Martian moons Phobos and Deimos.4 These

missions observe a remarkable variety of shapes for these bodies, shown in Fig. 1. Smaller

asteroids have irregular shapes while dwarf planets (large asteroids) are nearly spherical.

This follows from some simple physics.

(a) Eros

R~15×5 km

(b) Phobos

R~13×9 km

(c) Vesta

R~285×225 km

(d) Ceres

R~470 km

(e) Charon

R~600 km

FIG. 1. Five solar system minor bodies imaged by visiting probes. Clockwise from top left: (a)

Eros as seen by the NEAR mission, (b) Phobos as seen by the MRO, (c) Vesta and (d) Ceres as

seen by the Dawn mission, and (e) Charon seen by New Horizons. Approximate radii from Ref.5.

A well known result of Newtonian gravity is that a material with uniform density has the

minimum gravitational potential energy when shaped into a sphere. If a sufficiently deep

hole is dug in a spherical body, material will fall in from the edges. If matter is stacked into

a sufficiently high mountain it will eventually fall down under its own weight.

For a sufficiently large surface deviation from spherical the gravitational force will be able

to overcome the material’s yield strength and deform it back to some maximum allowable

deviation, determined by the strength of the force of gravity and the material’s elastic

properties. Thus, planets are spherical with small surface deviations.

In reality, all large isolated bodies that have been observed are found to be nearly spher-
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ical, or at least oblate spheroidal with an equatorial bulge due to rotation. However, many

asteroids and moons in the solar system with radii less than 200-300 km are known to have

oblong and asymmetric geometries.6 This is because these asteroids and moons do not have

sufficient gravity to overcome their intrinsic rigidity, and can thus maintain their nonspher-

ical shapes. This radius range associated with the transition between oblong and spherical

geometries has been dubbed ‘The Potato Radius.’

Additionally, the highest possible mountain that a planet can support has been studied

from first principles, where it has been found that the maximum height of a mountain is

dependent on the surface gravity and elastic properties of the mountain.7

As a simple illustrative argument, the maximum height of a mountain on a body of

uniform density is limited by the yield strength S of the mountain. The pressure at the base

of the mountain is ∼ ρgh, where ρ is the density, g the surface gravity, and h the height of

the mountain. If the height is such that ρgh >∼ S the base will break, causing the mountain

to crumble back to the maximum allowable height.8 Rearranging terms, we can find that

hg ∼ S/ρ, implying that the product of the tallest possible mountain and the surface gravity

is constant. If a pair of bodies are made of the same material an approximate relation arises

which we call the Height-Gravity relation:

h1g1 = h2g2 = C (1)

Where bodies 1 and 2 have respective surface gravities g1 and g2, and maximum mountain

heights of h1 and h2, and C ∼ S/ρ is taken to be a constant dependent on composition which

we call the Rock Constant in this work.9 For two bodies with similar compositions, Eq. 1

implies larger planets will have a smaller tallest possible mountain while smaller planets can

support larger mountains.

This relation is obeyed quite well in the inner solar system. For example, the surface

gravity of Mars is ≈ (2/5)gEarth and the height of Olympus Mons (the tallest mountain on

Mars) is nearly (5/2)hEverest. For rocky bodies in the inner solar system, the heights of the

tallest mountains are given in Tab. I.

The product hg gives a value for the Rock Constant that is constant to ∼ 10% for Venus,

Earth, and Mars. The exception is Mercury, whose tallest mountain falls well below the limit.

Recall that the Height-Gravity relation provides an upper-bound - the tallest mountain on

Mercury is simply not the tallest possible. Similarly, the tallest mountain on the Moon
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TABLE I. List of the tallest mountains on each planet, taken to be the highest point above mean

surface elevation. The Rock Constant of the Height-Gravity relation is calculated from the height

of the tallest mountain and surface gravity of each planet.

Planet Tallest Mountain Height above mean Surface gravity10 (m
s2

) Rock Constant (m
2

s2
)

planetary radius (m)

Mercury Caloris Montes >300011 3.7 11100

Venus Maxwell Montes 1067012 8.9 94963

Earth Mt Everest 8850 9.8 86730

Mars Olympus Mons 2190013 3.7 81030

and other rocky bodies in the solar system are found to be well below the limit implied by

Height-Gravity relation. This could be because Mercury and the Moon are not geologically

active. Caloris Montes on Mercury is the rim of an impact crater,11 while Maxwell Montes,

Mt. Everest, and Olympus Mons were all produced by volcanism or tectonic activity.12,13

Because the constant in the Height-Gravity relation and the Potato Radius are both

dependent on material specific constants, the Height-Gravity relation can be used to derive

the Potato Radius. This derivation could be of interest to introductory physics students

with an interest in applications of physics to astronomy, particularly because it does not

assume an understanding of advanced calculus or material science (e.g. Young’s Modulus,

Stress, Yield Strength, etc) that are required to understand previous derivations of the

Potato Radius.

II. CALCULATING THE POTATO RADIUS

Recall that the Potato Radius is the radius where there is a transition from oblong

asteroids to spherical dwarf planets. If we consider an asteroid as a small sphere with

large surface deviations we can apply the Height-Gravity relation to find the tallest possible

mountain. As the radius of this sphere increases the surface gravity increases, and thus the

maximum mountain height eventually decreases below the radius, and the asteroid becomes

nearly spherical. The radius where the maximum height of a mountain is equal to the radius

of the asteroid should therefore be the Potato Radius.

Consider an ellipsoidal asteroid with a semi-minor axis R and a semi-major axis 1.5R.

This asteroid could be approximated by a sphere of radius R with a mountain of height R
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covering one hemisphere, as shown in Fig. 2.

R R

FIG. 2. Oblong asteroid approximated as a sphere of radius R with a hemisphere-spanning

mountain of height R.

The Height-Gravity relation can be applied

hasteroid gasteroid = C (2)

and the Rock Constant C can be taken to be the product of the height of Everest with earth

surface gravity - this value was nearly the mean of the possible values calculated in Tab. I.

The height hasteroid of the mountain is already taken to be the radius R, and the surface

gravity of the sphere can be found by Newton’s Law of Gravitation

g =
GM

R2
(3)

and by taking the asteroid to have a constant density ρ this can be expressed purely in terms

of the radius,

g =
G(4

3
πρR3)

R2
=

4

3
GρR. (4)

At this point, the Height-Gravity relation can be applied:

hasteroidgasteroid = hEarthgEarth

R(
4

3
πGρR) = hEarthgEarth (5)

R =

√
3hEarthgEarth

4πGρ
.
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Using hEarth = 8850 m, gEarth = 9.8 m/s2 , and ρ = 5.5 g/cm3 (≈ ρEarth), this equation

gives a value of R = 238 km. This is within the range of 200-300 km calculated directly

by Lineweaver and Norman, and in agreement with observation of the oblong shapes of

Eros, Phobos, and Vesta are irregular while larger bodies like Ceres and Charon are nearly

spherical.

Slightly different values of the Potato Radius can be obtained by using a more realistic

density for the asteroid (there doesn’t seem to be any reason it should be the same density

as the earth), though even the most well constrained asteroid densities still vary between

∼ 2− 10 g/cm3.14 Furthermore, on a large planet R � h so surface gravity is approximately

constant over the span of the mountain. In contrast, when h ∼ R the surface gravity may

vary considerably over the mountain, thus requiring a more rigorous treatment. Lastly, the

choice of Everest and earth gravity for the Rock Constant applies for rocky bodies of earth

like composition, while objects of different composition will have a different constant.

III. CONCLUSION

Objects larger than the Potato Radius must be nearly spherical, while objects smaller

objects can be asymmetric. In this work, a novel method was presented for calculating

the Potato Radius using the maximum height of mountains on planets. Our result for the

Potato Radius R ≈ 240 km agrees well with spacecraft observation. This method assumes no

knowledge beyond introductory mechanics, and may be of interest to students and teachers

interested in practical applications of physics to astronomy. Unlike previous methods for

calculating the Potato Radius and the maximum height of mountains, this method does not

require extensive knowledge of calculus or materials physics, such as the Young’s modulus,

stress, and yield strength.
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