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Abstract

We introduce a new example of a system which slides up an inclined
plane, while its center of mass moves down. The system consists of
two identical masses connected by an ideal string symmetrically placed
over a corner. This system is similar to the double-cone rolling up the
inclined V-shaped rails. The double-cone’s motion, while relatively
easy to demonstrate, is rather difficult to analyze. Our example is
easy to follow and it doesn’t require subtle understanding of the 3-d
geometry.

1 Introduction

A double-cone that rolls up an incline is a very well know classroom demon-
stration [1, 2, 3, 4]. It shows that the cone moves to lower its center of gravity
even while its end points ascend on V-shaped rails. Despite its pedagogical
appeal, there have been very few quantitative studies of the dynamics of
this demonstration. This probably is due to the difficulty in identifying the
points of contact between the double-cone and the rails [4]. Here we provide
an example in which a string tied to two hanging masses slides up an incline
plane. Similarly, as the string moves upward, the center of gravity of the
system actually goes down. However, unlike the double-cone, this system is
comparatively easy to investigate and accessible to undergraduate students.
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2 The system

We consider two identical balls A and B of mass m, connected by a massless
ideal string of length l which is symmetrically placed over the corner of a
frictionless table, as shown in figure (1). Let us mark with P the middle of
the string. Initially the system is at rest, with the masses at the table’s level,
separated by the distance l. We first investigate the motion of the system
for a horizontal table. As the system is released and the point P advances
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Figure 1: Two identical masses A and B connected by an ideal string of
length l, falling symmetrically over the corner of a horizontal table.

towards the corner, we will be interested in finding the acceleration of P as
a function of time and the angle α at the corner O. For this we want to find
the motion of the two masses A and B, and most importantly, the motion
of their center of mass.

The central point P moves along the bisector of angle α, which we take
to be the x axis with the origin at O. The center of mass of the system moves
both along the x axis towards O, and down along the y axis. Initially, the
center of mass of the system is at y = 0. The figure depicts an intermediate
state where A and B have already descended by an amount y as P moved
along x towards the corner O. The mass A moves along the side s of the
table and vertically along y. B moves symmetrically on the other side of
the table. The generalized velocities of A are q̇A1 = ṡ and q̇A2 = ẏ. From the
geometry of the problem we have

tan
α

2
=
l/2− y
x

, cos
α

2
=
x

s
. (1)
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Hence
q̇A1 = ṡ =

ẋ

cos α2
, q̇A2 = ẏ = − ẋ tan α

2
. (2)

Since the kinetic energy of B is the same as that of A, the total kinetic
energy of the system is given by

T =
m

2

(
(q̇A1 )

2 + (q̇A2 )
2 + (q̇B1 )

2 + (q̇B2 )
2
)
,

= m (ṡ2 + ẏ2) ,

= mẋ2
1 + sin2 α2
cos2 α2

. (3)

Similarly, the potential energy is

V = mg(qA2 + qB2 ) ,

= −2mgy ,
= 2mgx tan

α

2
−mgl , (4)

where we chose the potential energy to be zero at the table’s level. The
Lagrangian of the system, L = T − V , becomes

L(x, ẋ) = mẋ2
1 + sin2 α2
cos2 α2

− 2mgx tan
α

2
+mgl . (5)

The corresponding Euler-Lagrange equation reads

2mẍ
1 + sin2 α2
cos2 α2

+ 2mg tan
α

2
= 0 , (6)

which yields

ẍ+ g
sinα

3− cosα
= 0 . (7)

At this point, we are well equipped to describe the motion of the two masses.
Let’s consider only A, because B will move symmetrically. As the system
evolves, A moves along s with the acceleration s̈ and along y with the accel-
eration ÿ. From (2) and (7) we have

s̈ =
ẍ

cos α2
= −g sinα

(3− cosα) cos α2
(8)

and respectively

ÿ = −ẍ tan α
2
= g

sinα tan α
2

3− cosα
. (9)
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The total acceleration of A will be aA =
√
s̈2 + ÿ2. Substituting the above

results we obtain:

aA = g

√
1− cosα

3− cosα
. (10)

BecauseB moves symmetrically on the other side of the table, its acceleration
will be the same aB = aA.

The center of mass of the system moves simultaneously along x and y
axes, as depicted in figure (2). Initially the two masses are at the table’s level:
y = 0. From the geometry of the system, at this point x is at its maximum
value xmax = (l/2) cot(α/2). At the end of the motion, when P arrives at

xmax = l
2 cot ↵

2

ymax = l
2

✓ = ↵
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Figure 2: The motion of the center of mass of the system

point O, y reaches its maximum value ymax = l/2, which corresponds to
x = 0. It follows that the center of mass descends on a oblique path at an
angle of α/2. Using eqs. (7) and (9), we obtain

aCM =
√
ẍ2 + ÿ2 = |ẍ| sec α

2
= g

2 sin α
2

3− cosα
= g

sin α
2

1 + sin2 α2
. (11)

So far we have been considering the motion of the string on a horizontal
plane. Would the string slide up if we had an inclined plane instead? We
find that the answer to that question is yes. For any given corner angle α,
we can tilt the table upward with an arbitrary angle φ by raising the point
O. We find that the point P still moves towards O provided φ is less than
a maximum value φmax to be determined. This upward motion of P is only
apparently paradoxical, because the center of mass of the system still goes
down. To determine φmax, we refer the reader to figure (3). The point P
moves upward on the plane only if the center of mass of the system continues
to go down.

Thus, when the inclination φ reaches the maximum value φmax, the center
of mass moves horizontally as the point P slides up the plane. From figure
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Figure 3: When φ = φmax the center of mass moves on the horizontal dashed
line.

(3), we see that this happens when

l

2
= xmax sinφmax ,

or
l

2
=
l

2
cot

α

2
sinφmax .

That is
φmax = sin−1

(
tan

α

2

)
. (12)

Hence, we see that for small values of α, we have φmax ' α
2 , and in general

φmax >
α
2 . In figure (4 a), we see that for α = π/2, for a vertical plane, the

center of mass stays in place as the point P climbs towards point O.
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Figure 4: The vertical case.
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In addition, eq. (12) suggests that for a plane with a corner angle α > π/2,
the point P will move up for any inclination of the plane, even vertical. For
α > π/2, the center of mass goes down as point P climbs up a vertical board
as shown in figure (4 b).

3 Conclusions

We analyzed a system that consists of two identical masses connected by
an ideal string placed symmetrically over a corner of a frictionless table.
On a horizontal table, the string moves towards the corner for any value of
the corner angle α. If the table is tilted upward, we find that the string still
moves towards the corner provided the angle is less than a critical value. This
system reminds of the double-cone rolling up the inclined V-shaped rails.
The double-cone’s motion, while relatively easy to demonstrate, is rather
difficult to analyze. The example considered here is simple to understand,
and it doesn’t need subtleties of the 3-d geometry required for the involved
analysis of the double-cone problem. We find that the corner problem is not
without an intrigue. If the corner angle is greater than π/2, then the string
will slide up and slip out of the plane, even for a vertical plane.
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